The Status of the Large Volume Detector at Gran Sasso Laboratory

(Submitted by B. Alpat)

1. University of Bologna and INFN-Bologna, Italy
2. Brown University, Providence, USA
3. University of Campinas, Campinas, Brazil
4. CERN, Geneva 23, Switzerland
5. Chinese Academy of Science, Beijing, China and I.S.C.C. World Laboratory
6. University of Firenze and INFN-Firenze, Italy
7. INFN/INFN, Frascati, Italy
8. INFN/LNF, Frascati, Italy
9. University of Houston, Houston, USA
10. Indiana University, Bloomington, USA
11. Massachusetts Institute of Technology, Cambridge, USA
12. Northeastern University, Boston, USA
13. INR Russian Academy of Sciences, Moscow, Russia
14. Okayama University, Okayama, Japan
15. Okayama University of Science, Okayama, Japan
16. University of Perugia and INFN-Perugia, Italy
17. Saitama University, Saitama, Japan
18. Ashikaga Institute of Technology, Ashikaga, Japan
19. Institute of Cosmo-Geophysics, CNR, Torino, Italy, University of Torino and INFN-Torino, Italy
20. University of Urbino, and INFN-Firenze, Italy

ABSTRACT

The Large Volume Detector (LVD) at Gran Sasso underground laboratories is described and the status of the detector with some results relative to the first one fifth of the apparatus are presented.

1. Introduction

The LVD is a multipurpose detector located at the Gran Sasso Laboratory in Italy and it is designed primarily to study the neutrinos from supernovae, the neutrino oscillations with atmospheric neutrinos, the chemical composition and the energy spectrum of the high energy primary cosmic rays with cosmic ray induced muons. It is also possible to detect neutrinos from point like sources, dark matter, monopoles, proton decay, WIMPS, WIFI etc. In this report we shortly discuss some of these topics and describe the present status of the LVD.

2. Detector Characteristics

The Gran Sasso underground laboratory is located in Italy about 120 km east of Rome at a depth of 3,000 meters water equivalent below the peak of the Gran Sasso mountain. The LVD is a uniform detector of dimensions (w)13.8 m x (l)42 m x (h)12 m and it has a modular design. A total of 190 modules are divided into 5 towers and each module contains 9.6 tons of liquid scintillator filled into 8 counters. These counters are placed inside a steel container and all is surrounded by tracking chambers at the bottom and at one vertical side. The overall geometrical acceptance of the LVD is 7710 m²sr. The L-shaped tracking system contains double layer of limited streamer tube (LST) chambers which are sense strip(X)-LST-sense strip(Y) sandwiches with 3.9 cm strip width. The 2 cm of stagger between the two LST layers yields to an angular resolution of 4 mrad.

The basic element of the scintillation system is a stainless steel tank of dimensions 1 x 1 x 1.5 m³ filled with the liquid scintillator CnBr2m, (n)=9.6. Each counter seen by three 15 cm PMTs yielding very good energy resolution ($\sigma(E)/E=15\%$ at 10 MeV).
3. Physics with LVD

3.1. Neutrinos From Supernovae

The neutrino bursts emitted by the collapse of a star in our galaxy or in Magellanic Cloud will be detected in LVD with very high precision. In Table 1 is given the supernova neutrino reactions detectable in LVD from a supernova (SN type-II) at the galactic center.

Table 1 The number of ν reactions detectable in LVD from a SN at the galactic center (8.5 kpc).

<table>
<thead>
<tr>
<th>Reaction</th>
<th>E_{thr} (MeV)</th>
<th>Detectable particle</th>
<th>N_{exp} (tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\nu}_e p \rightarrow n e^+$</td>
<td>1.8</td>
<td>e^+, γ (a)</td>
<td>650-1000 100-250</td>
</tr>
<tr>
<td>$\nu^{12}C \rightarrow \nu^{12}C^*$</td>
<td>13.1</td>
<td>γ</td>
<td>23-32 6-17</td>
</tr>
<tr>
<td>$\nu e^- \rightarrow \nu e^-$</td>
<td>5.3</td>
<td>e^-</td>
<td>16-27 3-5</td>
</tr>
<tr>
<td>$\bar{\nu}_e^{12}C \rightarrow ^{12}B e^+$</td>
<td>14.4</td>
<td>e^+, e^- (b)</td>
<td>5-15 1-3</td>
</tr>
<tr>
<td>$\nu_e^{12}C \rightarrow ^{12}Ne^-$</td>
<td>17.3</td>
<td>e^+, e^- (c)</td>
<td>2-15 0-3</td>
</tr>
</tbody>
</table>

(a) From the n capture by free protons;
(b) From the subsequent β-decay of ^{12}B;
(c) From the subsequent β^+-decay of ^{12}N.

In observing the SN neutrinos the LVD has two important features; the fast event recognition through an Supernova Online Monitoring (S.O.M.) system on statistical basis and the precise absolute timing of the burst given by the Gran Sasso rubidium atomic clock.

The candidate selection has been made by S.O.M. comparing the clusters of m events within $\Delta t \leq 100$ sec with the corresponding Poisson probability calculated from the current trigger rate. The check for the candidate consistency and fine-tuning has been made by off-line on the basis of the topological distribution of the pulses inside the entire detector, and in particular, by searching for the presence of a delayed low energy pulse from the neutron capture reaction (see the first reaction in Table 1).

3.2. Atmospheric Neutrinos (Neutrino Oscillations)

If the deficit of the atmospheric ν_μ flux as compared to the phenomenological model expectations measured by the Kamiokande-II experiment is confirmed it will be a strong evidence for the presence of the neutrino oscillations.

The detection technique of the atmospheric neutrinos in LVD bases on the observation of the contained events where the neutrinos interact inside LVD and of the crossing muons induced by the ν_μ reactions in the surrounding rock. In LVD with 1kt we expect to observe about 100 ν_μ and 60 ν_e contained events and with the full LVD, 78 horizontal and 153 upward going ν_μ induced muons ($E_\mu \geq 2$ GeV) events in a year.
3.9. High Energy Cosmic Ray Physics

The study of the multi muons at LVD will give valuable information about the elemental composition of the primary cosmic rays and their energy spectrum for the primaries with energies \(\geq 10^9 \) TeV above which the primary cosmic ray flux falls steeply.

The method is to compare the measured muon multiplicity distribution with that calculated from an accurate Monte Carlo (MC) for a given trial primary composition model and energy spectrum. Our MC calculations indicate that with one LVD tower at the muon multiplicity \(N_\mu=11 \) the 3\(\sigma \) separation between two extreme models will be achieved in a year of data taking.

The correlations with the surface detector (EAS-TOP in LVD case) give also the possibility to couple the primary energy information from the shower size \(N_e \) measurements at the surface with that of the muon multiplicity distribution at LVD for the coincident events.

4. First Tower Results and the Present Status of the LVD

The current operating high energy threshold (HET) is 5 MeV and it is lowered to 0.8 MeV for about 1ms whenever a HET trigger occurs. The single muon rate for the whole tower is measured to be 0.03 Hz corresponding to 1.1 muons m\(^{-2}\) sr\(^{-1}\) h\(^{-1}\) at the detector site while the event rate due to gammas and neutrons is 0.11 Hz.

Since 11 June 1992 until the end of August 1993 about \(2.5 \times 10^6 \) triggers have been observed with an average operational efficiency of \(\langle \epsilon_{op} \rangle \geq 80\% \).

5. Summary

The first tower of LVD is fully operational since June of 1992 and it is the most sensitive liquid scintillator detector currently in operation. The data analyses related to the various physics topics are under way. The second tower is under construction and will be completed by the end of 1993.

3. References