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Tracking energy fluctuations from fragment partitions in the lattice gas model
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Partial energy fluctuations are known tools to reconstruct microcanonical heat capacities. For experimental
applications, approximations have been developed to infer fluctuations at freeze-out from the observed fragment
partitions. The accuracy of this procedure as well as the underlying independent fragment approximation is under
debate already at the level of equilibrated systems. Using a well controlled computer experiment, the lattice
gas model, we critically discuss the thermodynamic conditions under which fragment partitions can be used to

reconstruct the thermodynamics of an equilibrated system.
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I. INTRODUCTION

The observation of abnormal fluctuations in nuclear mul-
tifragmentation and its possible connection to a negative heat
capacity [1] has raised much interest and discussions in the
last few years [2-7].

For a microcanonical ensemble, it has been proposed in
Ref. [8] that the kinetic energy fluctuation o2 /72 can be
used to reconstruct the heat capacity even in the context of
phase transitions and for small systems. The accuracy of
the fluctuation expression has been successfully tested on
numerical experiments on the liquid gas phase transition,
using the microcanonical lattice gas model [9] and molecular
dynamics simulations with a Lennard-Jones potential [5,10].

From the experimental point of view, it has been pro-
posed to use the clusters asymptotically detected in nuclear
multifragmentation reactions to backtrace the fluctuations of
the total energy partitioning at freeze-out [1]. The robustness
of the experimental procedure has been tested in Ref. [11].
In particular, statistical models have been used to generate
events, then analyzed using the experimental procedure and
a good reproduction of the model heat capacities has been
reported [11]. Using molecular dynamics at equilibrium
and recognizing fragments through the Hill algorithm [12]
the authors of Ref. [5] have come to opposite conclusions
criticizing the independent fragment hypothesis on which is
based the experimental method as well as the zero temperature
approximation for the fragment binding used to evaluate the
fragment internal interaction energy. The model of Ref. [5]
has also been studied in Ref. [10], where the dynamics of
the expansion was explicitly included. The result was that the
fluctuations of dense systems were strongly modified by the
dynamics and that only the latest phase of the expansion, after
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a freeze-out corresponding to dilute configurations, can be
accessed from the observation of asymptotic partitions.

More generally, the question of the thermodynamic condi-
tions under which the energy partitioning of a small fragment-
ing system can be retraced from the measured fragment sizes
and kinetic energies, raises important questions for the whole
field of nuclear thermodynamics. Indeed the independent
fragment hypothesis is not only needed to reconstruct partial
energy fluctuations [1] but is also necessary for any other
quantitative estimation of the nuclear phase diagram [13].
Moreover only if the fragmenting source can be approximated
by an ensemble of non- (or weakly-) interacting nuclear
clusters, the statistical models [14] that have successfully re-
produced heavy ion data since two decades can be theoretically
justified.

To contribute to this debate, we want to address the problem
of the independent fragment hypothesis and of the fragment
energetics at equilibrium in the framework of a well controlled
exact numerical model, the lattice gas model [9]. We will
show in this article that, in the lattice gas model, the system
heat capacity can be well estimated from fragment sizes at all
energies and for all pressures p/p. < 1/3 almost independent
of the parametrization adopted for the fragment energies. For
higher pressures this approximation tends to break down, but
the estimation of fluctuation stays at the 30% accuracy level
even in the supercritical regime.

II. LATTICE GAS RESULTS

It has been proposed in Ref. [8] to use the partitioning of a
fixed total energy (E) into kinetic (K) and configurational
(V) energies, Ei,y = K + V, in order to look for entropy
curvature anomalies. Indeed, for classical systems with mo-
mentum independent interactions, because of the microstates
equiprobability the microcanonical distribution of K at a fixed
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energy E reads
Pp(K) = exp(Sg(K) + Sy (V) — Sior(Eror)),

where Sk, Sy, Sy are the kinetic, potential, and total entropies.
If this distribution is normal, a Gaussian approximation
can be performed leading to analytic expressions relating
temperatures and heat capacities to the observed moments
of the distribution. When only the leading order is kept, we
recover the simplest expression used in Ref. [15] to relate the
total microcanonical heat capacity C to the kinetic one Cg
and the kinetic energy fluctuation og scaled by the system
temperature 7 [16]

c=cC (1 7% )" 1
ey
Even if in practice it seems that Eq. (1) is often accurate
enough, the validity and the accuracy of this approximate
expression should always be checked by controlling the actual
distribution and when the distribution is normal by evaluating
the corrections. In our work this has been done both in
theory [8] and experiments [11]. The accuracy of the simple
expression (1) to infer the heat capacity even in the vicinity of
a phase transition, or worse of a critical point is also verified
in Refs. [5,10].

The application to experimental data of the idea proposed
in Ref. [8] requires the development of different tools. Let
us first briefly recall the problem of the potential energy
determination for an ensemble of fragments. If we look at

a system of N interacting particles as a system of M clusters

(including monomers), the potential energy V = Z,N< ; Vij

can be written as V = Zyzfl Vi + Zlﬂg Ve Where V; =
DicjesVijand Vg =23 . -, v are the intrafragment
and interfragment components, respectively. In the experi-
mental analysis of Ref. [1] the only interaction considered
among the different fragments is the Coulomb force because
of its long range nature. The interfragment nuclear force
is thus neglected following the argument that an important
nuclear interaction is incompatible with the freeze-out concept.
Concerning the evaluation of the intrafragment potential
energy Vy =) ,_ jes Vij» this latter is approximated in the
experimental analysis [1] by the tabulated ground state nuclear
energies. Both these approximations are used in many other
thermodynamic studies of multifragmentation [13,17] and in
all macroscopic statistical models [14].

A. Independent liquid drop approximation

In order to check the quality of these approximations, we
shall use an exact numerical experiment. This restricts studies
to classical systems. At variance with nuclear systems which
are liquid in their ground states, the ground states of classical
models are solid and so present an extra binding. To avoid this
difficulty, we may approximate the interaction energy V as a
sum of independent liquid drops contributions

My My
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FIG. 1. (Color online) Correlation between the exact interaction
energy V and its approximation from fragment sizes Q;p (see text)
at an average density p/po = 0.0135 and a temperature 7/7, =
0.29 (upper part), and 7/7. = 0.57 (lower part). The liquid drop
parameters for the fragment binding energy are fixed as ay =
—2.86¢, ag = 2.73¢.

Qu/&

where A is the size of cluster f and M is the total number
of clusters. The parameters ay,as can then be fitted to
reproduce the cluster binding at low but finite temperature
to avoid the peculiarities of the ground states of such classical
systems.

In this article we present a study based on exact numerical
experiments of the 3D lattice gas model [9]. The ground
states of such a model are cubes and, as discussed above,
to estimate the internal interaction energy of the liquid
fragments avoiding the extra binding of those peculiar cubic
configurations we shall use low temperature simulations.
Using canonical simulations with temperatures around 1/3 of
the critical temperature (or microcanonical ones with energies
around —1.5¢) leads to ay = —2.86¢, ag = 2.73¢, where € is
the lattice coupling (see discussion of Fig. 1).

For comparison the choice ay = —3¢,ag = 3€ corre-
sponds to large cubic clusters, while ay = —3.06¢, as =
3.35¢ leads to a good description of the zero temperature
clusters in the size range 2 < Ay < 60.

In the following calculations the coefficients ay =
—2.86¢, ag = 2.73¢ will be kept constant, and we will come
back to the influence of the parameters values in the last
section.

We have first tested the accuracy of the approximation
(2) for the total interaction energy V in a low density case
(108 particles in a cubic box of volume L* = 8000) where the
interfragment energies can be safely neglected. The upper part
of Fig. 1 shows the correlation between the exact interaction
energy and its independent fragment approximation Eq. (2)
in a canonical simulation at a temperature 7 /7, = 0.29.
The corresponding average total energy is —1.74€, well
below the backbending region. The good linearity of the plot
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(the Qrp/V-correlation coefficient is ¢ = 0.77) shows that
indeed in such a low density configuration the interaction
energy can be calculated within a liquid drop approximation.

Even in the independent fragment picture, the liquid drop
coefficients are expected to change with temperature reflecting
the internal excitation of the produced clusters. This can be
seen in the lower part of Fig. 1, which shows a calculation
for the same very diluted system at a temperature well above
the transition temperature. It is clear that the quality of the
correlation does not significantly change with the temperature
(here the Qpp/V-correlation coefficient is ¢ = 0.78), but
the use of the low temperature mass formula leads to a
systematic ~20% overestimation of the fragment binding that
can affect the thermodynamic analyses.

B. The choice of the statistical ensemble

This point should be further explored looking at direct
effects of the considered approximation on thermodynamical
quantities, i.e., on ensemble averaged observables such as
averages and variances. Since the different statistical en-
sembles are not equivalent in finite systems, the statistical
ensemble has to be specified. In the following we have
chosen to perform calculations in the microcanonical “isobar”
ensemble characterized by the two state variables (E, 1),
the total energy and the Lagrange multiplier imposing the
average volume V, respectively [9]. Statistical averages are
calculated as

Yy AP exp(—BE® — 2VW)S(E® — E)
Z(n) CXP(—ﬂE(n) — AVE)S(EM™ — E)

(A)Es = ,

where A is a generic observable (A = K allows to com-
pute the microcanonical temperature, A = K2 provides the
heat capacity), the sum runs over the system microstates,
and the average volume is defined through the one body
observable

ar &

V= 3—; 21: rl-3 n;, @)
i=

where n; = 0,1 is the occupation of the i —th lattice

site.

Different reasons motivate the choice of this ensemble.
First, this is the ensemble in which the liquid gas phase
transition is associated to a negative heat capacity up to the
critical point [18]. Moreover in the actual analysis of heavy
ion experiments data are sorted in excitation energy bins, i.e.,
approximate realizations of microcanonical ensembles. On
the other side the system extension is only imposed by the
freeze-out requirement without any boundary condition. We
have recently shown that such a physical situation is accounted
in a thermostatistical coherent way only if the system size
is imposed through a lagrange parameter A, with P = A /8
having the dimension (and the physical role) of a constraining
pressure [19]. Finally it is interesting to notice that if A =0
this “isobar” ensemble is equivalent to the isochore ensemble
used in Sec. IT A if the volume is large enough such that the
boundary conditions become irrelevant.
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FIG. 2. Reconstruction of the average kinetic energy (solid lines)
as a function of total energy from fragment sizes in the lattice gas
model at different pressures. Dashed lines: liquid drop parameters
from table I. Symbols: liquid drop parameters fixed from the low
temperature low density phase as in Fig. 1.

C. Averages and fluctuations

Figure 2 shows the estimated average kinetic energy
E-Y ¢ By as a function of the total energy with different
constraints on the system volume [9], corresponding to
different pressures. The shape of the exact caloric curve
(solid line) is nicely reproduced by the independent “cold”
liquid drop approximation (open symbols) for all volume
constraints. Using the temperature backbending to define the
phase transition, we see that the coexistence zone as well
as the critical point can be well estimated from the unique
knowledge of the fragment partitions. However, the actual
value of the temperature shows a systematic shift. The fact
that this shift is also present in the pure high temperature
low density gas phase (Fig. 1) suggests that it may be due
to a temperature dependence of the fragment internal energy
which is not accounted for in our liquid drop parametrization.

The effect on partial energy fluctuations is shown in Fig. 3
for the same thermodynamic conditions as in Fig. 2. We can
see that the fluctuations tend to be overestimated, but since
the bias on the average value goes in the same direction, the
normalized fluctuations are still reasonably reproduced almost
up to the critical point.

Even if the quantitative study of a statistical ensemble
should be based on ensemble averages such as the one
presented in the previous figures, it is instructive to look at a
set of events corresponding to one of the above cases as shown
in Fig. 4. This figure illustrates the fact that the actual inter-
action energy and its independent liquid-drop approximation
have similar properties, averages, and fluctuations. Moreover,
the extended scale part shows that the two quantities are
correlated.
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FIG. 3. Reconstruction of the normalized kinetic energy fluctua-
tion (solid lines) as a function of total energy from fragment sizes in
the lattice gas model at different pressures. Dashed lines: liquid drop
parameters from Table I. Symbols: liquid drop parameters fixed from
the low temperature low density phase as in Fig. 1.

D. Errors and correlations

In order to quantify the quality of the liquid drop approx-
imation let us look at ensemble averaged quantities which
are indeed the information used to infer thermodynamical
properties. One of the most important observables is the
kinetic energy fluctuation. The corresponding percentage error
loj —ogl/o is shown in the lower part of Fig. 5. One
observes that the error increases with the pressure but remains
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FIG. 4. (Color online) Upper panel: partial energies of an en-
semble of events at a pressure /A, = 0.33 and energy 0.38¢ <
E /N < 0.42¢ in the middle of the coexistence region. From bottom
to top: interaction energy per particle; its independent fragment
approximation (LD parameters as in Fig. 1) (shifted by 0.4); total
energy per particle. The horizontal lines give the average values of
the corresponding energies. Lower panel: same as the upper panel on
an extended scale.
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FIG. 5. Q1p/ V-correlation coefficient (upper part) and percent-
age error |0y —og|/og on the partial energy fluctuation from
Fig. 3 (lower part). The liquid drop parameters are fixed as ay =
—2.86¢€, as = 2.73¢. Black points A/1. = 0.04, squares A/A. =
0.33, triangles A /A, = 1, stars: A/A. = 2.46.

low for all energies up to the critical pressure. This error is
below 10% up to 1/3 of the critical pressure and below 20%
at the critical pressure. Moreover, when used to compute the
heat capacity this error is partly compensated by the similar
error on the kinetic energy used to deduce the temperature.
This explains the good accuracy observed for the liquid drop
approximation up to rather high temperatures and pressures.

This good accuracy of the ensemble averaged quantities
does not imply nor require a similar accuracy on an event-
by-event basis. In fact one expects stronger deviations when
looking at a single event. One way to study this event by
event accuracy of the liquid drop approximation is to study
the correlation coefficient c. However, this is only a part of the
discussion since the correlation coefficient is not sensitive to
the magnitude of the fluctuation and only characterizes the link
between the independent liquid drop approximation and the
actual internal energy. In the considered case, this implies that
by construction the correlation coefficient ¢ is independent of
the value of the liquid drop parameters. The global trend of the
correlation coefficient with pressure and energy is presented
in the upper part of Fig. 5. We can see that the best correlation
is systematically observed around the fluctuation peak, where
the size distribution is the broadest. At subcritical pressures,
c always exceeds 0.4, while the correlation decreases to around
0.2 in the supercritical regime.

It should be stressed that the idea to use, in Eq. (1),
the first moments (averages and fluctuations) of the event
distribution was indeed to overcome the difficulty to get
accurate information on an event-by-event basis. Though the
best correlation obviously leads to the smallest error, we can
see that the relation between ¢ and Ac is not trivial. In
particular a value of ¢ exceeding 0.4 comes out to be enough to
keep the error below the 15% level, independent of the energy.

It is also interesting to remark that the correlation coeffi-
cients shown in Fig. 5 are systematically lower than the ones

064618-4



TRACKING ENERGY FLUCTUATIONS FROM FRAGMENT . ..

TABLE 1. Volume ay and surface ag effective liquid drop
parameters (see text) allowing us to reproduce the average canonical
configurational energy of 216 lattice gas particles at the temperature
corresponding to the maximal energy fluctuations, for different
pressures normalized to the critical pressure. The average volume
occupied by the system divided by the critical volume is also given.

s (V) ay as
Ae (Ve €

0.04 2.00 —-2.76 2.66
0.33 1.69 —2.74 2.61
1.00 1.00 —2.72 2.53
2.46 0.53 —2.64 2.18

shown in the calculations of Fig. 1. This is another illustration
of the nonequivalence of statistical ensembles: in the canonical
case the distributions are wider than in the microcanonical one
allowing a better correlation.

E. Beyond the fixed cluster energy approximation

The failure at increasing pressure shown by Fig. 3 is
interesting. One may wonder whether the lack of reproduction
is due to the breaking down of the independent fragment ap-
proximation [5] in dense media, or whether the configurational
contribution to the internal fragment excitation energy has to
be taken into account by a proper redefinition of the mass
formula. To answer to this question we have allowed a free
variation of the liquid drop parameters according to Table I.
The result, shown by the dashed lines in Figs. 2, and 3, is that
both the caloric curve and the fluctuations can be very precisely
reproduced by the independent fragment approximation in a
wide range of temperatures and pressures if the volume and
surface coefficients are allowed to decrease with increasing
excitation. Only at very high pressures and temperature,
above the critical point, the approximation appears to clearly
break down: in this dense configuration the objects identified
as “fragments” by the cluster recognition algorithm have
certainly little to share with physical isolated liquid drops.
Indeed in this density regime the Q value Eq. (2) is very poorly
correlated with the interaction energy (see Fig. 5).

III. DISCUSSION AND POSSIBLE
EXPERIMENTAL IMPLICATIONS

Letus now turn to the possible implications of these findings
to heavy ion collisions experiments, and particularly to the
determination of the heat capacity from the fluctuations of
asymptotic detected partitions.

In the application of Eq. (1) to the analysis of multifragmen-
tation data several difficulties arise that have to be considered.

First of all in the experimental case the only information
available on the system is given by its cluster properties (sizes
and kinetic energies). This means that the total energy of
the system is not evaluated from its microscopic constituents,
but is also estimated from the measured kinetic energies and
fragment sizes as Eyt = Orp + K.

PHYSICAL REVIEW C 72, 064618 (2005)

Moreover both Q| p and K are time dependent variables, and
in the data analysis the quantities at freeze-out are extrapolated
from the asymptotic ones solely correcting for secondary
evaporation and Coulomb repulsion. In particular the con-
figurational energy functional associated to each fragment at
freeze-out is assumed to be the one associated to 7 = 0 and
is not pressure dependent. As we have seen in the previous
section, this assumption is not valid for the lattice gas model:
the presence of a cubic ground state in this model leads to a
mass formula that is not adequate to reproduce the average
cluster energy in the liquid phase. The difference in energy is
small compared to the liquid-vapour latent heat, however we
have seen that it can have important effects in the calculation
of the observables. This difficulty in principle should not arise
in nuclear physics where clusters are already liquid at 7 = 0,
however one may ask how much a possible modification with
temperature and pressure of the fragments energetics would
influence the experimental analysis.

Finally the assumption is explicitly made that at the
freeze-out time fragment partitions essentially reflect thermal
equilibrium.

A. The thermodynamics of a gas of clusters

Let us leave the difficult problem of equilibrium and time
dependence to the next subsection and start addressing the
question of the quality of reconstruction of the thermodynam-
ics of freeze-out, using accessible information (fragment sizes
and total kinetic energies). In this matter, equilibrium studies
provide a valuable testing ground, if the studied thermody-
namic conditions correspond to the freeze-out configurations
of the model.

To quantify the uncertainty of the heat capacity reconstruc-
tion from the fragment information only, we have introduced
reconstructed microcanonical statistical ensembles defined
by the total energy constraint E., = K + Qrp at different
pressures and with different prescriptions for the liquid drop
parameters. Figures 6 and 7 show the resulting first and second
moment of the K distribution in bins of E.,;. We can see
that the systematic bias observed in Fig. 2 disappears if the
same prescription for the interaction energy is used both
for the fluctuation and for the total energy of the system.
Up to the critical point, the precise parametrization of the
liquid drop energy does not change the results dramatically. In
particular the zero temperature cubic solid cluster prescription
a, = —3€, a; = 3¢ induces a spurious shift towards higher
energies, but does not induce extra fluctuations.

These results may be qualitatively understood as follows.
The error in the estimation of V through Q1 p in each event of
a set at a given total physical energy induces an overall bias in
the evaluation of (E\y), but also and more important, a spread
in the total energy estimation. Both these effects are especially
important at high pressures, where the correlation coefficient
between Qip and V is low (see Fig. 5). The systematic bias
in the estimation of the average total energy depends directly
on the value chosen for the liquid drop parameters, and leads
to the shift towards higher energy observed in Figs. 6 and 7.
The width of the E, distribution for each value of E, is at the
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FIG. 6. Same as Fig. 2, but including the effect of the calorimetric
estimation of total energy (see text). Squares: zero temperature liquid
drop parameters a, = —3¢, a, = 3e€.

origin of the overestimation of the partial energy fluctuations
observed in Fig. 3. When events are analyzed in bins of total
estimated energy, these spurious energy fluctuations do not
contribute any more to the width of the K distribution. The
remaining effects are due to the mixing in a given E¢, bin of
events coming from different physical E\, values. Since this
mixing is approximately symmetric in energy, the average (Ey)
appears to be not much affected and the main effect of mixing
is to flatten out the fluctuation curve. This is very similar to the
results already reported for the analysis of events produced in
macroscopic statistical models (SMM [11] and SIMON [20]).
From Figs. 6 and 7 we can also see that, when calorimetry
is taken into account, it is not possible any more to tune the
liquid drop parameters at high pressure such as to reproduce
at the same time the correct average energy and fluctuation.
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FIG. 7. Same as Fig. 3, but including the effect of the calorimetric

estimation of total energy (see text). Squares: zero temperature liquid
drop parameters a, = —3¢, a; = 3e.
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FIG. 8. Percentage error |aé —o0Z|/o} on the partial energy
fluctuation from Fig. 7. The liquid drop parameters are fixed
as ay = —2.86¢,ag = 2.73¢. Black points A/A. = 0.04, squares
A/A. = 0.33, triangles A /A, = 1, stars A/A. = 2.46.

This confirms again that the independent fragment hypothesis
breaks down in the supercritical regime.

The error on the fluctuation estimation is reported in Fig. 8
for all the considered pressures and energies, using the fixed
low temperature liquid drop parameters ay = —2.86¢, as =
2.73€. The fact of taking into account the calorimetric shift
does not increase this systematic error above the 20% level at
subcritical pressure.

The results of Figs. 6 and 7 suggest that if the freeze-out
density is low enough, then the thermodynamic properties
of the system can be deduced from the fragment partitions
using the independent fragment model with a fragment energy
approximated by its low temperature binding. In the lattice
gas model the validity condition of this simple approximation
happens to be not so restrictive since it corresponds to
an average volume V > 1.5V,. If the freeze-out density is
higher, in the lattice gas model the independent fragment
approximation tends to break down, and both the temperature
and the fluctuation are systematically underestimated.

B. The influence of dynamical and quantum effects

When dealing with reactions and trying to extract thermo-
dynamic information, the first question is the relevance of the
freeze-out and equilibrium concepts at specific stages of the
collision. From the theoretical point of view, this complex
question, which is strongly debated since more then a decade,
can only be addressed by complete simulations of the reaction
and critical analysis of the resulting time dependence. Such
studies require going beyond the equilibrium models used
in the present article as well as in Ref. [5]. In a recent
dynamical calculation with the Lennard-Jones Hamiltonian,
Chernomoretz et al. [10] have addressed this question by look-
ing at the time evolution of different observables for a system
initially thermalized in a confined box and subsequently freely
evolving in the vacuum. Almost independent of the initial
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energy and density, the average configurational energy and
the associated fluctuations turn out to freeze when the density
of the system is of the order of p ~ 0.03 in Lennard-Jones
units, a region of the phase diagram well below the critical
point [2]. This study, thus, implies that only such diluted
stages of the reaction can be reconstructed from the asymptotic
(“experimental”’) information. However, it is important to
stress that the density value at freeze-out is a model dependent
quantity and in particular it is correlated with the range of
the force. In the study of Ref. [10], the configurations at
freeze-out are also characterized by an interfragment energy

sufficiently small Zlﬁ ¢ Vre(t) = 0 for fragment partitions to
be essentially frozen. Conversely to the absolute value of the
density, this condition might be a more robust definition of
freeze out. It is also a first argument in favor of an independent
fragment approximation.

Another consequence of the time dependence of a colli-
sional process is that the freeze-out configuration may not
be sufficiently close to a thermodynamic equilibrium to be
described with statistical tools [2,21]. The statistical nature
of freeze-out is indeed the key point in order to interpret
the reconstructed fluctuation in terms of heat capacity. To
estimate the distortions due to the out of equilibrium com-
ponent one needs to know how much the averages and
fluctuations deviate from the equilibrium values. Different
verifications have been performed to estabilish this point [11]
in the experimental analyses of collisional data. In particular,
the observation of the same behavior with different entrance
channels is an interesting argument in favor of being close
to an equilibrium. From a theoretical point of view, this
fundamental open question can only be addressed through
dynamical approaches and cannot be answered from statistical
calculations as the one presented here.

Finally it is important to stress that the results of classical
models like the lattice gas (or the Lennard-Jones analyzed
in Refs. [5,10]) cannot be quantitatively applied to nuclear
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data because of the complete lack of quantum effects. The
ground state properties are not the only point where quantum
effects are expected to play an important role. The actual value
of the density at freeze-out of a nuclear system can be very
different from the one estimated from classical calculations
[10], and the same is true for the limiting density that can be
described through the independent fragment approximation
derived in this work. The consistent inclusion of quantum
effects in the statistical analyses of nuclear data is an ambitious
program that is only in its infancy [18] and constitutes one of
the greatest theoretical challenges of heavy ion collisions in
the next decades.

IV. CONCLUSION

To summarize, in this paper we have reconstructed config-
urational energy fluctuations from the fragment partitions of
a lattice gas model. As far as the first and second moments
of collective observables are concerned, dilute systems in
thermodynamic equilibrium can be accurately approximated
by an ensemble of independent fragments. A unique liquid
drop parametrization for the fragment binding energies is able
to describe the thermodynamics of the system independent of
the deposited energy or temperature. A modification of the
order of 10% of the liquid drop parameters does not modify
the temperature and fluctuation in a sizable way, if the same
parametrization is consistently employed for the determination
both of the fluctuation and of the total energy. For pressures of
the order or above the critical point, the independent fragment
approximation tends to break down leading to a systematic
underestimation of temperatures and fluctuations at the 30%
level.
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