Gamma detectors for molecular imaging with radionuclides: design and applications

M. Ballerini, E. Cisbani, F. Cusanno, F. Garibaldi, M.L. Magliozzi, S. Torrioli, S. Majewski (JLab/Newport News), B.M.W. Tsui, G. Mok, Y. Wang (JHU/Baltimore)

Istituto Superiore di Sanità and INFN Roma gruppo collegato Sanità

10th Topical Seminar on Innovative Particle and Radiation Detectors
1 - 5 October 2006 - Siena - Italy
Gamma detectors for molecular imaging with radionuclides: design and applications

M. Ballerini, E. Cisbani, F. Cusanno, F. Garibaldi, M.L. Magliozzi, S. Torrioli, S. Majewski (JLab/Newport News), B.M.W. Tsui, G. Mok, Y. Wang (JHU/Baltimore)

Istituto Superiore di Sanità and INFN Roma gruppo collegato Sanità

10th Topical Seminar on Innovative Particle and Radiation Detectors
1 - 5 October 2006 - Siena - Italy

- Overview
 - Applications of single photon technique
- Detector Design
- Some preliminary results

cisbani@iss.infn.it (ISS & INFN Roma)
Gamma detectors for molecular imaging with radionuclides: design and applications

M. Ballerini, E. Cisbani, F. Cusanno, F. Garibaldi, M.L. Magliozi, S. Torrioli,
S. Majewski (JLab/Newport News),
B.M.W. Tsui, G. Mok, Y. Wang (JHU/Baltimore)

Istituto Superiore di Sanità and INFN Roma gruppo collegato Sanità

10th Topical Seminar on Innovative Particle and Radiation Detectors
1 - 5 October 2006 - Siena - Italy

- Overview
 Applications of single photon technique

- Detector Design

- Some preliminary results
Molecular Imaging with radionuclides

- **Non invasive**, *in vivo* observation of biological processes at cellular and molecular level
- Probe molecular anomalies (basis of disease) rather than end effects of molecular alterations

Potentialities

- (disease development) Analysis and understanding of disease processes at molecular level (e.g. using small animals as human model)
- (early disease diagnosis) Earlier detection and characterization of disease (before its symptomatic manifestation)
- (therapeutic response) Earlier and direct molecular assessment of treatment effects

Rat and mouse host a large number of human disease

Opportunity to study disease:

- under controlled conditions, repetitively in same animal
- faster screening, smaller number of animals required
Molecular Imaging with radionuclides

- Non invasive, *in vivo* observation of biological processes at cellular and molecular level
- Probe molecular anomalies (basis of disease) rather than end effects of molecular alterations

Potentialities

- (disease development) Analysis and understanding of disease processes at molecular level (e.g. using small animals as human model)
- (early disease diagnosis) Earlier detection and characterization of disease (before its symptomatic manifestation)
- (therapeutic response) Earlier and direct molecular assessment of treatment effects

Rat and mouse host a large number of human diseases.

Opportunity to study disease:

- under controlled conditions, repetitively in same animal
- faster screening, smaller number of animals required
Molecular Imaging with radionuclides

- **Non invasive**, *in vivo* observation of biological processes at cellular and molecular level
- Probe molecular anomalies (basis of disease) rather than end effects of molecular alterations

<table>
<thead>
<tr>
<th>Potentialities</th>
</tr>
</thead>
<tbody>
<tr>
<td>(disease development) Analysis and understanding of disease processes at molecular level (e.g. using small animals as human model)</td>
</tr>
<tr>
<td>(early disease diagnosis) Earlier detection and characterization of disease (before its symptomatic manifestation)</td>
</tr>
<tr>
<td>(therapeutic response) Earlier and direct molecular assessment of treatment effects</td>
</tr>
</tbody>
</table>

Rat and mouse host a large number of human disease

Opportunity to study disease:
- under controlled conditions, repetitively in same animal
- faster screening, smaller number of animals required
(Molecular) Imaging Modalities

<table>
<thead>
<tr>
<th>Modality</th>
<th>Spatial Res.</th>
<th>Features</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>50-200 µm</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Ultrasound</td>
<td>50-500 µm</td>
<td>A, F</td>
<td></td>
</tr>
<tr>
<td>Optical</td>
<td>2-5 mm</td>
<td>A, M</td>
<td>10^{-15} M/l</td>
</tr>
<tr>
<td>NMR/MRI</td>
<td>20-100 µm</td>
<td>A, F, M</td>
<td>10^{-5}M/l</td>
</tr>
<tr>
<td>PET/SPECT</td>
<td>0.1-1 mm</td>
<td>F, M</td>
<td>10^{-12}M/l</td>
</tr>
<tr>
<td>Dual Modality (e.g. PET & CT)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[CT images]
(Molecular) Imaging Modalities

<table>
<thead>
<tr>
<th>Modality</th>
<th>Spatial Res.</th>
<th>Features</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>50-200 µm</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Ultrasound</td>
<td>50-500 µm</td>
<td>A, F</td>
<td></td>
</tr>
<tr>
<td>Optical</td>
<td>2-5 mm</td>
<td>A, M</td>
<td>10^{-15} M/l</td>
</tr>
<tr>
<td>NMR/MRI</td>
<td>20-100 µm</td>
<td>A, F, M</td>
<td>10^{-5} M/l</td>
</tr>
<tr>
<td>PET/SPECT</td>
<td>0.1-1 mm</td>
<td>F, M</td>
<td>10^{-12} M/l</td>
</tr>
</tbody>
</table>

Dual Modality (e.g. PET & CT)
(Molecular) Imaging Modalities

<table>
<thead>
<tr>
<th>Modality</th>
<th>Spatial Res.</th>
<th>Features</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>50-200 µm</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Ultrasound</td>
<td>50-500 µm</td>
<td>A, F</td>
<td></td>
</tr>
<tr>
<td>Optical</td>
<td>2-5 mm</td>
<td>A, M</td>
<td>10^{-15} M/l</td>
</tr>
<tr>
<td>NMR/MRI</td>
<td>20-100 µm</td>
<td>A, F, M</td>
<td>10^{-5} M/l</td>
</tr>
<tr>
<td>PET/SPECT</td>
<td>0.1-1 mm</td>
<td>F, M</td>
<td>10^{-12} M/l</td>
</tr>
<tr>
<td>Dual Modality (e.g. PET & CT)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Optical (Topography)
(Molecular) Imaging Modalities

<table>
<thead>
<tr>
<th>Modality</th>
<th>Spatial Res.</th>
<th>Features</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>50-200 µm</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Ultrasound</td>
<td>50-500 µm</td>
<td>A, F</td>
<td></td>
</tr>
<tr>
<td>Optical</td>
<td>2-5 mm</td>
<td>A, M</td>
<td>10^{-15} M/l</td>
</tr>
<tr>
<td>NMR/MRI</td>
<td>20-100 µm</td>
<td>A, F, M</td>
<td>10^{-5} M/l</td>
</tr>
<tr>
<td>PET/SPECT</td>
<td>0.1-1 mm</td>
<td>F, M</td>
<td>10^{-12} M/l</td>
</tr>
</tbody>
</table>

Dual Modality (e.g. PET & CT)
<table>
<thead>
<tr>
<th>Modality</th>
<th>Spatial Res.</th>
<th>Features</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>50-200 µm</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Ultrasound</td>
<td>50-500 µm</td>
<td>A, F</td>
<td></td>
</tr>
<tr>
<td>Optical</td>
<td>2-5 mm</td>
<td>A, M</td>
<td>10^{-15} M/l</td>
</tr>
<tr>
<td>NMR/MRI</td>
<td>20-100 µm</td>
<td>A, F, M</td>
<td>10^{-5} M/l</td>
</tr>
<tr>
<td>PET/SPECT</td>
<td>0.1-1 mm</td>
<td>F, M</td>
<td>10^{-12} M/l</td>
</tr>
</tbody>
</table>

Dual Modality (e.g. PET & CT)
Molecular Imaging Modalities

<table>
<thead>
<tr>
<th>Modality</th>
<th>Spatial Res.</th>
<th>Features</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>50-200 µm</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Ultrasound</td>
<td>50-500 µm</td>
<td>A, F</td>
<td></td>
</tr>
<tr>
<td>Optical</td>
<td>2-5 mm</td>
<td>A, M</td>
<td>10^{-15} M/l</td>
</tr>
<tr>
<td>NMR/MRI</td>
<td>20-100 µm</td>
<td>A, F, M</td>
<td>10^{-5} M/l</td>
</tr>
<tr>
<td>PET/SPECT</td>
<td>0.1-1 mm</td>
<td>F, M</td>
<td>10^{-12} M/l</td>
</tr>
</tbody>
</table>

Dual Modality (e.g. PET & CT)

Nuclear Imaging: PET vs SPECT

- **PET**: higher sensitivity (for short time), intrinsic limit on spatial resolution, expensive
- **SPECT**: overall higher sensitivity, large set of radiotracers, ~5 time cheaper
(Molecular) Imaging Modalities

<table>
<thead>
<tr>
<th>Modality</th>
<th>Spatial Res.</th>
<th>Features</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>50-200 µm</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Ultrasound</td>
<td>50-500 µm</td>
<td>A, F</td>
<td></td>
</tr>
<tr>
<td>Optical</td>
<td>2-5 mm</td>
<td>A, M</td>
<td>10^{-15} M/l</td>
</tr>
<tr>
<td>NMR/MRI</td>
<td>20-100 µm</td>
<td>A, F, M</td>
<td>10^{-5} M/l</td>
</tr>
<tr>
<td>PET/SPECT</td>
<td>0.1-1 mm</td>
<td>F, M</td>
<td>10^{-12} M/l</td>
</tr>
</tbody>
</table>

Dual Modality (e.g. PET & CT)

![Fused PET + CT](image)

 cisbani@iss.infn.it (ISS & INFN Roma)
Single Photon Detector System

Components

- Radioactive drug injected into patient/model emits γ
 - Collimator (Tungsten/Lead): projects the γ on the scintillator plane
 - γ converter (scintillator): converts γ into optical photons

- Position Sensitive Photon Detector (PMT): converts light into electrical signal
- Readout Electronics: amplifies and digitizes electrical signals
- Software: back-reconstruct gamma image from digitized (raw) data

Example: cisbani@iss.infn.it (ISS & INFN Roma)
03 Oct 06 - IPRD06 4 / 17
Radioactive drug injected into patient/model emits γ

Collimator (Tungsten/Lead): projects the γ on the scintillator plane

γ converter (scintillator): converts γ into optical photons

Position Sensitive Photon Detector (PMT): converts light into electrical signal

Readout Electronics: amplifies and digitizes electrical signals

Software: back-reconstruct gamma image from digitized (raw) data
Single Photon Detector System

Components

- Radioactive drug injected into patient/model emits γ
- Collimator (Tungsten/Lead): projects the γ on the scintillator plane
- γ converter (scintillator): converts γ into optical photons
- Position Sensitive Photon Detector (PMT): converts light into electrical signal
- Readout Electronics: amplifies and digitizes electrical signals
- Software: back-reconstruct gamma image from digitized (raw) data
Components

- Radioactive drug injected into patient/model emits γ
- Collimator (Tungsten/Lead): projects the γ on the scintillator plane
- γ converter (scintillator): converts γ into optical photons
- Position Sensitive Photon Detector (PMT): converts light into electrical signal
- Readout Electronics: amplifies and digitizes electrical signals
- Software: back-reconstruct gamma image from digitized (raw) data
Single Photon Detector System

Components

- Radioactive drug injected into patient/model emits γ
- Collimator (Tungsten/Lead): projects the γ on the scintillator plane
- γ converter (scintillator): converts γ into optical photons
- Position Sensitive Photon Detector (PMT): converts light into electrical signal
- Readout Electronics: amplifies and digitizes electrical signals
- Software: back-reconstruct gamma image from digitized (raw) data

cisbani@iss.infn.it (ISS & INFN Roma)

\(\gamma\) for Mol.Ima.

03 Oct 06 - IPRD06
Single Photon Detector System

Components

- Radioactive drug injected into patient/model emits γ
- Collimator (Tungsten/Lead): projects the γ on the scintillator plane
- γ converter (scintillator): converts γ into optical photons
- Position Sensitive Photon Detector (PMT): converts light into electrical signal
- Readout Electronics: amplifies and digitizes electrical signals
- Software: back-reconstruct $gamma$ image from digitized (raw) data
Our activity on Single Photon Applications

Design and implement SPE(CT) detectors with
- submillimeter resolution
- adequate sensitivity

suitable for molecular imaging of biological processes (on small animal) related to:

- **Atherosclerotic plaques**: study the way to identify the vulnerable plaques that have high probability to cause atherosclerosis
- **Stem Cells**: investigate stem cells ability to regenerate injured tissue by monitoring in vivo migration and homing
- ... and more (early diagnosis of breast cancer, prostate tumor)
Our activity on Single Photon Applications

Design and implement SPE(CT) detectors with
- submillimeter resolution
- adequate sensitivity

suitable for molecular imaging of biological processes (on small animal) related to:

- **Atherosclerotic plaques**: study the way to identify the vulnerable plaques that have high probability to cause atherosclerosis
- **Stem Cells**: investigate stem cells ability to regenerate injured tissue by monitoring in vivo migration and homing
- ... and more (early diagnosis of breast cancer, prostate tumor)
Our activity on Single Photon Applications

Design and implement SPE(CT) detectors with
- submillimeter resolution
- adequate sensitivity

suitable for molecular imaging of biological processes (on small animal) related to:

- **Atheroscerotic plaques**: study the way to identify the vulnerable plaques that have high probability to cause atherosclerosis
- **Stem Cells**: investigate stem cells ability to regenerate injured tissue by monitoring in vivo migration and homing
- ... and more (early diagnosis of breast cancer, prostate tumor)
Our activity on Single Photon Applications

Design and implement SPE(CT) detectors with
- submillimeter resolution
- adequate sensitivity

suitable for molecular imaging of biological processes (on small animal) related to:

- **Atherosclerotic plaques**: study the way to identify the vulnerable plaques that have high probability to cause atherosclerosis
- **Stem Cells**: investigate stem cells ability to regenerate injured tissue by monitoring in vivo migration and homing
- ... and more (early diagnosis of breast cancer, prostate tumor)
Atherosclerotic Plaques

Atherosclerosis causes most of the premature deaths in western countries

- Plaques develop slowly, silently and asymptotically since youth, as accumulation of lipids, inflammatory cells and connective tissue on the vascular walls
- Vulnerable plaques rupture manifests suddenly (and dramatically) as cardiac death, stroke, myocardial infarction
- Discrimination of vulnerable/stable plaques mandatory for effective diagnosis.
- Conventional diagnosis techniques (e.g. angiography) are not specific (all lesions detected) and are invasive
Atherosclerotic Plaques

Atherosclerosis causes most of the premature deaths in western countries

- Plaques develops slowly, silently and asymptomatically since youth, as accumulation of lipids, inflammatory cells and connective tissue on the vascular walls
- **Vulnerables plaques** rupture manifests suddenly (and dramatically) as cardiac death, stroke, myocardial infarction
- Discrimination of vulnerable/stable plaques mandatory for effective diagnosis.
- Conventional diagnosis techniques (e.g. angiography) are not specific (all lesions detected) and are invasive
Atherosclerotic Plaques

Atherosclerosis causes most of the premature deaths in western countries

- Plaques develop slowly, silently and asymptotically since youth, as accumulation of lipids, inflammatory cells and connective tissue on the vascular walls
- **Vulnerables plaques** rupture manifests suddenly (and dramatically) as cardiac death, stroke, myocardial infarction
- Discrimination of vulnerable/stable plaques mandatory for effective diagnosis.
- Conventional diagnosis techniques (e.g. angiography) are not specific (all lesions detected) and are invasive
Atherosclerotic Plaques

Atherosclerosis causes most of the premature deaths in western countries

- Plaques develop slowly, silently and asymptotically since youth, as accumulation of lipids, inflammatory cells and connective tissue on the vascular walls
- **Vulnerable plaques** rupture manifests suddenly (and dramatically) as cardiac death, stroke, myocardial infarction
- Discrimination of vulnerable/stable plaques mandatory for effective diagnosis.
- Conventional diagnosis techniques (e.g. angiography) are not specific (alle lesions detected) and are invasive
Atherosclerotic Plaques / Model

- ApoE Mice (transgenic mice where atheromas are induced by fatty diet) used as model for the study of the atherosclerotic pathogeneses
- Increased apoptosis (programmed cells death) is expected to be a characteristic of vulnerable plaque
- Single Photon Imaging apoptosis by 99mTc-HYNIC-Annexin-V (binds to apoptotic cells with high uptake 10-20 respect to tissue)

Facts:
- image plaque on ~ 2 mm diameter aorta of mouse
- plaque size: $0.5 \times 1 \times 4 \text{ mm}^3$
- when 2.5 mCi is injected into the mouse:
 - plaque activity: $\sim 200 \div 400$ nCi
Atherosclerotic Plaques / Model

- ApoE Mice (transgenic mice where atheromas are induced by fatty diet) used as model for the study of the atherosclerotic pathogeneses
- Increased apoptosis (programmed cells death) is expected to be a characteristic of vulnerable plaque
- Single Photon Imaging apoptosis by 99mTc-HYNIC-Annexin-V (binds to apoptotic cells with high uptake 10-20 respect to tissue)

Facts:
- image plaque on ~ 2 mm diameter aorta of mouse
- plaque size: $0.5 \times 1 \times 4$ mm3
- when 2.5 mCi is injected into the mouse:
 - plaque activity: $\sim 200 \div 400$ nCi
Stem Cell Study

Stem cells may be able to home toward sites of injury (e.g. myocardial) to participate in tissue regeneration

- Postmortem tissue analysis are presently the main tool to investigate such processes, but effectiveness is controversial
- Very promising technique for homing studies:
 - Labelling the stem cells with proper radiotracer (e.g. 111In-oxine in J. Gao et al. Cells Tissues Organs 2001; 169;12-20)
 - Molecular (Cellular) Imaging their dynamics over several days

Application Requirements

- image organs where the cell migrates: heart, liver, lung, spleen, spine
- typical activity concentration: $< 40 \mu\text{Ci}/\text{Mcells}$
- monitoring of the same cells infusion may extends over several days
Stem cells may be able to home toward sites of injury (e.g. myocardial) to participate in tissue regeneration

- Postmortem tissue analysis are presently the main tool to investigate such processes, but effectiveness is controversial

Very promising technique for homing studies:

- Labelling the stem cells with proper radiotracer (e.g. 111In-oxine in J. Gao et al. Cells Tissues Organs 2001; 169;12-20)
- Molecular (Cellular) Imaging their dynamics over several days

Application Requirements

- image organs where the cell migrates: heart, liver, lung, spleen, spine
- typical activity concentration: $< 40 \mu$Ci/Mcells
- monitoring of the same cells infusion may extends over several days
Stem Cell Study

Stem cells may be able to home toward sites of injury (e.g. myocardial) to participate in tissue regeneration

- Postmortem tissue analysis are presently the main tool to investigate such processes, but effectiveness is controversial
- Very promising technique for homing studies:
 - Labelling the stem cells with proper radiotracer (e.g. 111In-oxine in J. Gao et al. Cells Tissues Organs 2001; 169;12-20)
 - Molecular (Cellular) Imaging their dynamics over several days

Application Requirements

- Image organs where the cell migrates: heart, liver, lung, spleen, spine
- Typical activity concentration: $< 40 \mu$Ci/Mcells
- Monitoring of the same cells infusion may extends over several days
SPECT System Requirements

- Spatial Resolution: $\sim 500 \, \mu m$
 - \sim plaque min. size

- System Sensitivity: $\sim 250 \, \text{cps/} \mu \text{Ci}$ (from plaque)
 - assuming ~ 1000 counts/view/resolution element for reasonable image
 - 1 view takes about 100 s
 - plaque consists of approx. 10 resolution elements
 - typical vulnerable plaque activity $\sim 0.3 \mu \text{Ci}$

- Active area (single module): $\sim 10 \times 10 \, \text{cm}^2$
 - Mouse longest size $\sim 4 \div 5 \, \text{cm}$
 - Reasonable Magnification: ~ 3

- Compactness (for large acceptance multiheads detector)
- Cost effectiveness (use of commercial components)
Design Approach / Camera Detector Components

Optimal combination of existing *conventional* components

- **Collimator**: (Multi) Pin Hole / Coded Aperture ⇒ Sensitivity
- **Scintillation Crystal**: Pixellated (NaI, CsI) / Continuous (LaBr$_3$)
- **Position Sensitive Photon Counting Detector**: Multi Anode PMT (3 and 1.5 mm)
- **Readout Electronic**: Individual Channel Readout, Selftriggering, Multiplexed digitization (and zero channel suppression) at ~ 5 kHz event rate
Optimal combination of existing *conventional* components

- **Collimator:** (Multi) Pin Hole / Coded Aperture ⇒ Sensitivity
- **Scintillation Crystal:** Pixellated (NaI, CsI) / Continuous (LaBr$_3$)
- **Position Sensitive Photon Counting Detector:** Multi Anode PMT (3 and 1.5 mm)
- **Readout Electronic:** Individual Channel Readout, Selftriggering, Multiplexed digitization (and zero channel suppression) at ~ 5 kHz event rate
Design / Collimators Geometry

Single Pin-Hole

High Res., border artefacts, low sensitivity $S_{ph} \sim \left[\frac{d}{4p}\right]^2$

$M = \frac{q}{p}$

$R \sim \sqrt{\left[\frac{d(1 + \frac{1}{M})}{2}\right]^2 + \left[\frac{R_i}{M}\right]^2}$ (d effective hole diameter)

$d \sim 0.3 \text{ mm, } M \sim 3 \Rightarrow R_i < 1 \text{ mm}$

Multi Pin-Holes

High res., low FoV ↔ artefact, good sensitivity $S_{mph} \sim N S_{ph}$

cisbani@iss.infn.it (ISS & INFN Roma)
Design / Collimators Geometry

Single Pin-Hole

High Res., border artefacts, low sensitivity $S_{ph} \sim [d/(4p)]^2$

$R \sim \sqrt{[d(1 + \frac{1}{M})]^2 + \left[\frac{R_i}{M}\right]^2}$ (d effective hole diameter)

$d \sim .3 \text{ mm}, M \sim 3 \quad \Rightarrow \quad R_i < 1 \text{ mm}$

Multi Pin-Holes

High res., low FoV ↔ artefact, good sensitivity $S_{mph} \sim NS_{ph}$
Design / Collimators Geometry

Single Pin-Hole

- **M = q/p**
- **Detector**
- **Object**

High Res., border artefacts, low sensitivity $S_{ph} \sim [d/(4p)]^2$

Multi Pin-Holes

- **M = q/p**
- **Detector**
- **Object**

High res., low FoV ↔ artefact, good sensitivity $S_{mph} \sim NS_{ph}$

Equation:

\[
R \sim \sqrt{\left[d(1 + \frac{1}{M})\right]^2 + \left[\frac{R_i}{M}\right]^2}
\]

\[
d \sim .3 \text{ mm, } M \sim 3
\]

\[\Rightarrow \quad R_i < 1 \text{ mm}\]
Design / Collimators Geometry

Single Pin-Hole

\[M = \frac{q}{p} \]

High Res., border artefacts, low sensitivity \(S_{ph} \sim \left[\frac{d}{(4p)} \right]^2 \)

\[
R \sim \sqrt{\left[d \left(1 + \frac{1}{M} \right) \right]^2 + \left(\frac{R_i}{M} \right)^2}
\]

\(d \sim 0.3 \text{ mm}, \ M \sim 3 \) \(\Rightarrow \ R_i < 1 \text{ mm} \)

Multi Pin-Holes

\[M = \frac{q}{p} \]

High res., low FoV ↔ artefact, good sensitivity \(S_{mph} \sim NS_{ph} \)

Coded Apertures

High resolution, low DoF ↔ artefact, high efficiency \(S_{ca} \sim \alpha S_{mph} \)
Design Approach / Camera Detector Components

Optimal combination of existing conventional components

- Collimator: (Multi) Pin Hole / Coded Aperture ⇒ Sensitivity
- Scintillation Crystal: Pixellated (NaI, CsI) / Continuous (LaBr₃)
- Position Sensitive Photon Counting Detector: Multi Anode PMT (3 and 1.5 mm)
- Readout Electronic: Individual Channel Readout, Selftriggering, Multiplexed digitization (and zero channel suppression) at ∼ 5 kHz event rate
Optimal combination of existing conventional components

- **Collimator**: (Multi) Pin Hole / Coded Aperture ⇒ Sensitivity
- **Scintillation Crystal**: Pixellated (NaI, CsI) / Continuous (LaBr₃)
- **Position Sensitive Photon Counting Detector**: Multi Anode PMT (3 and 1.5 mm)
- **Readout Electronic**: Individual Channel Readout, Selftriggering, Multiplexed digitization (and zero channel suppression) at ~ 5 kHz event rate
Design Approach / Camera Detector Components

Optimal combination of existing *conventional* components

- Collimator: (Multi) Pin Hole / Coded Aperture ⇒ Sensitivity
- Scintillation Crystal: Pixellated (NaI, CsI) / Continuous (LaBr₃)
- Position Sensitive Photon Counting Detector: Multi Anode PMT (3 and 1.5 mm)
- Readout Electronic: Individual Channel Readout, Selftriggering, Multiplexed digitization (and zero channel suppression) at ∼ 5 kHz event rate
GEANT4 simulators
Custom C++ code
ROOT analysis

(simple detector, but large number of

events and optical photons/event)

⇓

Quality parameters:

- Intrinsic Spatial Res.
- Useful Field of View
- Efficiency
- Energy Resolution
- Distorsion
- SNR (and contrast)
GEANT4/Root Optimization

GEANT4 simulator
Custom C++ code
ROOT analysis

(simple detector, but large number of
events and optical photons/event)

⇓

Quality parameters:
- Intrinsic Spatial Res.
- Useful Field of View
- Efficiency
- Energy Resolution
- Distorsion
- SNR (and contrast)

CsI(Na) 0.8mm pitch H9500

CsI(Na) 0.8 pitch coupled to 3.0 anodes PMT w/o exit window
GEANT4/Root Optimization

GEANT4 simulator
Custom C++ code
ROOT analysis
(simple detector, but large number of
events and optical photons/event)

⇓

Quality parameters:
- Intrinsic Spatial Res.
- Useful Field of View
- Efficiency
- Energy Resolution
- Distorsion
- SNR (and contrast)

CsI(Na) 0.8mm pitch H9500

CsI(Na) 0.8 pitch coupled to 3.0 anodes PMT w/ exit window

cisbani@iss.infn.it (ISS & INFN Roma)

γ for Mol.Ima.

03 Oct 06 - IPRD06 13 / 17
GEANT4/Root Optimization

GEANT4 simulator
Custom C++ code
ROOT analysis
(simple detector, but large number of events and optical photons/event)

⇓

Quality parameters:
- Intrinsic Spatial Res.
- Useful Field of View
- Efficiency
- Energy Resolution
- Distorsion
- SNR (and contrast)

Csl(Na) 0.8 pitch coupled to 1.5 anodes MCP w/o exit window

cisbani@iss.infn.it (ISS & INFN Roma)
GEANT4 simulator
Custom C++ code
ROOT analysis

(simple detector, but large number of events and optical photons/event)

Quality parameters:
- Intrinsic Spatial Res.
- Useful Field of View
- Efficiency
- Energy Resolution
- Distorsion
- SNR (and contrast)

CsI(Na) 0.8 mm pitch, WW, Burle

CsI(Na) 0.8 pitch coupled to 1.5 anodes MCP w/ exit window
GEANT4/Root Optimization

GEANT4 simulator
Custom C++ code
ROOT analysis
(simple detector, but large number of events and optical photons/event)

Quality parameters:
- Intrinsic Spatial Res.
- Useful Field of View
- Efficiency
- Energy Resolution
- Distorsion
- SNR (and contrast)

CsI(Na) 0.4 mm pitch, WoW, Burle

Csl(Na) 0.4 pitch coupled to 1.5 anodes MCP w/o exit window
Optimization: preliminary results

For Cont. LaBr₃:
- largest crack (5 vs 1.7 cm)
- “white” reduces useful FOV (∼ 70%)
- now available in tile ∼ 10 × 10 cm², but expensive

For Pix. CsI(Na):
- CsI(Na) interesting but hygroscopic
- not available below 0.8 mm

SNR estimation almost completed
Next step: multi pinhole (coded aperture)
Optimization: preliminary results

Cont. LaBr₃

- largest crack (5 vs 1.7 cm)
- “white” reduces useful FOV (∼ 70%)
- now available in tile ∼ 10 × 10 cm², but expensive

Pix. CsI(Na)

- CsI(Na) interesting but hygroscopic
- not available below 0.8 mm

SNR estimation almost completed
Next step: multi pinhole (coded aperture)
First measurements at JHU/School of Medicine

- Scintillators: Pixellated NaI(Tl) 1.2 mm and CsI(Tl) 1.0 mm
- Photon Detector: MAPMT 2×2 H9500 (1024 chs)
- Electronics: Mutiplexed IDE.AS (no zero suppression) < 2 kHz rate
- ApoE (live) mouse + AnnexinV; test with MDP

γ for Mol.Ima.
First measurements at JHU/School of Medicine

- Scintillators: Pixellated NaI(Tl) 1.2 mm and CsI(Tl) 1.0 mm
- Photon Detector: MAPMT 2×2 H9500 (1024 chs)
- Electronics: Mutiplexed IDE.AS (no zero suppression) < 2 kHz rate
- ApoE (live) mouse + AnnexinV; test with MDP

Spatial Resolution ~ 0.6 mm
Preliminary results from JHU measurements

- Set up has been tested on MDP (bone binding) injected mouse
- Protocol defined for (live) ApoE mouse (calibration point sources, 64 views 90 seconds each)

Lesson learned

- Reliable protocol defined for ApoE live mouse
- Spatial resolution is acceptable
- Sensitivity: a factor of \(\sim 10 \) needed (\(\Rightarrow \) multipin hole)
- Electronics: PMT anodes non-uniformity (up to 6:1) and selftriggering require better control on single channel thresholding
 \(\Rightarrow \) reduce ‘counting artefact’ in image (and increase sensitivity)
Preliminary results from JHU measurements

- Set up has been tested on MDP (bone binding) injected mouse
- Protocol defined for (live) ApoE mouse (calibration point sources, 64 views 90 seconds each)

Lesson learned

- Reliable protocol defined for ApoE live mouse
- Spatial resolution is acceptable
- Sensitivity: a factor of \(\sim 10 \) needed (\(\Rightarrow \) multipin hole)
- Electronics: PMT anodes non-uniformity (up to 6:1) and selftriggering require better control on single channel thresholding (\(\Rightarrow \) reduce ‘counting artefact’ in image (and increase sensitivity)
Preliminary results from JHU measurements

- Set up has been tested on MDP (bone binding) injected mouse
- Protocol defined for (live) ApoE mouse (calibration point sources, 64 views 90 seconds each)

Lesson learned

- Reliable protocol defined for ApoE live mouse
- Spatial resolution is acceptable
- Sensitivity: a factor of ~ 10 needed (\Rightarrow multipin hole)
- Electronics: PMT anodes non-uniformity (up to 6:1) and selftriggering require better control on single channel thresholding
 \Rightarrow reduce ‘counting artefact’ in image (and increase sensitivity)
Conclusion and Outlook

- Happy for the first results of the test trials
- Simulation: finalize analysis (and validation); implement multi pinhole reconstruction
- Detector: improve the tuning of the individual anode responses
- Electronics: re-design selftriggering and multiplexing (add zero suppression)
- ...

γ for Mol.lma.

03 Oct 06 - IPRD06