Search for Exotica

(Preliminary Exotica results up to $\sqrt{s}=209$ GeV from the LEP experiments)

Javier Cuevas University of Oviedo

Topical Seminar on the Legacy of LEP and SLC Siena, 8-11 October 2001

Outline

LEP EXOTICA WG: Combination of all non-Higgs and non-SUSY searches at LEP2.

Technicolor

- Excited leptons
- Single top production, FCNC
- Leptoquarks
- Gravity in extra dimensions

Data Samples used:

- About 2.4 fb⁻¹ (~600 pb⁻¹ per experiment) at √s =189-209 GeV
- Statistical procedure adopted for the combination of the different channels (same or different experiments), is the likelihood ratio method

Technicolor model

- Technicolor Model is an alternative to the Standard Model Mechanism of Electroweak symmetry breaking.
- Role of Higgs boson is performed by bound states of new fundamental fermions, techniquarks, which mix with W and Z and generate their masses.
- Minimal TC model with one doublet of TC-quarks is not confirmed by LEP1 and elsewhere precision measurements
- Extensions of TC model with many doublets, Walking Technicolor, overcome disagreement with experimental results. A large number of doublets is required, which generate huge number of bound states.

Technicolor model

- These extensions call for a large number N_D of technidoublets (T_U, T_D), with Q_U=Q_D+1
- Important simplification: "Technicolor Straw Man Model" the lowest lying bound states of the lightest technifermion model can be considered in isolation.
 - Pseudoscalars: $\Pi_T^{\pm,0}$, Π_T'
 - Vectors: $\rho_T^{\pm,0}$, ω_T (nearly mass degenerate)
- Scalar bound states are mixtures of W_{L}^{\pm} , Z_{L}^{0} , and the lightest mass-eigenstate technipions $\pi_{T}^{\pm} \pi_{T}^{0}$

 $|\Pi_{\rm T}\rangle = \sin \chi |W_{\rm L}\rangle + \cos \chi |\pi_{\rm T}\rangle$

• Mixing angle χ is related with the number of TCdoublets: $\sin^2\chi = 1/N_D$

Decays of ρ_{T}

The dominant decay modes of the p_T mediated by the TC interaction are:

$$\rho_T \rightarrow \Pi_T \Pi_T \rightarrow \pi_T \pi_T (\sim \cos^4 \chi)$$

$$\rightarrow W_L \pi_T (\sim \sin^2 \chi \cos^2 \chi)$$

$$\rightarrow W_L W_L (\sim \sin^4 \chi)$$

In addition the p_T decays via the electroweak interaction either into one technipion and a SM gauge boson or into a pair of SM fermions (becomes important if other decay channels are kinematically closed)

■ Total width depends on many parameters but does not exceed ~15 GeV for m_{ρT} ≤200 GeV.

Decays of π_{T}

The technipions $\pi_T^{\pm} \pi_T^0$ decays, are induced mainly by ETC interactions which couples them to fermions

$$\pi_T^- \to f_i \overline{f_i}; \Gamma(\pi_T^- \to f_i \overline{f_i}) \propto (m_f + m_{f'})^2$$

The π_T preferentially decay into the heaviest fermion pairs allowed, main modes being:

$$\pi_{T}^{-} \rightarrow b \overline{c} (\approx 90\%), s \overline{c} (\approx 5\%), \tau \overline{v}_{\tau} (\approx 5\%)$$
$$\pi_{T}^{0} \rightarrow b \overline{b} (\approx 90\%), c \overline{c} (\approx 5\%), \tau \overline{\tau} (\approx 5\%)$$

• Total width < 1 GeV for $M_{\pi} \sim 100$ GeV.

Technicolor at LEP

Although TC model is rather complicated, the phenomenology of the lightest bound states which it predicts is relatively simple with few free parameters:

- $M\pi_T$ mass of π_T
- Mρ_T mass of ρ_T
- $\sin^2\chi = 1/N_D$ number of doublets , or mixing angle of π_T and W_L

• For ω_T production and decay, a scale parameter and $Q_U + Q_D$ must be specified. By analogy with QCD it is supposed that $M\rho_T \sim M\omega_T$, and $M\pi_T^0 \sim M\pi_T^+$.

Technicolor production at LEP

- ρ_T couples with γ and Z⁰ and can be produced at LEP in s-channel.
- If $M\rho_T < \sqrt{s}$, ρ_T can be produced in RR process and can be observed as a narrow resonance in s' distribution.
- Technipions can be produced through virtual ρ_T exchange in pairs or in association with W_L:

$$e^{+}e^{-} \rightarrow \rho_{T}^{*} \rightarrow \pi_{T}\pi_{T}$$
$$e^{+}e^{-} \rightarrow \rho_{T}^{*} \rightarrow \pi_{T}W_{L}$$

Production cross-section of TC objects was expected to be reasonably high, which allowed search at LEP.

Expected cross-section

M_{πτ}=90 GeV N_D=9

 $M_v = 200 \text{ GeV}$ ($Q_u + Q_D$)=4/3

 $\alpha_{\rho} = 2.91(3/N_{TC})$ (TC coupling constant) $N_{TC} = 4$

 $e^+e^- \rightarrow \rho_T^* \rightarrow \pi_T \pi_T, \pi_T W_I$

- This process is searched for in 4 jet and in 2 jet+ lepton+neutrino final states.
- In both cases, a Neural Network is used which combines topological variables and b-tagging
- The most important background for π_T search is $e^+e^- \rightarrow W^+W^-$. The main difference between W^+W^- and $\pi^+\pi^-$ production is the presence of b-quark in the decays of π_T . b-tagging is essential.
- The mass is estimated after a 5c constrained fit imposing energy and momentum conservation and equal masses of the two fermion objects (qq or lv).

Discriminating Variables

•NNW (4j channel) :
•2 b-tagging variables.
•7 topological (antiQCD, almost same as higgs 4j)
•3 based on boson production properties.

•Semileptonic channel:

 $\pi_T^+ \pi_T^- \to \tau \nu q \overline{q}$ $W_L^+ \pi_T^- \to l \nu q \overline{q}$

isolated lepton (3 NN) b-tagging (jet) boson production angle

Legacy of LEP/SLC

Mass distribution in the 4jet channel

Legacy of LEP/SLC

J. Cuevas

Mass distribution in the semileptonic channel

Background supresion

Good agreement between data and SM prediction

Results used to set limits on Technicolor production

Limits on Technicolor

DELPHI

Limits on Technicolor

DELPHI

OPAL results

Based on ~ 209.4 pb-1 up to 209 GeV. No excess was observed

Search for ρ_{T} with $M_{\rho_{T}} < \sqrt{s}$

- ρ_T with $M_{\rho_T} < \sqrt{s}$ can be produced on mass shell in RR process $e^+e^- \rightarrow \rho_T(\gamma)$ with subsequent decays into different final states.
- It can be observed as relatively narrow resonance in the corresponding mass distribution $\Gamma_{\rho_T} \leq 15$ GeV for $m_{\rho_T} \leq 200$ GeV
- It also gives additional contribution in the production cross-sections of SM final states, e.g.

$$e^+e^- \rightarrow \rho_T^* \rightarrow W^+W^-$$

 \mathbf{P}_{T} is searched for in all main decay modes:

 $\rho_{T} \rightarrow hadrons (\pi_{T}\pi_{T},qq), \pi_{T}^{0}\gamma, W_{L}^{+}W_{L}^{-}$

Direct Search for $\rho_T \rightarrow \pi_T^0 \gamma$

Indirect search for $\rho_T \rightarrow W^+W^-$

■ In the presence of $\rho_T \rightarrow W^+W^-$, measured cross section $e^+e^- \rightarrow W^+W^-$ should differ significantly from the SM prediction. Predicted additional contribution are quite large:

M_{ρ_T}	$\sqrt{s}(GeV)$					
(GeV/c^2)	183	189	200	202	205	207
175	7.00	4.39	2.57	2.38	2.15	2.01
185	—	10.68	3.87	3.45	2.97	2.71
195	_	_	8.69	6.83	5.15	4.42

- These values can be compared with experimental precision, e.g. Delphi at √s =189 GeV gives σ(e⁺e⁻→ W⁺W⁻) =15.83±0.38±0.20 pb and the expected SM value is ~16.25 pb
 - As no additional contribution is observed in the cross-section, $BR(\rho_T \rightarrow W^+W^-) < 30\%, (95\%CL)$

Indirect Search for $\rho_T \rightarrow$ hadrons ($\pi_T \pi_T, qq$)

 \mathcal{P}_T should also give an
 additional contribution to
 the process

 $e^+e^- \rightarrow q\bar{q}(\gamma)$

- It should be observed as a peak in the hadronic mass distribution.
- BR(ρ_T →hadrons)<55%, (95%CL)

LEP vs. Tevatron

- Results at Tevatron using the same TC model are based on I+2j channel (counting experiment, in mass windows).
- No excess was observed, then, data is used to exclude mass regions in the M_{ρT} vs. M_{πT} plane.
- Using INDIRECT searches at LEP this plane is almost completely covered.

Excited leptons (Compositeness)

- Substructure at an energy scale $\Lambda \rightarrow \text{Excited leptons}$
 - Decay promptly:
 - I* \rightarrow I γ , υ W,IZ
 - $\upsilon^* \rightarrow \upsilon \gamma$, IW, υZ
 - $-f/\Lambda, f'/\Lambda vs. m_{I*}(|f|=|f'|)$
- Direct searches were performed in pairs ($\sim \sqrt{s/2}$), and in single production ($\sim \sqrt{s}$).
- Indirect searches for excited electrons, using the measured $\gamma\gamma(\gamma)$ differential cross-section.
- Opal and Delphi results already combined, Aleph and L3, similar sensitivities.

Excited leptons (direct searches)

- No excess of events was observed with respect the Standard Model prediction:
- Exclusion for f/Λ vs. M_{l*} at $\sqrt{s} = 189-210$ GeV

Excited leptons (indirect searches)

- No excess of events was observed with respect the Standard Model expectation:
- Exclusion for f/Λ vs. M_{l*} at $\sqrt{s} = 189-210$ GeV

Summary

- LEP provided data samples to look for new physics beyond the Standard Model, allowing investigation of new phenomena and search for new particles.
- Results obtained, either combined among the four LEP experiments or coming from individual experiments gives NO evidence of the presence of new physics,
 - No evidence of Technicolor contribution is observed
 - A 95% CL lower mass limit of **79.8 GeV/c²** is set independently of other parameters of the TC model.
 - 90<M ρ_T <206.7 GeV/c² is set regardless other model parameters.
 - − $f/\Lambda ≤ 0.1 \text{ TeV}^{-1}$ (e*), 1 TeV $^{-1}$ (μ*,τ*)
- Final LEP combined results, coming soon from LEP EXOTICA WG.