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Riassunto della tesi

Scopo di questo lavoro di tesi è lo studio di alcune proprietà delle teorie generali della
gravità in relazione alla meccanica e la termodinamica dei buchi neri. In particolare, la
trattazione che seguirà ha lo scopo di fornire un percorso autoconsistente che conduca alla
nozione di entropia di un orizzonte descritta in termini delle carica di Noether associata
all’invarianza del funzionale d’azione, che descrive la teoria gravitazionale in consider-
azione, per trasformazioni di coordinate generali. Si presterà particolare attenzione ad
alcune proprietà geometriche della Lagrangiana, proprietà che sono indipendenti dalla
particolare forma della teoria che si sta prendendo in considerazione; trattasi cioè non
di proprietà dinamiche, legate cioè alla forma delle equazioni del moto del campo gravi-
tazionale, ma piuttosto caratteristiche proprie di qualunque varietà rappresentante uno
spaziotempo curvo. Queste caratteristiche fanno sì che ogni teoria generale della gravità
possieda alcune grandezze definite localmente sullo spaziotempo, in particolare una cor-
rente di Noether e la carica ad essa associata. La forma esplicita della corrente e della
carica dipende invece dalla Lagrangiana che si sceglie di adottare per descrivere il campo
gravitazionale. Il lavoro di tesi sarà orientato prima a descrivere come questa corrente di
Noether emerge in qualunque teoria della gravità invariante per trasformazioni generali
e come essa viene esplicitata nel caso di Lagrangiane particolari, per poi identificare la
carica ad essa associata come una grandezza connessa all’ entropia di un orizzonte in
qualunque teoria generale della gravità.
Lo schema della tesi è il seguente:

Capitolo 1: Viene ricavata l’identità di Bianchi generalizzata per teorie generali della
gravità invarianti per diffeomorfismi. Viene sottolineato che l’identità di Bianchi
è una relazione off-shell unicamente dovuta all’invarianza dell’azione sotto trasfor-
mazioni arbitrarie delle coordinate che esprime nient’altro che la covarianza gen-
erale della teoria, proprietà questa assolutamente indipendente dalla forma della
Lagrangiana.

Capitolo 2: Viene ricavata l’espressione della corrente conservata associata all’invarianza
dell’azione per diffeomorfismi generali. Si discute nel dettaglio la proprietà per cui
questa corrente è conservata off-shell e come ciò viene interpretato alla luce del
teorema di Noether.
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Capitolo 3: Si dà l’espressione esplicita per la corrente ricavata nel capitolo precedente
nel caso di Lagrangiane generali con dipendenza arbitraria dal tensore di Riemann
ma non dalle sue derivate e per la Lagrangiana di Hilbert-Einstein. La carica
associata viene calcolata esplicitamente per la Relatività Generale su un orizzonte
a simmetria sferica di metrica assegnata.

Capitolo 4: Viene fornita un’interpretazione fisica alla carica calcolata nel capitolo 3,
precisamente andando on-shell, ossia utilizzando le equazioni del moto per il campo
gravitazionale. Si affronterà il caso di Lagrangiane generali e quindi in Relatività
Generale verrà mostrato che la carica associata ad un orizzonte a simmetria sferica
coincide con l’entropia di Bekenstein-Hawking.
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Abstract

In this thesis some features of general theories of gravity will be reviewed in relation
to the mechanics and the thermodynamics of black holes. In particular, the entropy
associated to the event horizon of a black hole can be described in terms of the conserved
charge that comes from the invariance of the action functional describing the theory
under general coordinate transformations. The attention will be focused especially on
the general geometric properties of the Lagrangian, which are independent of the theory
of gravity taken into account, i.e. they are not dynamical properties of the theory
but rather intrinsic properties of the manifold representing curved spacetime. These
properties make any general theory of gravity to possess quantities which are locally
defined on the spacetime, in particular a Noether current and the corresponding charge.
The explicit form of the current and the charge depend on the form of the Lagrangian
chosen for describing the gravitational field. The thesis will first describe how the current
comes up in any diffeomorphism invariant theory of gravity, eventually its form will be
given in the case of particular Lagrangians, and afterwards the charge will be identified
as a quantity connected to the horizon entropy in any general theory of gravity.
The scheme of the thesis is the following

Chapter 1: The generalized Bianchi identity will be derived for diffeomorphism invari-
ant general theories of gravity. It will be pointed out that the Bianchi identity
is an off-shell relation that comes from the variation of the action under arbitrary
transformations of the coordinates. It expresses nothing but the general covariance
of the theory, hence it is independent of the form of the Lagrangian.

Chapter 2: The conserved current associated to the diffeomorphism invariance of the
theory will be studied. In particular, it will be stressed that such a current is off-
shell conserved. We will face this feature in relation with the Noether’s theorem.

Chapter 3: The particular form of the conserved current will be given here for general
gravitational actions with arbitrary dependence on curvature tensor but not on its
derivatives and Hilbert-Einstein action. The associated conserved charge will be
computed in the case of General Relativity, on a spherically symmetric horizon of
given background metric.
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Chapter 4: A physical interpretation will be provided for the charge computed in chap-
ter 3 going on-shell, i.e. using the equations of motion for the gravitational field.
After a discussion involving general theories of gravity, it will be shown that the
charge for a spherically symmetric horizon in General Relativity is the Bekenstein-
Hawking entropy.
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Introduction

Undoubtedly, one of the most remarkable developments in theoretical physics to have
occurred during the past forty years was the discovery of a close relationship between
certain laws of black hole physics and the ordinary laws of thermodynamics. The ex-
istence of this close relationship between these laws may provide us with a key to our
understanding of the fundamental nature of black holes in a quantum theory of gravity,
as well as to our understanding of some aspects of the nature of thermodynamics itself.
It was first pointed out by Bekenstein [2] that a close relationship might exist between
certain laws satisfied by black holes in classical general relativity (GR) and the ordinary
laws of thermodynamics. The area theorem of classical GR [6] states that the area, A,
of a black hole can never decrease in any process

∆A ≥ 0 (1)

Bekenstein noted that this result is closely analogous to the statement of ordinary second
law of thermodynamics: the total entropy, S, of a closed system never decreases in any
process

∆S ≥ 0 (2)
Thus, Bekenstein proposed that the area of a black hole (times a constant of order unity
in Planck units) should be interpreted as its physical entropy. Indeed if the black hole
did not have its own entropy, the second law of thermodynamic would easily be violated.
In fact, it is easy to think of a situation in which we take some matter with some entropy,
and put it into the black hole. Since nothing can come out of the black hole, we conclude
that the entropy of the universe has reduced, hence the change in entropy, δS ≤ 0.
Therefore the second law has been violated. The way to save this apparent violation of
the second law is to associate some entropy with the black hole, Sblack hole. This entropy,
will then increase when some matter goes into the black hole. Then we may be able to
show that the net change of entropy is not negative, i.e, δS + δSblack hole ≥ 0. In GR,
thanks to the work by Bardeen, Carter and Hawking [1] and the discovery by Hawking
of the black body thermal emission of a black hole, it was proved that the entropy of a
spherically symmetric black hole is

SBH = A

4G (3)

vii



which is the Bekenstein-Hawking entropy. The original derivation of this formula for the
black hole entropy in GR used many detailed properties of the Einstein field equations
and, thus, appeared to be very special to GR. In this thesis we would like to answer
the following question: is it possible to introduce a notion of black hole entropy, or,
more generally, an horizon entropy which is based on quantities locally defined on the
horizon which are common to any theory of gravity?. Actually, we know that in 1993
Robert M. Wald answered yes to this question introducing the notion of what is now
known as Wald entropy [17] constructing a new derivation of the first law of black
hole mechanics for any theory which is invariant under diffeomorphisms (i.e., coordinate
transformations). In this construction, the black hole entropy is related to the Noether
charge of diffeomorphisms under the Killing vector field which generates the horizon in
the stationary black hole background. Further, the Wald entropy can always be expressed
as a local geometric density integrated over a space-like cross-section of the horizon.
The aim of this thesis is to convince the reader, following a path different from the one
constructed by Wald, that such a notion of horizon entropy expressed in terms of locally
defined quantities over the horizon (that are independent of how the gravitational theory
is built) really exists. We could say that we will try to give a formulation of the Wald
entropy starting from the very beginning, as if we were not aware of Wald’s results, i.e
we will discuss everything in the thesis from scratch. In doing this, the starting point
will be the project 8.1 in [11, p. 394].
The formula for the entropy as connected to the Noether charge, which will be provided in
the thesis, will coincide with the Bekenstein-Hawking entropy for a spherically symmetric
horizon when the action functional of the theory is the Hilbert-Einstein action in a
D = 4 spacetime. The key point we would like to focus on is that we will recover a
notion of entropy that is specific of a certain gravitational theory, i.e. GR, starting from
quantities that can be defined also for theories described by different, and completely
general, action functionals. Thus, one expects the entropy formula we will found in the
thesis to represent the horizon entropy in any diffeomorphism invariant general theory
of gravity.
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Chapter 1

Bianchi identity in general theories
of gravity

1.1 Derivation of the generalized Bianchi identity
In this section we will derive the analogous of the Bianchi identity in GR, but in the

case of general class of diffeomorphism invariant theories of gravity. These theories, as
well as GR, will be treated as classical field theories, i.e. the dynamical variables will be
functions of spacetime, their dynamics being governed by a proper action functional, as
we will soon see. In this thesis we will always refer to a spacetime that can be represented
as a D-dimensional spacetime with D ≥ 4. We will consider the case D = 4 only when
we deal with GR. In describing a general theory of gravity we will start from some
basic principles that can be already found in GR, which is the simpler and the most
elegant and tested (at least into our solar system) gravitational theory. In a general
theory of gravity, the gravitational field will be characterized by the 10 components of
the symmetric metric tensor gab(x) defined via

ds2 = gab(x)dxadxb (1.1)

where ds2 is the spacetime interval that represents the distance between two infinitesi-
mally separated events of spacetime. In general, even though (1.1) defines an intrinsic
curved spacetime, it is always possible to find a locally inertial frame (or Lorentzian
frame) in which the metric gab(x) reduces to the point independent Minkowskian metric
ηab with Lorentzian signature diag(−1, 1, 1, 1, . . . ). This is nothing but the equivalence
principle, that leads in a quite naturally way to a geometrical description of all gravita-
tional effects. However, in an intrinsic curved spacetime the metric appearing in (1.1)
cannot be reduced globally to a given background form and thus all the coordinate sys-
tems have to be treated equally, none of them has a privileged status in describing the
physics of gravitational systems. Hence, the laws of physics must be the same in any

1



1.1. DERIVATION OF THE GENERALIZED BIANCHI IDENTITY 2

arbitrary frame of reference (i.e. coordinate systems). It follows that we need to for-
mulate our theories in such a manner that the equations are covariant under arbitrary
coordinate transformations [11]. Hereafter, we will always consider metric theories of
gravity in the sense just explained. The general covariance principle strongly constraints
the form of the action functional. We will consider an action functional of the form

S =
∫
dDx
√
−g Lg(gab, Ra

bcd, ∇kR
a
bcd, . . . ) (1.2)

where . . . stands for the higher derivatives of the curvature tensor and there are no
other dynamical fields apart from the metric. The form of the Lagrangian in (1.2) is the
one we would expect to find in a geometrical description of a general theory of gravity.
The Lagrangian is a scalar under general transformations x′a = x′a(xb), made of tensors,
namely the metric, its first and, at least, second derivatives (no non trivial scalar can be
made of the metric and its first derivative alone) enclosed into the curvature tensor, and
this fact leads to laws of physics written in a tensorial form and thus valid in any arbitrary
frame of reference. Extremizing (1.2) respect to the metric gab leads to the gravitational
filed equations. One can show that it is possible to build theories of gravity which have
equations of motion involving derivatives of second order in the dynamical variables even
though higher derivatives of the curvature tensor appear into the Lagrangian [11], [13].
It can be shown that the variation of the action (1.2) under an arbitrary transformation
of the dynamical variables can be always cast in the form

δS =
∫
dDxδ(

√
−g Lg) =

∫
dDx
√
−g (Eabδgab +∇aδv

a) (1.3)

where the term ∇aδv
a leads to a surface term. We will prove this in the next section,

first assuming, for the sake of simplicity, the Lagrangian depends on the metric and
curvature tensor but not on its derivatives and we will eventually consider the general
case in which also the derivatives of the curvature tensor enter the Lagrangian. The
first term in (1.3) contains all the terms rising from the variation of the metric alone,
instead the second term is built by terms rising from the variation of the derivatives of
the metric, and thus Eab and δva result unambiguously defined.
A very important action functional belonging to the wider class of actions represented
by the general form (1.2) is the following

SHE = 1
16πC

∫
dDx
√
−gR (1.4)

known as the Hilbert-Einstein action, R being the Ricci scalar, where C is a general
coupling constant that reduces to the Newton constant when D = 4, i.e. for GR. How-
ever, this action is defined, in general, on a D-dimensional spacetime. The multiplication
constant has been chosen in such a way that setting D = 4 one recovers the familiar
Hilbert-Einstein action of GR. When dealing with (1.4), (1.3) is written as

δSHE = 1
16πC

∫
dDx
√
−g (Gabδg

ab +∇aδv
a) (1.5)
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where
Gab = 1√

−g
∂(√−gR)
∂gab

(1.6)

is the Einstein tensor. Thus, Eab = Gab for the Hilbert-Einstein action. In general
thoeries of gravity, extremizing (1.3) with respect to δgab leads to the equations of motion
for the gravitational field. If one adds to the action describing the pure gravitational field
an action describing the effects of matter, S → Sg + SM , the equations of motion would
be 2Eab = Tab, where Tab is the energy-momentum tensor of matter. When the Hilbert-
Einstein action is extremized in the presence of matter the equations of motion read
Gab = 8πC Tab, that reduces to the Einstein equations Gab = 8πGTab when D = 4 (this
fact, again, motivates the choice of the multiplication constant). In absence of matter,
the equations of motion reduces to Eab = 0 and this must be valid for any diffeomorphism
invariant theory of gravity, in particular we have Gab = 0 for the Hilbert-Einstein theory.
However, we are not interested in discussing the features of the equations of motion
anymore here, but rather in the well known Bianchi identity

∇aG
ab = 0 (1.7)

Using (1.6) the Bianchi identity can be written as

∇a

(
Rab − 1

2g
abR

)
= 0 (1.8)

Even though all the dynamics of the metric is governed by Gab, the previous relation
is an identity that holds independently of the equations of motion. Bianchi identity is
rather a relation coming up from the algebraic properties of the curvature tensor. In
fact, it can be shown that (1.8) is equivalent to Ra

b[cd;k] = 0, where [abc] stands for the
sum over the cyclic permutations of the indexes a,b and c. This last identity is easily
proved in a local inertial frame and, after some manipulations, it can be cast in the form
(1.8). It is important to stress that if the Bianchi identity did not hold, it could not
be possible to express the 20 components of a general tensor with the same algebraic
properties of Ra

bcd as functions of the 10 components of a given metric. Thus, Bianchi
identity is a necessary and sufficient condition for a general tensor with the same algebraic
symmetries of the curvature tensor to be considered as a curvature tensor of some metric.
This feature is purely geometric, due only to the fact that we are considering an intrinsic
curved manifold with a metric, and it is independent from the choice of the coordinate
system and from the form of the metric (the "way" the spacetime is curved), i.e. from the
equations of motion. Hence the content of Bianchi identity is not dynamical, but instead
it is strictly connected to the very geometrical nature of spacetime. To be more specific,
the Bianchi identity (1.7) emerges as a direct consequence of the general covariance of
the theory, expressed by the invariance of the Lagrangian under general transformations.
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This can be better seen considering (1.7) as a collection of 4 constraints of the theory.
Thus, it simply means that the equation of motions are not linearly independent and
not all the 10 components of the metric gab are true dynamical variables. Since (1.9)
provides four conditions (constraints) that can be used to fix 4 of the 10 components of
the metric, there are only 6 components left whose time evolution can be obtained by
solving the equations of motion. In general, if one wants to preserve the manifest general
covariance of the theory, all the ten components of the metric have to be treated on the
same footage, even if four of them evolve in time through arbitrary functions of time.
The arbitrariness of these 4 components agrees perfectly with the general covariance that
always gives the freedom to change the coordinates system, xa → x′a, without changing
the physics of the theory. Thus, we expect a Bianchi-like identity should hold in any
diffeomorphism invariant theory. What happens is that the following identity holds

∇aE
ab = 0 (1.9)

for any Eab given as in (1.3). To see it, we will proceed as follows: we will consider the
variation of the Lagrangian density √−gLg under specific coordinate transformations of
the form xa → x′a = xa + ξa(x), where ξa(x) are arbitrary, infinitesimal quantities.
Using the explicit expression (1.3) we have∫

dDx δξ(
√
−gLg) =

∫
dDx
√
−g (Eab δξgab +∇a(δξva)) (1.10)

In order to move further it is necessary to compute the local variation of the metric
tensor under the general diffeomorphism xa → xa + ξa(x), i.e. δξgab = g′ab(x) − gab(x)
that is the variation of the functional form of the metric tensor at a given location. Since
we are considering the contravariant components of the metric tensor, we can start from
its very definition, i.e. its transformation law under a change in the coordinates

g′ab(x′) = ∂x′a

∂xk
∂x′b

∂xl
gkl(x) (1.11)

that for the coordinate transformation we are dealing with becomes

g′ab(x′) = (δak + ∂kξ
a)(δbl + ∂lξ

b)gkl(x)
≈ gab(x) + ∂aξb + ∂bξa (1.12)

where we have dropped the terms in ξ of higher order than the first. Now we have to
compare g′ab(x) and gab(x), that is the comparison has to be made at the same spacetime
point. To do this we can expand the left member of the above equation in a Taylor series,
stopping it at the linear terms in ξ. Then we get

g′ab(x′) ≈ g′ab(x) + ∂kg
ab(x)ξk = gab(x) + ∂aξb + ∂bξa ⇒

δξg
ab = g′ab(x)− gab(x) = −∂kgab(x)ξk + ∂aξb + ∂bξa (1.13)



1.1. DERIVATION OF THE GENERALIZED BIANCHI IDENTITY 5

It is possible to give a more compact expression for the above local variation of the
metric tensor recalling that the covariant derivative of the latter is identically zero,
∇k g

ab = ∂k g
ab + Γakl gbl + Γbkl gal = 0 , from which we get ∂k gab = −Γakl gbl − Γbkl gal

and then

δξg
ab = Γakl gblξk + Γbkl galξk + ∂aξb + ∂bξa

= ∂aξb + Γabkξk + ∂bξa + Γbakξk

= ∇aξb +∇bξa = £ξg
ab (1.14)

where £ξg
ab is the Lie derivative of the metric with respect to ξ. Let us come back to the

variation of the action. Putting into (1.10) the above expression for the local variation
of the metric we get∫

dDxδξ(
√
−gLg) =

∫
dDx
√
−g[Eab(∇aξb +∇bξa) +∇a(δξva)] (1.15)

From (1.3) we expect the tensor Eab to be symmetric or, to say it better, it would be
useless considering its antisymmetric part since this would vanish in the contraction with
δgab, that is obviously symmetric. As we will verify later, Eab is built from the derivatives
of the Lagrangian with respect to the metric and the derivatives of the metric and hence
it is straightforward symmetric. Using this fact we get∫

dDxδξ(
√
−gLg) =

∫
dDx
√
−g[2Eab∇aξb +∇a(δξva)]

=
∫
dDx
√
−g[2Eab∇aξb +∇a(δξva)]

=
∫
dDx
√
−g[2∇a(Eabξb)− 2∇aE

abξb +∇a(δξva)] (1.16)

where in the third step we have performed an integration by parts. To reach our goal,
it is worth expressing the local variation of the scalar density √−gLg in a more useful
form. Keeping in mind that the Lagrangian is a general scalar, i.e L′g(x′) = Lg(x) when
xa → x′a = xa + ξa(x), we get

L′g(xa + ξa) = L′g(x) + ξa∂aLg(x) = Lg(x)⇒
L′g(x)− Lg(x) = −ξa∂aLg(x)⇒
δξLg = −ξa∇aLg = −£ξLg (1.17)

where in the first equation we have replaced ∂aL′g(x) with ∂aLg(x) since ξa are infinites-
imal quantities (the terms in ξa of higher order than the first have been dropped) and in
the last step the covariant derivative has taken the place of the ordinary one since Lg is
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a scalar. Thus

δξ(
√
−gLg) = δξ(

√
−g)Lg +

√
−gδξLg

= −1
2
√
−g gabδξgabLg +

√
−gδξLg

=
√
−g(−gab∇aξbLg + δξLg) (1.18)

where in the last step the symmetry of the metric has been implemented. In the second
equality, δξ(

√
−g) has been computed as follows: since

δξ(
√
−g) = − 1

2√−g δξg (1.19)

we need an expression for the variation of g. Writing

g = exp [Tr ln gij] (1.20)

we have

δξg = ∂g

∂gab
δξg

ab = exp [Tr ln gij]Tr
[
∂ ln gij
∂gab

]
δξg

ab = g (gab)−1 = g gabδξg
ab (1.21)

and thus
δξ(
√
−g) = − 1

2√−gg gabδξg
ab = −1

2
√
−g gabδξgab (1.22)

Using (1.17) in the above expression leads to

δξ(
√
−gLg) =

√
−g(−∇aξ

aLg − ξa∇aLg) = −
√
−g∇a(Lgξa) (1.23)

and (1.16) becomes

−
∫
dDx
√
−g∇a(Lgξa) =

∫
dDx
√
−g[2∇a(Eabξb)− 2∇aE

abξb +∇a(δξva)] (1.24)

Rearranging this, we get∫
dDx
√
−g 2∇aE

abξb =
∫
dDx
√
−g∇a(2Eabξb + δξv

a + Lgξ
a) (1.25)

from which we see that the right member is equal to a volume integral that can be
transformed, through Gauss’s theorem, into an integral over the boundary of the term
in round bracket.∫

dDx
√
−g 2∇aE

abξb =
∫
dD−1σa

√
−g (2Eabξb + δξv

a + Lgξ
a) (1.26)

At this point, we can use the arbitrariness of ξa to take it in such a way that the variation
of the metric together with its derivatives vanish on the boundary. In this way the right
member of (1.26) is zero and since the volume of spacetime, over which the integral
is performed, is completely arbitrary, the integrand in the left member of (1.26) must
vanish and hence (1.9) immediately follows. Let us summarize the main results of this
section:
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• the Bianchi identity ∇bE
ab = 0 is a direct consequence of the general covariance of

the theory.

• the Bianchi identity constraints a tensor with the same algebraic properties of the
curvature tensor to be a curvature tensor derivable from a metric.

• the Bianchi identity is an off-shell relation, i.e. no equations of motion have been
used in its derivation.

All these three facts are consequences of the geometrical nature of the theory, of seeing
all gravitational effects emerging as geometrical properties of a manifold rather than
dynamical properties of fields.

1.2 Variation of the action: a deeper insight
We will now focus on the variation of the action in order to give some more mathe-

matical details behind (1.3). In doing this we will consider a Lagrangian that depends
on the metric and the curvature tensor, but not on its derivatives

S =
∫
dDx
√
−g Lg(gab, Ra

bcd) (1.27)

In all the incoming calculations, and elsewhere in the thesis unless differently specified, we
will always work in a coordinate basis {ea} with basis vectors ea = ∂a. Since spacetime is
a differential manifold, the very definition of manifold always allows us to refer, without
loss of generality, to a coordinate basis when we have to express the variation of the metric
and thus the variation of the action. Now, let us write (1.27) in such a manner that the
dependence upon the covariant metric and its first and second derivatives appears more
clearly

S =
∫
dDx
√
−g Lg(gab, ∂c gab, ∂c∂d gab) (1.28)

With our choice to work with a coordinate basis, the connections and the curvature
tensor read

Γabc = 1
2g

ak(gkc,b + gkb,c − gbc,k) (1.29)

and
Ra

bcd = Γabd,c − Γabc,d + ΓamcΓmbd − ΓamdΓmbc (1.30)

respectively, where we have used the notation A,i = ∂iA. The above expressions allow
us to write the action (1.28) as follows

S =
∫
dDx
√
−g Lg(gab, Γabc, ∂dΓabc) (1.31)
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Equation (1.30) (with one index up) permits to read the variation of curvature tensor
entirely in terms of variations of Γabc and Γabc,d alone (only Gammas, no metric); then,
if the δRa

bcd we have to consider is with gab = const. all we have to do is to compute
the variations of the Γ through (1.29), keeping gab = const in it, and use them in the
variation of (1.30). This suggests to consider gab and Ra

bcd as independent variables, and
to compute any variation of Ra

bcd as variation of Γs. Thus (1.27) is formally equivalent
to

S =
∫
dDx
√
−g Lg(gab, Γabc, ∂dΓabc) (1.32)

Hence, we have (from now on, we will not specify the arguments of the Lagrangian
anymore to ease the notation)

δS =
∫
dDx
√
−g

[
1√
−g

∂(√−gLg)
∂gab

δgab + P bcd
a δRa

bcd

]

=
∫
dDx
√
−g

[(
∂Lg
∂gab

− 1
2gabLg

)
δgab + P bcd

a δRa
bcd

]
(1.33)

where in the second equality (1.22) has been used. We have also introduced the tensor

P bcd
a =

(
∂Lg
∂Ra

bcd

)
gab

(1.34)

which has the same algebraic properties of Ra
bcd

P abcd = −P bacd = −P abdc, P abcd = P cdab, P a[bcd] = 0 (1.35)

If the term coming from the variation of the Lagrangian respect to the metric is straight-
forward to express into a simple form, that is not true for the term with the variation
of the curvature tensor that needs some more manipulations. To begin with, it is conve-
nient to work in a locally inertial frame in which Γabc = 0. Again there are no troubles in
making this choice, since we are dealing with a Lagrangian that is a general scalar and
thus any relation involving it will be valid in any system of reference. Thus we can write

P bcd
a δRa

bcd = P bcd
a (∂cδΓabd − ∂dδΓabc) (1.36)

We will now show that, even though Γabc is not a tensor, δΓabc is a tensor. Let us take
two infinitesimally separated spacetime points P and P ′ and a vector Aa defined at P .
After a parallel displacement between P and P ′, the vector will be A′a = Aa+ΓabcAbdxc.
Instead, using the connection Γ′abc = Γabc + δΓabc the vector will change as A′′a = Aa +
ΓabcAbdxc + δΓabcAbdxc. Thus δΓabcAbdxc will be the difference between two vectors at
the same point P ′, that is a vector, and since Aa and dxc are vectors too, δΓabc must be
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a tensor. Hence, we can substitute the partial derivative with the covariant one in the
last equation and get

P bcd
a δRa

bcd = P bcd
a [∇cδΓabd − {c↔ d}]

= 2P bcd
a ∇cδΓabd (1.37)

In deriving this, we have used P bcd
a = −P bdc

a and the fact that c and d are dummy
indexes. The variation of the connection immediately follows from (1.29)

δΓabd = 1
2g

al(∂bδgdl + ∂dδgbl − ∂lδgbd) (1.38)

where we use δgab = 0, and we look at δ∂cgab as ∂cδ gab so that, even if δgab = 0, we get
δgab 6= 0 from the variations of the Γs, where these variations are taken with gab fixed.
Since δΓabd is a tensor, we can replace the ordinary derivative with the covariant one and
get

δΓabd = 1
2g

al(∇bδgdl +∇dδgbl −∇lδgbd) (1.39)

The vanishing of the covariant derivative of the metric does not imply any vanishing
of ∇cδgab, as the quantities δgab are small arbitrary quantities, with arbitrary covariant
derivatives. Hence, taking the covariant derivative of (1.39) leads to

∇cδΓabd = 1
2g

al∇c[∇bδgdl +∇dδgbl −∇lδgbd] (1.40)

Hence using (1.40), (1.37) becomes

2P bcd
a ∇cδΓabd = P lbcd∇c[∇bδgdl +∇dδgbl −∇lδgbd] (1.41)

= P lbcd∇c[∇bδgdl −∇lδgbd]
= 2P lbcd∇c∇bδgdl (1.42)

Again, we have used the antisymmetry of P lbcd that makes the second term vanish in
(1.41). The next step is to arrange (1.42) as follows

2P lbcd∇c∇bδgdl = ∇c(2P lbcd∇bδgdl)− 2∇cP
lbcd∇bδgdl

= ∇c(2P lbcd∇bδgdl)− 2∇b(∇cP
lbcdδgdl) + 2∇b∇cP

lbcdδgdl

= ∇c(2P lbcd∇bδgdl − 2∇bP
lcbdδgdl) + 2∇b∇cP

lbcdδgdl

= ∇cδv
c + 2∇b∇cP

lbcdδgdl (1.43)

Now, we have to express this last equation in terms of δgdl instead of δgdl and this is
not done by simply thinking of the former as the contravariant components of the latter,
because a minus sign occurs. We can see this by noting that δ(δal) = 0 = δ(gakgkl) =
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δgakgkl + gakδgkl ⇒ gakδgkl = −gklδgak and contracting this equation with gad we obtain
δgdl = −gadgblδgab. Collecting all these results together (1.33) becomes

δS =
∫
dDx
√
−g

[(
1√
−g

∂(√−gL)
∂gab

− 2∇m∇nPamnb

)
δgab +∇aδv

a

]

=
∫
dDx
√
−g [Eab δgab +∇aδv

a] (1.44)

where
Eab = ∂Lg

∂gab
− 1

2gabLg − 2∇m∇nPamnb (1.45)

and
δva = (2P lbad∇b − 2∇bP

labd)δgdl (1.46)

As expected, Eab is symmetric: the first two terms of (1.45) are symmetric because the
metric is, and the last one is symmetric too, due to the algebraic properties of Pamnb.
We will now focus our attention on the boundary term (1.46) in order to give a general
expression for it that will be very useful later, entirely in terms of the variation of the
metric and the variation of the connection. This can be done simply contracting δΓkbd,
as given by (1.39), with P lbad

P lbadδΓkbd = 1
2P

lbad[∇bδgdl +∇dδgbl −∇lδgbd] (1.47)

Now, the above expression gets higly simplified thanks to the antisymmetry of P lbad for
the exchange b↔ l. In fact the middle term vanishes since the δgbl is symmetric and the
third term is added to the first after using P lbad = −P blad and renaming b↔ l. Thus we
are left with

P bad
l δΓlbd = P lbad∇bδgdl (1.48)

and (1.46) becomes
δva = 2P bad

l δΓlbd − 2∇bP
lbadδgdl (1.49)

which can also be written as

δva = 2P bad
l δΓlbd + 2∇bP

ba
l dδg

dl (1.50)

Equation (1.61), obtained for Lagrangians Lg = Lg(gab, Ra
bcd), corresponds to a variation

of the action of the form (1.3). Now, we would like to show that the form (1.3) for the
variation of the action functional is generic, that is it holds true for general theories of
gravity, i.e. theories described by the general action functional (1.2). To do this, we
consider the action

S =
∫
dDx
√
−g Lg(gab, Ra

bcd, ∇kR
a
bcd, . . . ) (1.51)
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The variation (1.3) can be written as

δS =
∫
dDx
√
−g (Uabδgab+W bcd

a δRa
bcd+W k1 bcd

a δ∇k1 R
a
bcd+W k1k2 bcd

a δ∇k1∇k2 R
a
bcd+. . . )
(1.52)

where
Uab = 1√

−g
∂(√−gLg)

∂gab
(1.53)

contains the terms coming from the variation of the metric, and

W bcd
a = ∂Lg

∂Ra
bcd

W k1 bcd
a = ∂Lg

∂(∇k1R
a
bcd)

, W k1k2 bcd
a = ∂Lg

∂(∇k1∇k2R
a
bcd)

, . . . (1.54)

contain the terms coming from the variations of the curvature tensor, the derivatives of
the curvature tensor, the derivatives of the derivatives of the curvature tensor etc. etc.
We shall now see that each term with the W s gives a contribution proportional to δRa

bcd

and a term that can be expressed as a divergence of a vector. For example, the first
three terms are

A) W k1 bcd
a δ∇k1R

a
bcd = −∇k1W

k1 bcd
a δRa

bcd +∇k1(W k1 bcd
a δRa

bcd)

B)W k1k2 bcd
a δ∇k1∇k2 R

a
bcd = ∇k2∇k1W

k1k2 bcd
a δRa

bcd

+∇k1(W k1k2 bcd
a ∇k2δR

a
bcd −∇k2W

k2k1 bcd
a δRa

bcd)

and

C) W k1k2k3 bcd
a ∇k1∇k2∇k3δR

a
bcd =

−∇k3∇k2∇k1W
k1k2k3 bcd

a δRa
bcd +∇k1(W k1k2k3 bcd

a ∇k2∇k3δR
a
bcd

−∇k2W
k2k1k3 bcd

a ∇k3δR
a
bcd +∇k2∇k3W

k3k2k1 bcd
a δRa

bcd)

and we immediately read the term proportional to the variation of the curvature tensor

X bcd
a = W bcd

a −∇k1W
k1 bcd
a +∇k2∇k1W

k1k2 bcd
a − · · · = δLg

δRa
bcd

(1.55)

where we have used the definition of the W s tensors and the notation to the right means

δ

δφ
= ∂

∂φ
−∇a

∂

∂(∇aφ) +∇b∇a
∂

∂(∇a∇bφ) −∇c∇b∇a
∂

∂(∇a∇b∇cφ) + . . . (1.56)

Instead, the term inside the divergence, say δzk1 , has the following structure

δzk1 = (W k1 bcd
a −∇k2W

k2k1 bcd
a +∇k2∇k3W

k3k2k1 bcd
a + . . . )δRa

bcd

+ (W k1k2 bcd
a −∇k3W

k3k1k2 bcd
a + . . . )∇k2δR

a
bcd + . . . (1.57)
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and thus it depends upon the variation of the curvature tensor and the derivatives of
any order of the latter. Hence, the variation (1.52) turns out to be

δS =
∫
dDx
√
−g (Uabδgab +X bcd

a δRa
bcd +∇aδz

a) (1.58)

Here, X bcd
a has the same symmetries of the curvature tensor, and the second term in the

variation of the action has the same form of (1.37) we have already computed, having
P bcd
a the same symmetries of curvature tensor; thus

X bcd
a δRa

bcd = −2∇m∇nXamnbδg
ab +∇aδy

a (1.59)

with
δya = 2X bad

l δΓlbd + 2∇bX
ba
l dδg

dl (1.60)
(cf. (1.42),(1.43),(1.46),(1.50)). Hence

δS =
∫
dDx
√
−g (Eabδgab +∇aδv

a) (1.61)

where
Eab = 1√

−g
∂(√−gLg)

∂gab
− 2∇m∇nXamnb (1.62)

and
δva = δza + δya (1.63)

and thus, we immediately see that the variation (1.61) is exactly the variation (1.3).
To end this section, we will see how the boundary term (1.63) changes when it is com-
puted in the correspondence of a Killing vector ξa. A Killing vector satisfies Killing’s
equation ∇aξb + ∇bξa = 0 from which it follows that ∇a∇bξc = Rk

abcξk. The second
equation follows from the very definition of the curvature tensor [∇a,∇b]ξc = Rk

cbaξk in
addition to its symmetry property Rk

[cba] = Rk
cba + Rk

acb + Rk
bac = 0. Combining these

we eventually arrive to a relation involving the second derivatives of the Killing vector,
namely

[∇a,∇b]ξc + [∇b,∇c]ξa + [∇c,∇a]ξb = 0 (1.64)
which making use of the Killing’s equation becomes

∇a∇bξc +∇b∇cξa −∇c∇bξa = 0⇒
∇a∇bξc = −Rk

acbξk = Rk
abcξk (1.65)

We will now apply these properties of a Killing vector to find out how the boundary term
transforms under infinitesimal coordinate transformation x′a = xa + ξa(x), with ξa(x)
Killing vector. We get

δξv
a = δξz

a + δξy
a = 2∇bX

ba
l dδξg

dl + F a bd
l δξΓlbd + F ak1 bd

l ∇k1δξΓlbd + . . .
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where the terms proportional to the Γs and their derivatives come from both δya and
δza, once in the latter the variation of the curvature tensor and its derivatives are written
via (1.30). The F s tensors are certain combinations of X and the W s tensors.
Now, it is immediate to write the variation of the first term since δξgab = ∇(aξb) = 0.
The other terms involve the variation of a connection δξΓ which will be handled in the
following way

δξΓcab = 1
2g

ck(∇aδξgbk +∇bδξgak −∇kδξgab)

= −1
2g

ck(∇a∇bξk +∇a∇kξb +∇b∇aξk +∇b∇kξa

−∇k∇aξb −∇k∇bξa) (1.66)

where the fact that δΓ is a tensor has been used to write the first row of the above
expression. We can rearrange (1.66) into a more compact formula

δξΓcab = −1
2g

ck(Rmbkaξ
m +Rmakbξ

m +∇(a∇b)ξk)

= 1
2R

c
(ab)kξ

k − 1
2∇(a∇b)ξ

c (1.67)

where in the second step the symmetry properties of the curvature tensor has been
implemented. Using (1.65), it is straightforward to see that δξΓcab = 0. Thus, the
boundary term, whatever the Lagrangian we are considering is, vanishes under a general
diffeomorphism induced by a vector ξa that is a Killing vector at least inside the region
of spacetime in which we are considering the variation of the metric and the variation of
the connection and its derivatives, and thus the whole boundary term.
Hence, in this section,

• we have found the explicit form of Eab and δva for a Lagrangian depending upon
the metric and the curvature tensor, but not on the derivatives of the latter. These
expressions will be very useful in further calculations.

• we have shown that, whatever the form of the Lagrangian is, the variation of an
action functional describing a general theory of gravity is always casted in the form
(1.3).

• for general theories, the boundary term depends not only upon the variation of
the metric and the variation of the connection, but also upon the derivatives of
the latter. However, it vanishes when evaluating it on a vector that is a Killing
vector at least into a proper region of spacetime. This fact will be crucial in further
discussions.



Chapter 2

A conserved current

2.1 Existence of a conserved current
We have seen that if one implies the variation of the action (1.2) to be the one derived

in the previous chapter, then the generalized Bianchi identity holds. The key point we
have used in deriving it is the general covariance of the theory, i.e. that the Lagrangian is
a scalar under general coordinate transformations. Another striking consequence of the
general covariance of the theory and the Bianchi identity is the existence of a conserved
current Ja, whose explicit form can be obtained equating the local variation of the
Lagrangian density √−gLg under xa → xa + ξa(x) written in two different ways (eqs.
(1.16) and (1.23)), namely

δξ(
√
−gLg) = −

√
−g∇a(Lgξa) (2.1)

and

δξ(
√
−gLg) =

√
−g [2Eab∇aξb +∇a(δξva)]

=
√
−g [∇a(2Eabξb + δξv

a)− 2∇aE
abξb] (2.2)

that, making use of (1.9), leads to

δξ(
√
−gLg) =

√
−g∇a(2Eabξb + δξv

a) (2.3)

Equating (2.1) and (2.3) we get

∇a(−Lgξa) = ∇a(2Eabξb + δξv
a) (2.4)

Thus
∇a(2Eabξb + Lgξ

a + δξv
a) = 0 (2.5)

14
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and the conserved current reads

Ja = ξaLg + 2Eabξb + δξv
a (2.6)

At this point, it is very important to underline that the continuity equation

∇aJ
a = 0 (2.7)

as well as the generalized Bianchi identity (1.9), is an off-shell relation, i.e. no equations
of motion have been used to obtain that result. On one hand, we have the current (2.6),
crucially tied to the general Bianchi identity, which is conserved already off-shell; on the
other hand, any symmetry in the action calls for a Noether current. For the Noether
current, however, we have an on-shell conservation. It is, thus, somehow intriguing the
off-shell conservation we find, and current (2.6) deserves some further investigation in
order to clarify its relation with the conserved current as provided by Noether theorem.

2.2 Noether theorem
In this section we will use the symmetries of the action (1.2), to construct the asso-

ciated on-shell Noether currents, following the path provided by the usual proof of the
Noether theorem itself. Our aim is to compare the conserved current extracted in this
way with the current (2.6). Before facing this interesting fact, we will give a general
proof of the theorem. We recall briefly here how the proof of Noether theorem runs
in the context relevant for us. We consider a field φA(x), which can be thought of as
a scalar or can carry any collection of up and down, spacetime and/or internal space,
indexes denoted collectively by A. Here xa are, for the moment, Cartesian coordinates
in a D-dimensional Minkowski spacetime. A formulation of the theorem is the following:
If an action describing a physical system is invariant under a continuous transformation
of coordinates and fields, then a locally conserved current always exists, i.e. a combina-
tion of field functions and their derivatives exist which satisfies the continuity equation.
We consider then the action functional (hereafter we will omit the indexes A and B to
ease the notation, but the field is always meant to be a general tensor)

S =
∫
dDxL(φ(x), ∂aφ(x)) (2.8)

Extremizing this with respect to φ(x) leads to the equations of motion. Now, let us
introduce the following

• total variation: ∆φ(x) = φ′(x′)− φ(x)

• local variation: δφ(x) = φ′(x)− φ(x)
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• differential variation: dφ(x) = φ(x′)− φ(x)

In a first order approximation we have

φ′(x′) = φ′(x+ δx) ≈ φ′(x) + δxµ∂µφ(x)

where we have replaced δxµ∂µφ
′(x) with δxµ∂µφ(x) since they differ in a second order

infinitesimal. Thus we get

∆φ(x) = φ′A(x′)− φA(x) ≈ δφ(x) + δxµ∂µφ(x) = δφ(x) + dφ(x)

Now, we consider the following transformationx′a = xa + δxa

φ′(x′) = φ(x) + ∆φ(x)
(2.9)

and we suppose it to be a symmetry for the system we are dealing with. This is expressed
by the condition

∆S = 0 (2.10)

where
∆S =

∫
dDx′L′(φ′(x′), ∂µφ′(x′))−

∫
dDxL(φ(x), ∂µφ(x)) (2.11)

In general, volume elements transform as

dDx′ = |J(x)| dDx (2.12)

where
J(x) = det

∥∥∥∥∥∂x′a∂xb

∥∥∥∥∥ (2.13)

is the Jacobian of the transformation. We have x′a = xa+δxa and thus, in the first order
approximation, the Jacobian is

J(x) = det(δ a
b + ∂bδx

a) (2.14)

To compute this determinant we will use the general formula

detA = exp (Tr lnA) (2.15)

In the adopted approximation ln(δ a
b +∂bδx

a) = ∂bδx
a and thus Tr∂bδxa = ∂aδx

a. Hence

J(x) = exp ∂aδxa = 1 + ∂aδx
a (2.16)



2.2. NOETHER THEOREM 17

Thus dDx′ = (1 + ∂aδx
a)dDx and the total variation of the action, at the first order,

reads

∆S =
∫
dDx(1 + ∂aδx

a)L′(φ′(x′), ∂aφ′(x′))−
∫
dDxL(φ(x), ∂aφ(x))

≈
∫
dDx∆L(φ(x), ∂aφ(x)) +

∫
dDx ∂aδx

aL(φ(x), ∂µφ(x)) (2.17)

where we have written ∂aδx
aL′(φ′(x′), ∂aφ′(x′)) ≈ ∂aδx

aL(φ(x), ∂µφ(x)) since we are
considering first order approximation (for the moment, it is not necessary to take the
Lagrangian as a scalar under (2.9)). Implementing the total variation of the Lagrangian
we get [15, pag.76]

∆S =
∫
dDx δL+

∫
dDx δxa∂aL+

∫
dDx∂aδx

aL =
∫
dDx δL+

∫
dDx∂a(δxaL) (2.18)

The first term in the right member is

δL = ∂L

∂φ
δφ+ ∂L

∂∂aφ
δ∂aφ =

(
∂L

∂φ
− ∂a

∂L

∂∂aφ

)
δφ+ ∂a

(
∂L

∂∂aφ
δφ

)

Thus, the total variation of the action becomes

∆S =
∫
dDx

[(
∂L

∂φ
− ∂a

∂L

∂∂aφ

)
δφ+ ∂a

(
∂L

∂∂aφ
δφ+ Lδxa

)]
(2.19)

Since, around any point in spacetime, the region of integration is arbitrary, the integrand
must vanish for the symmetry condition to be fullfilled and hence(

∂L

∂φ
− ∂a

∂L

∂∂aφ

)
δφ+ ∂a

(
∂L

∂∂aφ
δφ+ Lδxa

)
= 0 (2.20)

Implementing the equations of motion leads to

∂a

(
∂L

∂∂aφ
δφ+ Lδxa

)
= 0 (2.21)

And the on-shell conserved current, i.e. the current to which the usual context of the
derivation of Noether theorem brings, is

Ĵa = ∂L

∂∂aφ
δφ+ Lδxa (2.22)

The key points of this derivation are the action functional written in the form (2.8),
whose total variation under (2.9) must be zero, and the request to be on-shell, i.e. the
current is made by combinations of fields that are solutions of the equations of motion.
Now, we will try to generalize this derivation to the case of gravitational theories.
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2.3 Noether theorem for gravitational actions
In this section we would like to go through the same path of the previous section but

in the case of gravitational theories. We will take the field to be the metric tensor gab
of curved spacetime and we will try to obtain an expression for the conserved current,
following the Noether theorem. We already know that an action functional describing
a general diffeomorphism invariant theory of gravity always remains unchanged under
general transformations x′a ≡ x′a(xb). In fact taking the action

S =
∫
dDx
√
−g L(gab, ∂cgab) (2.23)

where L(gab, ∂cgab) is a general scalar depending upon the metric and its derivatives, it
is straightforward to see that

∆S =
∫
dDx′

√
−g′ L′(g′ab, (∂cgab)′)−

∫
dDx
√
−g L(gab, ∂cgab) = 0 (2.24)

since dDx′
√
−g′ = dDx

√
−g and L′(g′ab, (∂cgab)′) = L(gab, ∂cgab) by construction. Hence,

by Noether theorem, a conserved current is expected to exist. We will investigate this first
for an unphysical system, which will only help us to establish a formal correspondence
with the results of Noether theorem of the previous section, and then for a system
described by the action functional (1.2).

2.3.1 Noether theorem for a gravitational toy model
Consider the following action functional

S =
∫
dDx
√
−g L(gab, ∂cgab) (2.25)

Although such an action cannot describe a non trivial theory of gravity, it allows us to
make some formal parallelisms with the case described by the action (2.8). As before,
we have

∆S =
∫
dDx δ(

√
−gL) +

∫
dDx ∂a(δxa

√
−gL) = 0 (2.26)

with the only difference that the square root of the determinant of the metric appears
in front of the Lagrangian. However, we eventually arrive at(

∂(√−gL)
∂gkl

− ∂a
∂(√−gL)
∂∂agkl

)
δgkl + ∂a

(
∂(√−gL)
∂∂agkl

δgkl +
√
−gLδxa

)
= 0 (2.27)

Going on-shell we get

∂a

(
∂(√−gL)
∂∂agkl

δgkl +
√
−gLδxa

)
= 0 (2.28)
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These have the same structure of (2.20) and (2.21), the conserved current in this case
being

J̃a =
√
−g

(
∂L

∂∂agkl
δgkl + Lδxa

)
=
√
−gĴa (2.29)

The expression to the left in (2.28) is not generally covariant, and the quantities J̃a are
not a vector, but a vector density (the expression in round brackets in (2.29), that is Ĵa,
it is a vector). We need to go further to express (2.28) in terms of a covariant divergence
of a vector. This can be easily done by computing the covariant divergence of a vector
Aa. Using the definition of covariant derivative we get

∇aA
a = ∂aA

a + ΓaabAb (2.30)

but
Γaab = 1

2g
ak(∂agbk + ∂bgak − ∂kgab) = 1

2g
ak∂bgak = 1√

−g
∂b
√
−g (2.31)

where we have used (1.22) for getting the last equality

δ(
√
−g) = −1

2
√
−ggabδgab ⇒ ∂k

√
−g δxk = −1

2
√
−ggab∂kgab δxk (2.32)

and since gab∂kgab = −gab∂kgab we get

1
2g

ab∂kgab = 1√
−g

∂k
√
−g (2.33)

Hence
∇aA

a = 1√
−g

∂a(
√
−gAa) (2.34)

This is precisely what helps us in writing the continuity equation in terms of a covariant
divergence. In our case, we have Aa = Ĵa and thus we can write

∂aJ̃
a = ∂a(

√
−gĴa) =

√
−g∇aĴ

a = 0 (2.35)

meaning ∇aĴ
a = 0 which is the generally covariant continuity equation. We see that Ĵa,

which coincides with (2.22), is the on-shell generally covariant conserved current emerging
from the usual proof of Noether theorem for Lagrangian L in curved spacetime.

2.3.2 Noether theorem for general theories of gravity
We will ask the following question: is it possible to use the Noether approach for

a general action functional to reach a conserved current? A problem here is that the
Lagrangian is not only a function of the field and its first derivatives, but necessarily
also a function of the derivatives of the field of order higher than the first. Thus the
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Noether ‘mechanism’ considered in previous sections cannot be straightforwardly applied.
However, we already know how the local variation of the gravitational action looks like,
for a generally covariant Lagrangian which depends upon derivatives of the metric of
any order. Taking an action functional of the form (1.2) we have seen that its local
variation is given by (1.61), with Eab = 0 being the equations of motion (in vacuum).
This structure is similar to the one of (2.19); we recognize in it the same two components:
one, whose vanishing gives the equations of motion, and the other which contributes to
give the on-shell Noether current considered in previous sections. From (2.17), which
holds true for derivatives of any order of the fields in L, we get

∆S =
∫
dDx δ(

√
−gLg) +

∫
dDx ∂a(

√
−gLgδxa)

=
∫
dDx
√
−g (Eabδgab +∇aδv

a) +
∫
dD ∂a(

√
−gLgδxa) (2.36)

The second term in the last equality can be expressed in terms of the covariant divergence
by means of (2.34), and eventually we get

∆S =
∫
dDx
√
−g [Eabδgab +∇a(δva + Lδxa)] (2.37)

Since the total variation of the action is zero for general transformations we can write

Eabδg
ab +∇a(δva + Lδxa) = 0 (2.38)

This expression is formally identical to the one we have encountered previously both in
the toy model and in the canonical proof of the Noether theorem. If in these cases we
need the equations of motion to arrive at the continuity equation for the current Ja,
here something very special happens since we are able to express the term Eabδg

ab, that
would vanish on-shell, as a total derivative. In fact we know that the variation of the
metric can be expressed in the form (1.14), being ξa the vector field which describes the
infinitesimal coordinate transformations, and thus the above expression becomes

2Eab∇aξb +∇a(δξva + Lξa) = −2∇aE
abξb +∇a(2Eabξb + δξv

a + Lξa) = 0 (2.39)

And thanks to the Bianchi identity

∇a(2Eabξb + δξv
a + Lξa) = 0 (2.40)

from which we read the conserved current

Ja = 2Eabξb + δξv
a + Lξa (2.41)

Here we recognize the on-shell Noether expression for the conserved current, described in
previous sections, in the 2nd and the 3rd term. However, the current which is conserved
off-shell has an additional off-shell component, given by the 1st term. Let us summarize
the results we have obtained in this chapter:
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• The off-shell conservation law (2.40) is a pure cinematic relation, i.e it is completely
independent of the source that generates the gravitational fields. It is an intrinsic
feature of all differential manifolds, independently of how they are curved by a
gravitational source. We know that this same argument applies to the generalized
Bianchi identity, and in fact, in general, equations like (2.40) are called Noether
identities [5].

• The key factor that allows one to obtain the off-shell conserved current Ja is that
the variation of the field, i.e. the metric, can be written in terms of a gradient of
the variation of the coordinates.

• This special transformation of the metric under general diffeomorphisms has been
already use to get the Bianchi identity.

• In general, whenever a field transforms in this way due to a change in the coor-
dinates, an off-shell conserved current appears, as well as relations analogous to
the Bianchi identity, as one can verify by taking the Lagrangians considered in 2.2,
2.3.1 and 2.3.2.

• We expect that also for any non-gravitational Lagrangian, when the variations of
the fields can be written as a gradient of the variation of the coordinates, one can
obtain an off-shell conserved current. We will now show this in the case of the
electromagnetic field.

2.3.3 Electromagnetic field and gauge symmetry
Let us take the 4-potential Aa(x) = (−φ,A) describing the electromagnetic field in

terms of the scalar and vector potential on a 4-dimensional flat Minkowskian spacetime
with constant metric ηab, and the the following action functional

S =
∫
d4 xLem(Aa, ∂bAa) (2.42)

where the Lagrangian will be taken as a scalar under Lorentz transformations in order
to have the laws of physics written in the same way in any reference system connected
to each other by a Lorentz transformation. Now, we will suppose that (2.42) is invariant
under the local transformation x′a = xa

A′a = Aa + ∂aθ(x)
(2.43)

where θ(x) is an arbitrary function of spacetime. If the above transformation is a sym-
metry of the action functional, then ∆S = 0 when δθAa = ∂aθ and δxa=0. The total
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variation of (2.42), following (2.17) is

∆S =
∫
d4x(1 + ∂aδx

a)L′(A′a(x′), ∂bA′a(x′))−
∫
d4xL(Aa(x), ∂bAa(x))

≈
∫
d4x∆L(Aa(x), ∂bAa(x)) +

∫
d4x ∂aδx

aL(Aa(x), ∂bAa(x))

=
∫
d4x δL(Aa(x), ∂bAa(x)) = δS (2.44)

since we are considering transformations that leave the spacetime coordinates unchanged.
Now, the local variation of the above action functional can be written in the form

δS =
∫
d4 x[EaδAa + ∂aδv

a] (2.45)

where
Ea = ∂Lem

∂Aa
− ∂k

∂Lem

∂∂kAa
, δva = ∂Lem

∂∂aAk
δAk (2.46)

Thus, under the specific transformation (2.43), (2.45) will be

δθS = 0 =
∫
d4x [Ea∂aθ + ∂aδθv

a] =
∫
d4x [∂a(Eaθ + δθv

a)− ∂aEaθ] (2.47)

where in the second step we have performed an integration by parts. Hence∫
d4x ∂aE

aθ =
∫
d4x ∂a(Eaθ + δθv

a) (2.48)

and choosing a proper behaviour of θ(x) on the frontier in such a way that the boundary
term vanishes in the second member of the above relation we are left with

∂aE
a = 0 (2.49)

that is the analogous of the Bianchi identity in gravitational theories.
Now, implementing the "Noether’s mechanism" introduced in the previous chapter we
eventually get a relation identical to (2.20)(

∂Lem

∂Aa
− ∂k

∂Lem

∂∂kAa

)
δAa + ∂a

(
∂Lem

∂∂aAk
δAk

)
= 0 (2.50)

where the first term on the left vanishes on-shell and the second represents the Noether’s
charge on-shell. However, using the variation of the 4-potential due to the specific
transformation (2.43), we get

Ea∂aθ + ∂aδθv
a = ∂a(Eaθ + δθv

a) = 0 (2.51)



2.3. NOETHER THEOREM FOR GRAVITATIONAL ACTIONS 23

where we have used the Bianchi identity (2.49). Hence, we immediately read the off-shell
conserved current

Ja = Eaθ + δθv
a (2.52)

satisfying
∂aJ

a = 0 (2.53)

identically. As in the case of general theories of gravity, the equations of motion play no
role in finding this Noether identity. Note once again that the existence of this current
is a direct consequence of the Bianchi identity.
All this arguments are straightforwardly applied in the case of the Maxwell Lagrangian

Lem = −1
4Fab(x)F ab(x) (2.54)

where Fab = ∂aAb − ∂bAa is the Faraday’s tensor. The action functional written for the
Maxwell Lagrangian is symmetric under (2.43) since it is easily showed that the Maxwell
Lagrangian is invariant under the same transformation. In fact one can immediately see
that δθFab = 0 when δθAa = ∂aθ ensuring δθLem = 0 → δθS → ∆S = 0. Using the
explicit form of the Maxwell Lagrangian we get

∂Lem

∂∂kAa
= −1

2F
mn ∂Fmn
∂∂kAa

= −1
2F

mn(δkmδan − δknδam)

= −1
2F

ka + 1
2F

ak = −F ka (2.55)

and in the same way
∂Lem

∂∂aAk
= F ka (2.56)

Hence
Ea = −∂k

∂Lem

∂∂kAa
= ∂kF

ka (2.57)

and
δva = ∂Lem

∂∂aAk
δAk = F ka∂kθ (2.58)

Thus the conserved current reads

Ja = ∂kF
kaθ + F ka∂kθ = ∂k(F kaθ) (2.59)

We will say more about the physical meaning of this current, as well as the current for
the gravitational theories, in the next two chapters when we will face the problem of
finding the charge associated to such currents.



Chapter 3

Expressing the current and the
associated charge

In this chapter we want to give the general expression for the conserved charge Q
associated to the off-shell conserverd current Ja in general theories of gravity. Before
treating this specific case, we will find out how to build a conserved charge associated to
a Noether current Ja which satisfies ∂aJa = 0.

3.1 The charge
Consider in a D-dimensional spacetime a vector field Ja(x). The Gauss’ theorem

states that the volume integral of the D-divergence of Ja(x) all over the D-dimensional
volume V is equal to the (D − 1)-surface integral of Ja(x) all over the hypersurface ∂V
that contains V ∫

V
dDx ∂aJ

a =
∫
∂V
dD−1σaJ

a (3.1)

where dD−1σa is one of the components of the infintesimal element of the considered
(D−1)-hypersurface. In the view of considering scalars that remain constant in time, we
can take the D-dimensional volume V to be wholly enclosed into two (D−1)-dimensional
spacelike hypersurfaces at fixed time, namely ∂V|t1 and ∂V|t2 , and a (D−1)-dimensional
timelike hypersurface ∂V|r . Thus the Gauss’ theorem leads to∫

V
dDx ∂aJ

a =
∫
∂V|t2

dD−1σaJ
a −

∫
∂V|t1

dD−1σaJ
a +

∫
∂V|r

dD−1σaJ
a (3.2)

where the minus sign in front of the second term in the right member expresses that
both the normals of the spacelike hypersurfaces point to the future.
We will now take the region V in (3.1) to be a D-dimensional hypersphere of radius R.
Hence ∂V is made of two spacelike hypersurfaces in the time interval [t1, t2], (r < R)|t=t1

24
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and (r < R)|t=t2 , with t2 > t1, and a timelike hypersurface ∂V|r=R. Thus (3.2) reads∫
V
dDx ∂aJ

a =
∫

(r<R)|t=t2

dD−1σaJ
a −

∫
(r<R)|t=t1

dD−1σaJ
a +

∫
∂Vr=R

dD−1σaJ
a (3.3)

If the vector field Ja satisfies ∂aJa = 0 all over the D-dimensional spacetime∫
(r<R)|t=t2

dD−1σaJ
a −

∫
(r<R)|t=t1

dD−1σaJ
a =

∫
∂Vr=R

dD−1σaJ
a (3.4)

from which we see that the variation of the quantity represented by the integral over
the region inside the hypersphere is equal to the flux of Ja through the boundary of the
hypersphere (as happens for the electric charge). This fact allows us to take the integral

Q(t) =
∫

(r<R)|t

dD−1σaJ
a (3.5)

to be the charge into the region (r < R) at time t. If an antisymmetric second rank
tensor Jab exists, such that Ja = ∂bJ

ab, we get

Q(t) =
∫

(r<R)|t

dD−1σa∂bJ
ab (3.6)

and using the Stokes’ theorem leads to

Q(t) =
∫

(r<R)|t

dD−1σa∂bJ
ab = 1

2

∫
∂(r<R)|t

dD−2σabJ
ab (3.7)

where dD−2σab is the infinitesimal coordinate element of the (D− 2)-hypersurface ∂(r <
R)|t, i.e the hypersurface that "cuts" the region (r < R) at time t.
Now, we have to see how the charge associated to a conserved current results defined
in curved spacetime. In this case we have to integrate ∇aJ

a over the proper volume
integral dDx√−g and thus (3.1) becomes∫

V
dDx
√
−g∇aJ

a =
∫
V
dDx ∂a(

√
−gJa) =

∫
∂V
dD−1σa

√
−gJa (3.8)

where we have used (2.34) to get the second equality. Instead, the last one comes from
the application of Gauss’ theorem. Hence, in the region (r < R) at time t the charge
turns out to be

Q(t) =
∫

(r<R)|t

dD−1σa
√
−gJa =

∫
(r<R)|t

dD−1σa
√
−g∇bJ

ab (3.9)

and using again (2.34), which is valid also for any antisymmetric second rank tensor, we
get

Q(t) =
∫

(r<R)|t

dD−1σa ∂b(
√
−g Jab) = 1

2

∫
∂(r<R)|t

dD−2σab
√
−g Jab (3.10)
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Hence the (D−2)-hypersurface integral all over the region ∂(r < R) at time t of √−g Jab
is conserved. For general theories of gravity, we will now show that if an antisymmetric
tensor Jab exists such that Ja = ∇bJ

ab (and we will always suppose that such a tensor
exists) then ∇aJ

a = 0. In fact

∇aJ
a = ∇a∇bJ

ab = 1
2[∇a,∇b]Jab (3.11)

where we used the antisymmetry of Jab in getting the last equality. By the definition of
the curvature tensor we get

1
2[∇a,∇b]Jab = 1

2(Ra
kabJ

kb +Rb
kbaJ

ak) = RabJ
ab = 0 (3.12)

due to the symmetry of Rkb. Thus ∇a∇bJ
ab = 0 and we have the continuity equation in

terms of Jab.

3.2 Current and charge for Lagrangians Lg = Lg(gab, Ra
bcd)

In chapter 2, we have seen that the generalized Bianchi identity ∇aE
ab = 0 leads to

an off-shell conservation law expressed by equation (2.40)

∇aJ
a = 0 (3.13)

with
Ja = 2Eakξk + δξv

a + Lgξ
a (3.14)

where Eak and δξva are defined by (1.3) and ξa is the displacement vector defining the
diffeomorphism x′a = xa + ξa(x). Given the conserved current Ja, one can always find
an antisymmetric tensor Jab such that Ja = ∇bJ

ab (see [14, p.17]). We are interested in
finding an explicit formula for Jab essentially because it will help us write the conserved
charge associated to the current Ja, as we have seen in 3.1. We note that the general
expression (3.14) for the current is valid in any general theory of gravity; in the case
of Lagrangians written in the form Lg = Lg(gab, Ra

bcd) we are able to give an explicit
expression for Ja. In order to achieve this goal, we need to put the known formulas for
Eak and δξva into (3.14). We will begin computing Jab for a theory of gravity described
by a Lagrangian made of the metric gab and the curvature tensor Ra

bcd, and we will
eventually give the expression for Jab for the Hilbert-Einstein action.

3.2.1 The general case
We already know that for an action functional written in the form (1.27), an arbitrary

variation of the dynamical variables leads to

Eak = ∂Lg
∂gak

− 1
2Lgg

ak − 2∇d∇bP
adbk (3.15)
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and hence
2Eakξk = 2 ∂Lg

∂gak
ξk − Lgξa − 4∇d∇bP

adbkξk (3.16)

Noting that

∂Lg
∂gak

= ∂Lg
∂Rlm

np

∂Rlm
np

∂gak
= P np

lm

∂Rlm
np

∂gak

= P np
lmR

l
hnp

∂gmh

∂gak
= P np

lmR
l
hnpδ

amδkh

= P lnp
a Rklnp (3.17)

(where we have use Rlm
np = Rl

hnpg
mh and the fact that the derivation is made keeping

the curvature tensor, which does not depend on the contravariant metric, fixed), we get

2Eakξk = 2P adblRk
dblξk − Lgξa − 4∇d∇bP

adbkξk (3.18)

Now, recalling (1.49), we get

δξv
a = 2P bad

l δξΓlbd − 2∇bP
lbadδξgdl (3.19)

where
δξgdl = −∇(dξl) (3.20)

Thus the second term of the boundary term is

−2∇bP
lbadδξgdl = 2∇bP

lbad(∇dξl +∇lξd) (3.21)

and after the exchange l↔ d in the second term of the last identity we get

−2∇bP
lbadδξgdl = 2∇b(P lbad + P dbal)∇dξl (3.22)

The first term involves the variation of a connection we have already computed in 1.2,
namely

δξΓlbd = 1
2R

l
(bd)kξ

k − 1
2∇(b∇d)ξ

l (3.23)

We can go further in manipulating this and get

−1
2(∇b∇dξ

l +∇d∇bξ
l) = −1

2(2∇d∇bξ
l + [∇b,∇d]ξl)

= −∇d∇bξ
l + 1

2R
l
kdbξ

k (3.24)

and thus

δξΓlbd = −∇d∇bξ
l + 1

2(Rl
kdb +Rl

bdk +Rl
dbk)ξk (3.25)
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Adding and subtracting Rl
bkd in the term involving the sum of curvature tensors we get

δξΓlbd = −∇d∇bξ
l + 1

2(Rl
kdb +Rl

bdk +Rl
dbk +Rl

bkd −Rl
bkd)ξk

= −∇d∇bξ
l + 1

2(Rl
bdk −Rl

bkd + 1
2R

l
[dbk])ξk

= −∇d∇bξ
l +Rl

bdkξ
k (3.26)

where Rl
[dbk] = 2(Rl

dbk + Rl
kdb + Rl

bkd) = 0 and the antisymmetry of the curvature
tensor have been used to obtain the final result. Hence

2P bad
l δξΓl bd = 2P bad

l (−∇d∇bξ
l +Rl

bdkξ
k)

= 2P adbl∇d∇bξl − 2P adblRkdblξ
k (3.27)

and the boundary term is

δξv
a = 2∇b(P lbad + P dbal)∇dξl + 2P adbl∇d∇bξl − 2P adblRkdblξ

k

= −2∇b(P adbl + P albd)∇dξl + 2P adbl∇d∇bξl − 2P adblRkdblξ
k (3.28)

The conserved current now reads

Ja = 2P adblRkdblξ
k − Lgξa − 4∇d∇bP

adbkξk + Lgξ
a

− 2∇b(P adbl + P albd)∇dξl + 2P adbl∇d∇bξl − 2P adblRkdblξ
k

= −2∇b(P adbl + P albd)∇dξl + 2P adbl∇d∇bξl − 4∇d∇bP
adblξl (3.29)

Now we can guess the form of Jab simply observing that the above current depends upon
the displacement ξl and its first and second derivatives. Thus we choose the following
ansatz for Jab (a similar calculation can be found in [4])

Jab = Aabdl∇dξl +Bablξl (3.30)

Differentiating it we get

∇bJ
ab = ∇bA

abdl∇dξl + Aabdl∇b∇dξl +∇bB
ablξl +Babl∇bξl (3.31)

and comparing to (3.29) we can make the following identifications

Aabdl = 2P abdl (3.32)
and

∇bB
ablξl = −4∇d∇bP

adblξl = −4∇b∇dP
abdlξl ⇒

Babl = −4∇dP
abdl + V abl (3.33)
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with ∇bV
abl = 0. Moreover, the following identity must hold

∇bA
abdl +Badl = −2∇b(P adbl + P albd) (3.34)

and we will now verify it

2∇bP
abdl − 4∇bP

adbl + V abl = 2∇b(P abdl − 2P adbl) + V abl

= −2∇b(P adbl + P albd) + V abl (3.35)

where the symmetry property P a[bdl] = 0 has been used to obtain the final equality. We
see that, for inner consistency, it must be V abl = 0. Thus Jab reads

Jab = 2P abdl∇dξl − 4∇dP
abdlξl (3.36)

Jab is not unique, since any change Jab → Jab + V ab with ∇bV
ab = 0 leads to the same

conserved current Ja. We can now write down the charge in the region r < R at time t
for this general case, namely

Q(t) = 1
2

∫
∂(r<R)|t

dD−2σab
√
−g (2P abdl∇dξl − 4∇dP

abdlξl) (3.37)

In general
Q(t) = 1

2

∫
∂Λ|t

dD−2σab
√
−g (2P abdl∇dξl − 4∇dP

abdlξl) (3.38)

where Λt is any spacelike region at time t and ∂Λt is its boundary. For further ap-
plications, it is worth facing the case in which the displacement ξa is a Killing vector,
at least into a region around a spacetime event, and seeing how the current Ja and
the corresponding Jab look like. If ξa is a Killing vector, it satisfies ∇(aξb) = 0 and
∇a∇bξc = Rk

abcξk. Thus, in (3.29) the first term vanishes by symmetry and we are left
with

JaK = 2P adbl∇d∇bξl − 4∇d∇bP
adblξl (3.39)

and using the second property of ξa recalled above

JaK = 2P adblRk
dblξk − 4∇d∇bP

adbkξk (3.40)

and we see that when computed in the corrispondence of a Killing vector, the current
can be written in such a way it is just proportional to ξ. The above expression is also
equal to

JaK = (2Eak + Lgg
ak)ξk (3.41)
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We could have reached immediately this expression for the current just remembering the
form (3.14) and the fact that the boundary term vanishes in corrispondence of a Killing
vector, as we have seen in chapter 2. For an action functional

S = 1
16πC

∫
dDx
√
−g Lg(gab, Ra

bcd) (3.42)

we get
Q(t) = 1

32πC

∫
∂(r<R)|t

dD−2σab
√
−g (2P abdl∇dξl − 4∇dP

abdlξl) (3.43)

and
Q(t) = 1

32πC

∫
∂Λ|t

dD−2σab
√
−g (2P abdl∇dξl − 4∇dP

abdlξl) (3.44)

where
P bcd
a =

(
∂Lg
∂Ra

bcd

)
gab

(3.45)

i.e. the P s remain defined via the Lagrangian Lg.

3.2.2 Hilbert-Einstein case
We will now specialize the previous discussion in the case of the Hilbert-Einstein

action and we will see how Jab looks like in this special case. We consider the Lagrangian

S =
∫
dDx
√
−gR =

∫
dDx
√
−gLg (3.46)

which can be at once written in terms of the curvature tensor. Since R = gklRkl we get

S =
∫
dDx
√
−g gklRkl =

∫
dDx
√
−g gklRm

kml

=
∫
dDx
√
−g [gkl 12(Rm

kml −Rm
klm)] (3.47)

From the action written this way, the tensor P a
bcd, which is the key to write down the

current Ja and the corresponding Jab, is easily extracted. In fact we immediately get

P bcd
a = ∂L

∂Ra
bcd

= 1
2

[
gab

∂Rm
kml

∂Ra
bcd

− {l↔ m}
]

= 1
2(gklδma δbkδcmδdl − {l↔ m}) = 1

2(δcagbd − δdagbc) (3.48)

where in the second step the fact that gab is kept fixed while deriving the Lagrangian
with respect to the curvature tensor has been used. For our applications we need the
full contravariant tensor P abdl which is simply

P abdl = gakP bdl
k = 1

2g
ak(δdkgbl − δlkgbd) = 1

2(gadgbl − galgbd) (3.49)
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From this, we see that P abdl is divergence-less in all its indexes. Hence, for the Hilbert-
Einstein action, (3.36) reads

Jab = 2P abdl∇dξl = (gadgbl − galgbd)∇dξl = (∇aξb −∇bξa) (3.50)

(which is not unique for a given Ja) with the corresponding current

Ja = ∇b(∇aξb −∇bξa) (3.51)

The charge in a spatial region Λt at time t, instead, is

Q(t) = 1
2

∫
∂Λt

dD−2σab
√
−g(∇aξb −∇bξa) (3.52)

For
S = 1

16πC

∫
dDx
√
−gR (3.53)

we get
Q(t) = 1

32πC

∫
∂Λt

dD−2σab
√
−g(∇aξb −∇bξa) (3.54)

3.3 Horizons in static spherically-symmetric metrics
For our purposes, we will consider horizons that come from a given background metric.

In a general theory of gravity living in a D-dimensional spacetime, when one considers
a spherically-symmetric mass distribution collapsed in such a way that it can be viewed
as a pointlike source, the gravitational field outside the source in vacuum will be the one
described by the following spacetime interval

ds2 = −f(r)dt2 + 1
f(r)dr

2 + dX2
⊥ (3.55)

where f(r) = (1− rH/r) and dX2
⊥ denotes the metric on the t = constant, r = constant

surface. The surface H = r−rH defines a horizon, i.e. a region of spacetime that behaves
like a semipermeable membrane. No signal of any kind can cross the horizon from the
inner region r < rH to reach the outside region r > rH . On this surface, f(rH) = 0
and the spacetime interval apparently diverges, but this behaviour is not linked to the
existence of a true singularity, i.e. a region of spacetime in which the curvature tensor
becomes infinite, rather to a bad choice of our coordinates system. However, in physical
terms this surface is an infinite redshift surface, i.e. a luminous signal moving from
the inside of the horizon towards the outer space will take an infinite time to reach an
observer placed outside the horizon, because the dilatation of time, as measured by the
external observer, diverges when r = rH . The metric defined by (3.55) describes a static
gravitational filed, as stated by the Birkhoff theorem.
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Now, we would like to find the charge (3.10) associated to the horizon H. It is evident
that one has a charge for each diffeomorphism x′a = xa + ξa(x) i.e. a charge for each
displacement vector ξa(x). However, we will consider just one particular vector ξa,
namely the vector that generates an isometry of spacetime, i.e. a diffeomorphism that
leaves the metric unchanged, δgab = 0. Hence, in order to represent an isometry, the
vector ξa must be a Killing vector, i.e. it must satisfy Killing’s equation ∇(aξb) = 0.
Since the metric (3.55) is static, we will consider the isometry that represents the time-
translation invariance of the metric in Schwarzschild geometry. Such an isometry is
generated by the Killing vector ξ = ∂/∂t. We will now show that this vector is normal
to the horizon H. To do this let us consider the gradient of H which is a covariant vector
normal to H by construction whose components are

na = ∂aH (3.56)

The corresponding contravariant components are

na = gabnb = gab∂bH (3.57)

and since the only non vanishing component of na is nr we get

nr = grr = f(r) (3.58)

and the contravariant normal vector is

n = na∂a = f(r) ∂
∂r

(3.59)

Now, as r → rH , ξ → n, as we will see. To show this, it is convenient to introduce the
Kruskal-Szekeres coordinates

κU = − exp(−κu), u = t− r∗

κV = exp(κv), v = t+ r∗ (3.60)

where
r∗ =

∫ dl

f(l) (3.61)

is the so called tortoise-coordinate, and κ = 1/2f ′(rH) is what we will later call the
surface gravity. In terms of this new coordinates the Killing vector ξ becomes

ξ = ∂

∂t
= ∂U

∂t

∂

∂U
+ ∂V

∂t

∂

∂V
= κ

(
−U ∂

∂U
+ V

∂

∂V

)

The condition U = 0 (t → ∞) defines the future horizon and the above vector on this
horizon reads

ξ|H = κ

(
V

∂

∂V

)
H

(3.62)
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Now, if the normal vector n is written in the Kruskal-Szekeres coordinates, one finds
that

n = κ

(
U
∂

∂U
+ V

∂

∂V

)
(3.63)

which on the future horizon becomes

n|H = f

(
∂

∂r

)
H

= κ

(
V

∂

∂V

)
H

= ξ|H (3.64)

Hence, on the horizon H the Killing vector ξ = ∂/∂t is normal to H. Moreover, it is a
null vector. In fact its norm is given by [11]

ξ2 = C2κUV, C2 = 8 r2
H

r
(3.65)

and since the condition UV = 0 defines the horizon in the Kruskal-Szekeres coordinates,
ξ2 vanishes on the horizon. Hence the Killing vector ξ = ∂/∂t is a vector normal to the
horizon H whose norm vanishes on H. In order to apply the results of previous sections,
we compute the charge associated to the horizon, QH , as the charge associated to any
region (r < R) with R > rH , and taking the limit R→ rH .

.

3.4 The charge for the general case
Consider the action

S = 1
16πC

∫
dDx
√
−g Lg(gab, Ra

bcd, ∇kR
a
bcd, . . . ) (3.66)

that is the one given by (1.2) with a dimensional normalization factor, required to give
the strength of the coupling between gravity and matter sectors in total Lagrangian.
The charge associated to ξa = (∂/∂t)a is

Q = 1
32πC

∫
∂Λ
dD−2σab

√
−g Jab (3.67)

where Jab is derived as in (3.36) from Lg. If the frontier ∂Λ is taken to be a spherically
symmetric hypersurface with metric given by (3.55) we get

QH = lim
R→rH

( 1
32πC

∫
r=R

dD−2σab
√
−g Jab

)
= 1

32πC

∫
r=rH

dD−2σab
√
−g Jab (3.68)

where now dD−2σab is the infinitesimal coordinate area element of a (D− 2)-hypersphere
of radius R = rH . The charge associated to H does not depend upon time anymore
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since the background metric is static. (3.68) is the more general expression we can
provide for the charge associated to a horizon through ξa = (∂/∂t)a. We can go a little
further considering Lagrangians of the form Lg = Lg(gab, Ra

bcd). In this case, the charge
associated to the horizon can be expressed in terms of P bcd

a = (∂Lg/∂Ra
bcd) and reads

QH = 1
32πC

∫
r=rH

dD−2σab
√
−g (2P abdl∇dξl − 4∇dP

abdlξl) (3.69)

3.5 The charge in General Relativity
We would like to apply the above strategy to compute the charge (3.68) associated

to the conserved current Ja in the case of GR, i.e. for a theory of gravity described by
the Hilbert-Einstein action (1.4), with C = G, in a D = 4-dimensional spacetime. The
spacial cross-section of the horizon is the 2-sphere at r = rH and we consider a slightly
larger 2-sphere with R = rH + ε.
The charge associated to (r < R) is

Q = 1
32πG

∫
r=R

d2σab
√
−g Jab = 1

32πG

∫
r=R

d2Sab J
ab (3.70)

In the above expression we have introduced the proper infinitesimal area element

d2Sab =
√
−g d2σab = 1

2
√
−h√γ [abcd]

∣∣∣∣∣∂(xc, xd)
∂(θ1, θ2)

∣∣∣∣∣ dθ1dθ2 (3.71)

where [abcd] denotes the complete antisymmetric symbol, γ is the determinant of the
intrinsic metric of the 2-sphere and h is the determinant of the metric of the (t−r) plane
orthogonal to the 2-sphere. This can be rewritten as

d2Sab =
√
−h[ab] dS (3.72)

where dS is the proper infinitesimal area element of the 2-sphere. The antisymmetric
combination [ab] can be written in terms of two covariant vectors noting that the 2-sphere
has two normals belonging to the (t − r) plane. We can implement this by considering
the following covariant vectors

va = (−1, 0, 0, 0), wa = (0, 1, 0, 0) (3.73)

and the combination
[ab] = −vawb + vbwa (3.74)

which is antisymmetric by construction. Now, the charge reads

Q = 1
32πG

∫
r=R

dS (−vawb + vbwa) Jab (3.75)
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where we used the fact that
√
−h = 1 for the metric defined by (3.55). By virtue of the

antisymmetry of Jab we get

Q = − 1
16πG

∫
r=R

dS vawb J
ab (3.76)

Inserting the form of Jab given for the Hilbert-Einstein action by (3.50) into the above
expression, leads to

Q = − 1
16πG

∫
r=R

dS vawb (∇aξb −∇bξa) = − 1
8πG

∫
r=R

dS vawb∇aξb (3.77)

where in the last equality we have used the fact that ξa is a Killing vector. Now we see
that the vectors va and wa can be written in terms of ξa. In fact since ξ = ∂/∂t we have
ξa = (1, 0, 0, 0). Thus

va = gabvb ⇒ va =
(

1
f
, 0, 0, 0

)
= 1
f
ξa (3.78)

and
wa = gabwb ⇒ wa = (0, f, 0, 0) = f

(
∂

∂r

)a
(3.79)

and the charge reads

Q = − 1
8πG

∫
r=R

dS
1
f
ξa f

(
∂

∂r

)
b

∇aξb (3.80)

Now, we have to compute the quantity ξa∇aξb. Consider a surface S and vector la normal
to S. Since la is orthogonal to S one can write la = µ(x)∂aS, where µ(x) is an arbitrary
function of spacetime. Hence the product la∇al

b is

la∇al
b = la∇aµ(x)∂bS + laµ(x)∇a∂

bS
= laµ−1(x)∂aµ(x)lb + gbklaµ(x)∇a∂kS

= d

dλ
[lnµ(x)] lb + gbklaµ(x)∇k(µ−1(x)la)

= d

dλ
[lnµ(x)] lb + 1

2∂
bl2 − l2∂b[lnµ(x)] (3.81)

Now, we suppose that the vector la is null on S, i.e. l2 = 0 on S. Hence, the last term
in the above expression is trivially zero. In addition, since l2 is constant on S, tb∂bl2 = 0
for any vector tb tangential to S. Thus if one chooses tb = lb it follows that ∂bl2 ∝ lb and
la∇al

b ∝ lb. The function µ(x) can be chosen such that l · ∇ = 0. Thus, let ξa a Killing
vector normal to S and la a vector normal to S such that l · ∇ = 0. Then, on S

ξa = fla (3.82)
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for some function f , and thus it follows that

ξa∇aξ
b = κ ξb (3.83)

where κ = ξ · ∂ ln |f | is called the surface gravity. We can provide a formula for κ in
terms of quantity related to the metric of the horizon. Since ξa is normal to H, we can
invoke the Frobenius’ theorem which implies that

ξ[a∇bξc] = 0 (3.84)

where [. . . ] indicates total antisymmetry in the indexes a, b, c. For a Killing vector ξa,
∇aξb = ∇[aξb] (symmetric part of ∇aξb vanishes). In this case (3.84) becomes

ξc∇aξb + (ξa∇bξc − ξb∇aξc) = 0 (3.85)

Multiplying by ∇aξb we get

ξc(∇aξb)(∇aξb) = −2(∇aξb)ξa(∇bξc) (3.86)

and using (3.83)

ξc(∇aξb)(∇aξb) = −2κξb(∇bξc)
= −2κ2ξc (3.87)

Hence
κ2 = 1

2(∇aξb)(∇aξb) (3.88)

It is important to note that κ is defined only by the Killing’s field which is given by the
metric, independently of how this metric has been generated. Let us come back to the
charge. The relation (3.83) holds on the horizon. However, if we compute it explicitly
we get

ξa∇aξ
b = ξaξkΓbak = Γb00 = 1

2g
br ∂g00

∂r
(3.89)

and since g00 = −f(r)
ξa∇aξ

b = −1
2f∂rfδ

b
r (3.90)

showing that ξa∇aξ
b is in the direction of r. On the horizon, we know that it must

have the direction of t because of (3.83). This is ensured since f(∂/∂r)→ (∂/∂t) when
R→ rH . On a larger horizon instead we can write

ξa∇aξ
b = κf

(
∂

∂r

)b
(3.91)
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Using this, (3.80) can be written as

Q = − κ

8πG

∫
r=R

dS f

∥∥∥∥∥
(
∂

∂r

)∥∥∥∥∥ (3.92)

Now in the limit R→ rH we get

QH = lim
R→rH

(
− κ

8πG

∫
r=R

dS f

∥∥∥∥∥
(
∂

∂r

)∥∥∥∥∥
)

= − κ

8πG

∫
r=rH

dS = −
(
κ

2π

)
AH
4G (3.93)

where in the second equality we have used the fact that the norm of (∂/∂r)a is f−1.
In the last equality, AH represents the area of the whole horizon. The most important
result which has to be stressed here is that we have not invoked the equations of motion
in deriving neither the horizon charge for the more general action (1.27) nor for the
horizon charge in GR, i.e. both of these are off-shell conserved charges. This fact has the
immediate consequence that the surface gravity κ contains no dynamical information,
but on the contrary it is a pure cinematic quantity that comes up as a result of the choice
of the background metric.



Chapter 4

Horizon entropy

A remarkable connection between thermodynamics and gravity arises in black hole
physics, namely, black holes carry an intrinsic entropy. This result relies on the fun-
damental property that a black hole is a region of spacetime which is inaccessible to
observation, and an essential role is played by the event horizon, the boundary between
the regions observable and unobservable from infinity. Consider a box carrying some
thermal systems, one may expect that its internal state will be taken out of equilib-
rium. According to the Second Law of thermodynamics, the subsequent evolution would
then be characterized by a continued increase of the entropy, as the system returns to
equilibrium. If the box were to fall into a black hole, it would move out of the region
of spacetime in which measurements can be observed from infinity, and there would no
longer be any evidence of the entropy carried by the box. The entropy in the observable
spacetime would thus appear to have decreased, yielding an apparent violation of the
Second Law. To restore the validity of the Second Law, one can assign an extra entropy
to the black hole or to the horizon.
Similar reasoning led Bekenstein to make the bold conjecture, within GR, black holes
carry an intrinsic entropy given by the surface area of the horizon measured in Planck
units multiplied by a dimensionless number of order one [2]. This conjecture was also sug-
gested by Christodoulou’s works about the mechanical transformations involving black
holes area and the subsequent Hawking’s area theorem, which had shown that, like en-
tropy, the horizon area can never decrease in classical GR (see [3] and [6]).
The next crucial insight came from Hawking while investigating quantum fields in a
black hole spacetime. He found that external observers detect the emission of thermal
radiation from a black hole with a temperature proportional to its surface gravity κ

T = κ

2π (4.1)

What Hawking found is that if one faces the problem of describing a collapsing system
in GR from the point of view of QFT, for example in terms of a scalar field, it happens

38
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that when matter collapses to form a black hole, observers at large distances will receive
thermal radiation of particles from the black hole at late times, with a thermal spectrum
at the temperature (4.1), (see [8] and [7]). Due to the emission of particles a balancing
relation of the kind dM = dE should hold and since we are speaking of a thermal
radiation one should have dM = TdSBH , in accordance to the energy conservation
principle. It seems natural to assume that the source of this energy radiated to infinity
is the mass of the collapsing structure. In GR, given the temperature of a spherically
symmetric black hole T (E) = (8πGM)−1 as a function of the energy E = M , we can
integrate the expression dSBH = dE/T (E) to define an entropy S(E)BH for the black
hole

SBH =
∫ M

0
dE(8πGE) = 4πGM2 = AH

4G (4.2)

where AH is the area of the r = rH = 2GM , t = const surface. This is the Bekenstein-
Hawking entropy as appears in [2]. Hence, in order to get the notion of horizon entropy
in the Bekenstein-Hawking approach, it is crucial to have a black body radiation flux
from the black hole. Trying to generalize this same approach to general theories of grav-
ity, means to be able to manage QFT in D-dimensional, with D > 4, curved spacetimes
of general background metric. This can result in a difficult or, depending on the theory
under consideration, in a hopeless task. We should look at another way of introducing
the notion of entropy of horizons, potentially free from the difficulty above. The stress
on this point is precisely the main motivation of the thesis.
First of all, we notice that the association of a temperature to a horizon is conceptually
distinct from the calculation of any radiation flux from it. We know that in Rindler space-
time, a temperature is assigned to the horizon (the accelerating observers feel themselves
immersed in a thermal bath) but no flux of radiation from the horizon is present. Any
horizon which is locally approximated by a Rindler spacetime is naturally endowed with
a notion of (Rindler horizon) temperature of the form (4.1). For any assigned metric
with a horizon, the association (4.1) intended in this way is well-defined and is unrelated
to the gravitational theory. In fact the surface gravity depends only upon quantities de-
fined via the metric as clearly appears looking at (3.83) or (3.88). The association (4.1)
results well defined even in flat spacetime in Rindler coordinates, i.e. even in conditions
with no curvature at all. More details and examples about this interesting issue can be
found in [16].
Thus, given a spacetime with a horizon of a given background metric, what we immedi-
ately have is a temperature associated to the horizon, whatever the gravitational theory
is, i.e. whatever the theory which has the considered background metric as a solution of
the equations of motion is.
We are now interested in joining this notion of temperature to the notion of Noether
charge of the horizon as introduced in the previous chapter for general theories, to try
to construct a sensible notion of entropy for the horizon. If we manage to do that, what
we obtain is an expression SNoether for the horizon entropy that is valid for any general
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diffeomorphisms invariant theory of gravity, tackling this way the difficulty mentioned
above with SBH .

4.1 Horizon entropy
Let us summarize what we have obtained so far:

• For any general theory of gravity described by the action (1.2), for which the
Lagrangian is a scalar under general diffeomorphisms, it is possible to extract a
current (3.14), Ja = 2Eakξk + Lgξ

a + δξv
a which satisfies ∇aJ

a = 0 off-shell.

• Associated to Ja there is a charge Q whose expression is given by (3.5). This
charge, as well as Ja, is off-shell conserved, in the sense explained in chapter 3.

• In GR, the charge associated to the Killing vector ξa representing the time transla-
tion invariance of the metric generated by a collapsed spherically symmetric mass
distribution, i.e. the Schwarzschild’s metric, is given by (3.93)

QH = −
(
κ

2π

)
AH
4G (4.3)

when evaluated on the event horizon represented by a spacial 2-sphere of radius
R = rs = 2M , which ξa is normal to.

Hence, looking at (4.2), it seems natural to write

SNoether ≡ −
(2π
κ

)
QH (4.4)

as it gives SNoether = SBH . Rewriting equation (4.2) as

SBH = (8πGM)M2 =
(2π
κ

)
M

2 (4.5)

we see that QH in (4.3) plays the role of −(M/2) in GR. Indeed, we recognize in the
formula (3.70) for the charge, with Jab given by (3.50), minus half of the mass in the
Komar expression for the latter [19, p. 289], [9]. This relation connecting the charge and
the mass contained inside the horizon is crucial to recover the first law of thermodynamics
written in terms of (4.4). In fact, in GR (4.5) holds and differentiating it we get

TdSBH = dM (4.6)

Thus, the relation QH = −M/2 allows us to write

TdSNoether = dM (4.7)
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which reproduces (4.6) in GR. We have now to understand the general role of QH better.
Is the relation (4.4) an artifact of GR as a particular case? Or can it be considered
instead a general result? The crucial point is to verify if we can write in all generality a
relation −2dQH = dM across any (hyper)surface. This would imply TdSNoether = dM for
any horizon, that is the first law of thermodynamics [1] as applied to horizons, indicating
that the position (4.4) is a sensible definition of horizon entropy for general theories. In
fact, from the first law we know that dSNoether/dM = 1/T , and thus it is independent of
the theory taken into account. This implies that, even if both SNoether and M do depend
on the theory under consideration, their functional relationship must be independent of
it, and will be identical to that found in GR. Hence, in any theory of gravity, we should
have TSNoether = M/2 and thus QH = −M/2, from which −2dQH = dM . We will now
prove this relation considering general theories of gravity.

4.2 The physical meaning of the charge
We will now see that (4.4) is really the entropy associated to horizon in a general

diffeomorphism invariant gravitational theory. In order to do that, we will consider any
(D − 1)-dimensional spacial hypersurface whose normal na is orthogonal to the Killing
vector field ξa = (∂/∂t)a. We want now to evaluate the infinitesimal amount of matter
dM that crosses the horizon and compare it to dQH . The former is

dM = −
√
−g T abξbnadAdr (4.8)

where na = (0, 1, 0, 0, . . . ) is the normal to the hypersurface lying into the r-plane. In
(4.8) ξa is the Killing vector (∂/∂t)a. The normal is taken in such a way that naξa = 0.
Now, if we use the equations of motion Eab = 8πC T ab we get

dM = − 1
16πC

√
−g 2EabξbnadAdr (4.9)

From the expression for the current (2.6) we know that 2Eabξb = Ja−2Lgξa− δξva, with
the boundary term δξv

a given by (1.63). In chapter 2 we have shown that the boundary
term vanishes whenever it is computed in correspondence of a Killing vector and this is
true in any general theory of gravity. Thus 2Eabξb = Ja − 2Lgξa and since naξa = 0 ,
(4.9) becomes

dM = − 1
16πC

√
−g JanadAdr = − 1

16πC
√
−g (∇bJ

ab)nadAdr (4.10)

where in the second equality we have used Ja = ∇bJ
ab. The above expression can be

rewritten as
dM = − 1

16πC
√
−g [∇b(Jabna)− Jab∇bna]dAdr (4.11)
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Now, ∇bna = ∂bna − Γkbank and hence ∇[bna] = ∂[bna], since the terms involving the
connections cancel out by symmetry. But na ≡ ∂a since we are working in a coordinate
basis. Thus, ∇[bna] = 0 ⇒ ∇bna = ∇anb and the second term in the square bracket of
(4.11) vanishes because of the antisymmetry of Jab. Hence we are left with

dM = − 1
16πC

√
−g∇b(Jabna)dAdr (4.12)

which, using (2.34) applied to the vector Jabna, becomes

dM = − 1
16πC ∂b(

√
−g Jabna)dAdr (4.13)

By means of Gauss’ theorem in the radial direction, we can write

dM = −(16πC)−1√−g (Jab|rf
− Jab|ri

)nbnadA = −(16πC)−1√−g∆JabnanbdA
= −(16πC)−1√−g∆JabdD−2σab = −2[(32πC)−1√−g∆JabdD−2σab] (4.14)

and recalling the charge written in terms of Jab

QH = (32πC)−1
∫
dD−2σab

√
−g Jab (4.15)

we are lead to
dM = −2dQH (4.16)

Indeed, equation (4.16), in combination with (4.4), is equivalent to TdSNoether = dM
locally [12] and (4.4) really can be taken as the notion of horizon entropy in any general
diffeomorphism invariant theory of gravity.

4.3 Remarks
To summarize the main results of this chapter:

• The locally off-shell conserved current Ja leads to a charge, which is proportional
to a quarter of the area of the horizon in GR. This charge is off-shell conserved.

• The charge is shown to be −M/2 and the quantity SNoether = QH/T is the physical
horizon entropy when the equations of motion are implemented.

• The local equation of state TdSNoether = dM is obtained thanks to the equations
of motion.
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These observations have again an instructive parallelism with the electromagnetism. In
section 2.3.3 we have seen that the locally off-shell conserved current corresponding to
the invariance of the Maxwell Lagrangian under the gauge transformation δθAa = ∂aθ is

Ja = ∂k(F kaθ) (4.17)

The associated conserved charge is

Q =
∫
V
d3xJ0 =

∫
V
d3x∂k(F k0θ) = −

∫
V
d3x∇ · (Eθ) (4.18)

If we impose ∂kF ak = Ja, that is if we impose equations of motion in which Ja, as given
by (4.17), is the source, we must have

J0 = ∂kF
k0θ + F k0∂kθ = ∂kF

0k (4.19)

This implies ∂kθ = 0 and θ = −1. Thus the charge reads

Q =
∫
V
d3x∇ · E =

∫
V
d3xρ(x) = q (4.20)

that is nothing but the electric charge contained inside the region of space with volume
V. Thus, when one implements the equations of motion (on-shell conserved current) the
charge acquires a precise physical meaning. This is exactly what happens also in the
case of gravitational theories. Finally, we stress that

• The horizon temperature, T = κ/2π, does not depend on the gravitational theory,
instead, in general, the horizon entropy does.

• The horizon entropy depends on the curvature of the horizon, that in general
changes from one point to another over the surfaces. This does not happen in GR,
where the horizon entropy is always AH/4G, independently of the choice of the
horizon patch.



Conclusions

In this thesis we have discussed some important features that we would like to summa-
rize here. In any diffeomorphism invariant theory of gravity certain relations involving
the dynamical variables (i.e. quantities describing the gravitational field) exist, that
are not linked to the particular form of the Lagrangian and consequently the equations
of motion, rather they are identities coming from peculiar geometrical aspects of the
Lagrangian. Namely, we have discussed the generalized Bianchi identity (1.9) and the
off-shell conservation of the current (2.6). Given an action functional written as (1.2)
and its variation, which, as we have proved in the thesis, can be always cast in the
form given by (1.3) for any general theory of gravity, Bianchi identity is derived using
the fact that we are considering gravitational theories for which L′(x′) = L(x) under
general infinitesimal diffeomorphisms. Strictly connected to the Bianchi identity is the
existence of the current (2.6) that is defined locally on the spacetime and that is off-shell
conserved thanks to the form that takes the local transformation of the metric under
general infinitesimal diffeomorphisms. Again, the way the metric transforms locally is
independent of the gravitational theory. Thus, for any diffeomorphism invariant general
theory of gravity it is possible to define such a current. Its explicit form, instead, is
determined by the form of the Lagrangian, and hence by the gravitational theory. This
same argument applies to the associated charge. Any diffeomorphism invariant general
theory of gravity has a conserved charge whose form can be explicitly established once
the Lagrangian has been specified. In this thesis we have computed the charge associated
to a spherically symmetric horizon in classical general relativity. What emerges is that
this charge is proportional to a quarter of the area of the horizon. Using the notion of
horizon temperature, which is well founded once the metric is defined, one can estab-
lish a connection between the charge of the horizon and the horizon entropy. We have
shown that this connection can be generalized to any differomorphism invariant theory
of gravity. In fact, using the equations of motion, one can see that −2dQH = dM and
consequently TdSNoether = dM . Thus, the key result of the thesis is that the entropy
given by (4.4) is really the horizon entropy in any diffeomorphism invariant theory of
gravity.
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