Characterization of CMOS Active Pixel Sensor featuring non-epitaxial substrate with different radioactive sources.

L. Servoli (1), D. Biagetti (1,2), G.M. Bilei (1), P. Ciampolini (1,3), P. Delfanti (3), A. Marras (1,3), G. Matrella (1,3), D. Passeri (1,2), P. Placidi (1,2)

(1) Istituto Nazionale di Fisica Nucleare Sezione di Perugia - Italy
(2) Dipartimento di Ingegneria Elettronica e dell’Informazione Università degli Studi di Perugia - Italy
(3) Dipartimento di Ingegneria dell’Informazione Università di Parma - Italy
Outline

• Description of RAPS/SHARPS INFN experiments: aimed at the exploitation of standard CMOS technology (0.18µm, twin-tub, 1P6M) to fabricate ionizing particle detector based on Monolithic Active Pixel Sensors.

• The Pixel architectures.

• Characterization with IR Laser, β and γ from 55Fe.

• Conclusions.
Technology options: 0.25μm vs. 0.18μm

∆VA swing greater than ∆VB!

∆VA 0.18μm swing greater than ∆VA 0.25μm!

The 0.18μm technology A has been selected! (non-epitaxial technology).
Pixel APS

Sensitivity time

Interval

RESET width

Area del fotodiodo

NMOS del reset

NMOS di selezione della riga

NMOS del source-follover

4.4 µm

MRST

MSEL

MSF

4.4 µm

4.4 µm

n-well

p-well

p-sub

PRD06 - Siena, October, 1-5 2006
Signal Analysis: MIP (simulation)

Pixel

Circuitry transfer function simulated within CADENCE environment (Spectre)

Column line

Output swing ≈ 800mV

Photodiode voltage drop estimated using 3D physical simulation (~ 80mV, depending on the impact point)

Programmable gain column amplificator

Photon-induced PhD voltage drop estimated using 3D physical simulation (80mV, depending on the impact point)

Output swing ≈ 800mV

Graphs

- Radiation-induced PhD voltage drop (V)
- Photodiode voltage drop (V)
- Output voltage (V)
- Photodiode voltage (V)

IPRD06 - Siena, October, 1-5 2006
Sensor layout (32 x 32 matrix)
Radiation Active Pixel Sensor (RAPS)

UMC 0.18\(\mu\)m MM 1P6M CMOS technology (twin-tub, no-epi)

- high-gain, in-pixel ampl.
- pMOS & nMOS;
- 10x10\(\mu\)m\(^2\) pixel size;
- self-reset operation (event-triggered).

- 3T architecture;
- pMOS & nMOS;
- 10x10\(\mu\)m\(^2\) pixel size;
- sparse read-out.

- 3T architecture;
- 4.4x4.4\(\mu\)m\(^2\) pixel size.
Optical workbench

- Mirror
- Lens
- Beam-splitter
- Objective
- IR laser ($\lambda = 1060$nm)
- DUT (RAPS02)
Laser spot size (1)

Single pixel output evaluation

Voltage [V]

X [µm]

4.4 µm

2.7 µm

~1.0 µm

0.06 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0 5 10 15 20 25 30 35
Laser spot size (2)

Two pixels output evaluation

Voltage [V] vs. X [µm]

- Laser spot Diameter ~3.5µm
- 4.4µm
- 2.7µm
- ~1.0µm

After deconvolution
Cluster response analysis (IR)

4.4µm
Linearity analysis (using IR Laser)

Good linearity
Noise Analysis (No source)

Average

![Graphs of Noise Analysis](image)

- **Sample**: [Graph showing noise variations over time]
- **Average**: [Graph showing average noise levels]

Rumore [mV]

<table>
<thead>
<tr>
<th>Value (mV)</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1000</td>
</tr>
<tr>
<td>1</td>
<td>800</td>
</tr>
<tr>
<td>2</td>
<td>600</td>
</tr>
<tr>
<td>3</td>
<td>400</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
</tr>
</tbody>
</table>

Average:
- μ = 0 µV ± 9.9 µV
- Deviazione: 0.699 mV ± 9.9 µV

IPRD06 - Siena, October, 1-5 2006
Single pixel noise evaluation (kTC)

Transfer Function

- **Output [V]**
 - **Output Noise**
 - SATURATION
 - HIGH-GAIN
 - LINEAR

Noise

- **SATURATION**
 - Value: -20 [µV ± 9.9 [µV]
 - Deviation: 0.699 [mV ± 9.9 [µV]

- **HIGH-GAIN**
 - Value: -0.36 [mV ± 0.62 [mV]
 - Deviation: 17.4 [mV ± 0.62 [mV]

- **LINEAR**
 - Noise: 0.96(±0.08) [mV]

INFIN
Time response analysis (X-ray)

![Graph showing time response analysis with time in nanoseconds (ns) on the x-axis and pixel voltage drop in volts (V) on the y-axis. The graph illustrates a single pixel output with a voltage drop of approximately 100 V in about 100 ns.](image-url)
Signal Analysis

For every pixel we define:

\[
\text{Signal}(i) = \text{V}_{\text{pixel}}(i) - \text{Ped}(i) \quad \text{(single pixel signal)} \quad \text{and:}
\]

\[
\text{S/N}(i) = \frac{\text{Signal}(i)}{\text{Noise}(i)} \quad \text{(single pixel signal normalized to pixel noise)}
\]

Cluster Signal:

Look at the 3x3 pixel matrix centered in the pixel with maximum voltage drop. If pixel > 2.5 the pixel noise add to total cluster signal.
Test with 55Fe X-ray source

Single pixel Signal

Single pixel Voltage Drop

Single Pixel noise

Pixels with effects from X-ray

$c^2 / ndf = 854.9 / 106$

Constant $= 6.501e+04 \pm 103$

Mean $= -0.002767 \pm 0.001916$

Sigma $= 1.496 \pm 0.001$
Test with 55Fe X-ray source

Cluster Signal

34 mV => 5.9 keV
Test with ^{55}Fe X-ray source

![Graph showing the distribution of S/N ratios with statistical parameters. The graph highlights the mean and sigma values with uncertainties.]
Test with 90Sr/90Y β^{-} source

Example of signal for 90Sr/90Y(β) source.

Single pixel Signal/Noise distribution. The gaussian fit should have \(\sigma = 1 \) in absence of any source.
Test with $^{90}\text{Sr}/^{90}\text{Y}$ β^- source

Cluster Signal

$C^2 / \text{ndf} = 22.98 / 23$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>74.29 ± 10.20</td>
</tr>
<tr>
<td>MPV</td>
<td>20.96 ± 0.31</td>
</tr>
<tr>
<td>Sigma</td>
<td>1.734 ± 0.231</td>
</tr>
</tbody>
</table>

Events with Non-MIP Energy release

IPRD06 - Siena, October, 1-5 2006
Test with $^{90}\text{Sr}/^{90}\text{Y}$ β^- source

<table>
<thead>
<tr>
<th>χ^2 / ndf</th>
<th>59.68 / 19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>103.7 ± 12.6</td>
</tr>
<tr>
<td>MPV</td>
<td>11.97 ± 0.21</td>
</tr>
<tr>
<td>Sigma</td>
<td>1.066 ± 0.117</td>
</tr>
</tbody>
</table>

Cluster Signal/Noise

Events with Non-MIP Energy release
Test with $^{90}\text{Sr}/^{90}\text{Y}$ β^- source

- A MIP (β^- from $^{90}\text{Sr}/^{90}\text{Y}$) is clearly visible by our detector.

- A S/N of ~ 12 is feasible.

- Using the ^{55}Fe calibration, we can derive the number of electrons collected by our detector (~ 1000).

- This implies an equivalent collection depth of 13-15 microns, in agreement with our simulations.
Conclusions

• The suitability of standard CMOS technology (0.18\(\mu\)m, twin-tub, no-epi) for Active Pixel Sensors fabrication for particle detection has been investigated through extensive experimental characterization.

• Different pixel layout and read-out schemes have been devised and implemented.

• ...as well as different test strategies and workbenches.

• Test results have shown satisfactory responses to \(\beta\), IR, and X-rays stimuli and promising performance in terms of S/N.

• Future works:
 - test beam analysis of the existing devices;
 - radiation hardness evaluation;
 - next run (still CMOS 0.18\(\mu\)m) foreseen this autumn.