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CHAPTER 2 
 
The Parallel Pipeline Digital VLSI 0.7 µm High 
Rate Fuzzy Processor 
 
2.1. Introduction 
 

So far, the commercial fuzzy chips which may be found on the market at very 
low prices are mostly designed and oriented to very general purpose customers for 
application fields such as control systems [3], [4]. The most commonly used fuzzy 
processors have been implemented in the past years in washing machine controls, auto 
focus imaging, speed and brake control for electric engines and so on. The main reasons 
that may justify these applications rely on the fuzzy logic intrinsic vagueness, on the 
robust output response and on the easy implementation at very low cost. In fact, where 
control systems do not require many input variables, very fast responses, and where the 
input-output mathematical relationship is not strictly defined, fuzzy logic applies and fit 
very well [5]. Thus, fuzzy processors are generally smaller in size and, consequently, 
more efficient than traditional processors.  

On the other hand, there are several fields in which fuzzy processors are not 
directly oriented to. For example where high computation performances are needed, 
neither traditional nor fuzzy processors can be implemented since the output result of a 
generic or a fuzzy algorithm may not be met within a very short time. In other words, 
for some dedicated application fields, traditional processors require a well-defined 
input-output algorithm that could not be easily defined while commercial fuzzy 
processors may not be sufficiently fast. For this reason, our research group has been 
dealing with high speed fuzzy processors in the latest years, for HEPE applications [6], 
[7], [8]. Within this application fields in fact, the electronic devices used for detecting, 
recognizing and storing physics events such as particle trajectories have absolutely to be 
as fast as possible, have to be designed with a high noise immunity, low power 
consumption and high performances in terms of reliability, robustness and flexibility. 
This is why our research group has investigated the possibility of designing a high 
speed Fuzzy Processor for HEPE applications. This goal has been met both by applying 
parallel-pipeline architecture and by implementing no-time consumption rule 
identification. For this reason we have particularly designed an Active_Rule_Selector 
for selecting just a subset of the fuzzy rules, here after called active fuzzy rules, and the 
architecture has been divided both with parallel and pipeline stages (see Figure 2.1.). 
This goal was pretty hard at the beginning but, step by step, it turned to more feasible 
solutions. We received the chip back from the foundry last year and, so far, it works 
properly. 
 
2.2. Fuzzy Inference Scheme 
 

Fuzzy inference is the process of formulating the mapping from a given input set 
to an output using fuzzy logic. The basic elements of fuzzy logic are linguistic 
variables, fuzzy sets, and fuzzy rules. The linguistic variable’s values are words, 
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specifically adjectives like “small”, “little”, “medium”, “high” and so on. A fuzzy set is 
a collection of couples of elements. It generalizes the concept of classical set, allowing 
its elements to have a partial membership. The degree to which the generic element x 
belongs to the fuzzy set A (expressed by the linguistic statement x is A) is characterized 
by a membership function (MF), fA(x). In other words, a fuzzy set A is defined within a 
universe of discourse U as follows: 
 
A = {(x,  fA(x)), fA(x):Å[0,1]} 
 
U is the whole input range allowed for a given fuzzy linguistic variable. 
All fuzzy sets related to a given variable make up the term set, the set of labels within 
the linguistic variable described or, more properly, granulated. 

 
 

Figure 2.1. The Fuzzy Processor Architecture 
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Fuzzy rules form the basis of fuzzy reasoning. They describe relationships 
among, imprecise, qualitative, linguistic expressions of the system’s input and output. 
Generally, these rules are natural language representations of human or expert 
knowledge and provide an easily understood knowledge representation scheme. A 
typical conditional fuzzy rule assumes a form such as 
 
IF Speed is low AND Race is Dry THEN Braking is Soft 
 
Speed is low AND Race is Dry is the rule’s premise, while Braking is Soft is the 
consequent. The premise predicate may not be completely true or false, and its degree of 
truth ranges from 0 to 1 (as explained later). We compute this value by applying the 
membership functions of the fuzzy sets labeled Low and Dry to the actual value of the 
input variables Speed and Race. (We will explain this fuzzification process in 
subsequent sessions). After that, fuzzification is applied to the conclusion; the way in 
which this happens depends on the inference process. As explained later, we used the 
Sugeno order zero defuzzification method [9]. 

A Sugeno order zero system uses a weighted average of data points. These 
points are output membership functions’ constant values (singletons), as if they were 
pre-defuzzified fuzzy sets. The fuzzy sets representing the outputs of each fuzzy rule are 
weighted by the rule premise degree of truth. Our fuzzy processor computes the output 
by adding all the contributions ∑(θi*Zi) just prior to the final step – the division of 
∑(θi*Zi) by ∑(Zi) – to give a weighted average result. In this way each fuzzy rule 
contributes to the final result as long as its θi*Zi is non–null, meaning its θi is non-null, 
since generally the output membership functions are non-null. 
 
2.3. Fuzzy Processor Main Features 
 

Firstly the processing rate is independent from the fuzzy system. In fact, since in 
this solution the fuzzy system is always composed of all the possible combinations of 
the input fuzzy sets, the number of fuzzy rules loaded into the Rule_Memory is fixed 
and depends on the number of input variables (see below). Of course the Fuzzy 
Processor has been provided with a software tool for generating all the fuzzy rules 
starting from just a few of them. In other words, if one has just a few rule fuzzy system, 
the software tool may expand the system to an equivalent one which contains all the 
possible fuzzy rules in a format to be ready for the Fuzzy Processor.  

To select the rules an Active_Rule_Selector identifies the fuzzy active rules 
related to each input data set, which are going to be processed, with a no-time 
consuming operation. These fuzzy active rules are just the fuzzy rules among all the 
possible ones that give a non null contribution to the output result. Nevertheless this 
point is explained in detail in section 2.6. The chip architecture has been divided into 
several pipeline stages where each of the 12 pipeline stages takes 20 ns for a clock 
signal of 50 MHz that is the frequency the chip has been supposed to work.  
 
2.4. Block Subdivision 
 

The main features of the Fuzzy Processor are below summarized: 
• up to four 7 bit inputs, one 7 bit output;  
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• up to 7 trapezoidal membership functions (MFs) for each of the input variable fuzzy 
sets; 

• up to 2401 fuzzy rules for 4 input variables (in general the number of fuzzy rules is 
given by 7 fuzzy sets raised to the number of input variables); 

• overlapping of the input  fuzzy sets at most two at a time; 
• 128 crisp MFs named Zi for the output variable Y; 
• 4 bits both for the antecedent and the premise degree of matching (truth), called 

respectively α and θ values. This is explained in details in section 4.1.2; 
• Sugeno order zero [9] defuzzification method; 
• T-norm conjunction implemented by a minimum (here after called MIN) or product 

(here after called PROD) operator to obtain the θ value here after called premise 
degree of truth; 

• 50 Mega Fuzzy Inference per Second for a clock frequency of 50 MHz. 
On the other hand the chip architecture, for readability purposes, can be mainly divided 
into two blocks as shown in Figure 2.1.:  
• the Premise_Block ;  
• the Sugeno_Order_Zero_Defuzzifier_Block. 
 
2.4.1 Fuzzification Process 
 

The fuzzification process consists on associating a fuzzy set to a crisp value. In 
the case of a fuzzy system applied to a physical problem, at any time of observation the 
input variables have a unique numerical value. In this Fuzzy Processor the numerical 
values are singleton crisp ones. This process applies for the four input variables; the 
intersection of the crisp input variable values and the fuzzy sets corresponding to the 
linguistic terms of the premise give the four input degrees of matching here after called 
α. Actually we prefer calling these values degrees of truth even if it is well known that 

 

 
 

Figure 2.2. Involved Fuzzy Sets 
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the value of physical variable is intrinsically true. These α indicate how much each 
input variable belongs to a given fuzzy set, with a scale factor, which represents a grade 
of membership from 0 to 1.  

The Premise_Block generate the trapezoidal MF shape and compute the α values 
by means of four parallel circuits called 
Trapezoidal_Shape_Membership_Function_Generators. Then the 
MIN_or_PROD_Operator carries out the θ value. Nevertheless, before extracting this 
value, an α_Selector circuit selects the right α among which the θ value is to be 
considered. This is done by rejecting the α values, or better, by putting them to 1111 so 
that they do not affect the θ value. This applies when the corresponding input variables 
are not present into the premise of the fuzzy rule. In fact any fuzzy rule may involve just 
a subset of the 4 input variables; see section 4.1.2. Then the θ value goes directly to the 
Sugeno_Order_Zero_Defuzzifier_Block that is described in section 5. To carry out this 
entire premise block 10 pipeline stages are necessary. 
 
2.4.1.1 Fuzzification Process: Active Interval Selector 
 

The four input variables Input_0, Input_1, Input_2 and Input_3 are coded as 7-
bit numbers and enter at the same time into the Fuzzy Processor. We use 7-bit numbers 
instead of a byte because it is enough for the precision required in HEPE applications. 
At this time a circuit named Active_Interval_Selector (see Figure 2.1.) selects, for each 
input variable, the involved trapezoidal fuzzy sets that have been previously defined by 
means of four parameter each. In more details, under the hypothesis that for each input 
variable the fuzzy sets overlap each other just two at a time, we have a situation like that 
one illustrated in Figure 2.2. where we suppose to have seven fuzzy sets for each of the 
four input variables. In the Figure 2.2.  is shown that only the fuzzy rules where Input_0 
is related to Very_Low and Low fuzzy sets and Input_1 is related to Low and 
Very_Medium fuzzy sets give a non null contribution to the final result: this is the 
definition of active fuzzy rule. Otherwise the degree of truth of the input variable is zero. 
Therefore, the problem turns to process only the fuzzy rules that involve these fuzzy 
sets. All the rest of the rules would not give any contribution so that their computation is 
not worthwhile. From this point on the problem has been faced by designing a circuit 
able to find out the involved fuzzy sets and, consequently, the involved fuzzy rules. The 
operation of extracting the desired intervals can be easily done by means of successive 
comparisons between each input variable value and the starting end ending points of the 
trapezoidal shape membership functions. The four parameters that identify each fuzzy 
set are the starting and ending points of the oblique lines and their slopes. These 
parameter-points are hold into flip-flop buffers that may be loaded during the loading 
phase of the Fuzzy Processor. Furthermore, once the involved fuzzy sets have been 
identified, the architecture is ready to carry out the input variable degrees of truth.  
All the previously described job is made by four parallel 
Trapezoidal_Shape_Membership_Function_Generator. 
 
2.4.1.2. Fuzzification Process: Active Rule Selector 
 

In Figure 2.1. the output of the Active_Interval_Selector circuit, that is a part of 
the Active_Rule_Selector, consists of a couple of 3-bit codes, one for each variable, that 
define the involved fuzzy sets explained in Figure 2.2. These 3-bit codes identify the 
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two adjoining fuzzy sets involved by any given input variable. After that these 3-bit 
codes are used to generate both the Rule_Memory_Addresses and the 
MF_Memory_Addresses which store respectively the fuzzy rules and the four 
parameters needed for generating the trapezoidal shape membership functions. 
Particularly the Address_Generator performs all the possible combinations of the 
generated 3-bit codes and generates the addresses needed for the fuzzy active rules. In 
more detail, since the Active_Interval_Selector identify all the possible involved fuzzy 
sets at once, the Address_Generator can create, clock period by clock period, all the 
possible addresses relative to the fuzzy active rules. This is why we say that this is a no-
time consumption operation.  

Besides that, since only 7 fuzzy sets are allowed for each variable and the 
overlapping of any adjoining fuzzy sets is up to 2, the total number of possible rules is 
74=2401, but the number of the fuzzy active rules, which can give a non-null 
contribution, is much smaller. In fact the fuzzy active rules are only 24=16. In this way 
using the Active_Rule_Selector to select just the fuzzy active rules the number of rules 
to be processed is strongly reduced and, consequently, is reduced the processing time.  

Once the addresses have been carried out the Rule_Memory is read and the 
minimum or product operation is done by selecting the four α values related to the 
active fuzzy rule under process. Thus, the rule memory output, that contains a 
Rule_Premise_Code as shown in Figure 2.1., selects the right degrees of truth. In fact, a 
given rule can anyway involve or not all the input variables. The Rule_Memory is 
dimensioned to contain all the possible 74 combinations of the input variables and fuzzy 
sets. In this way the fuzzy rules are loaded in the Rule_Memory starting, for example, 
from the one that involves all the lowest FSs for the input variables up to the one that 
involves all the highest corresponding FSs. So that for a given address (coming from the 
Address_Generator) it is known in advance which fuzzy rule is considered. Thus the 
Rule_Memory can be organized as 2401 words of 11 bits; each word of this memory 
contains both Zi that is a 7-bit code representing the Rule_Consequent_Code (zero order 
Sugeno crisp value) and the Rule_Premise_Code that is a 4-bit code for selecting which 
variables are present and, consequently, are to be taken, and which ones are to be 
rejected. For example when the rule premise code is 1111 all the input variables are 
present, when 1000 only Input_3 is present, when 0000 neither are present and so on.  It 
should be noted that this 4-bit code has anything to do with the previously mentioned 3-
bit one. In fact, the previous 3-bit code is generated by the Active_Rule_Selector since it 
identify the involved fuzzy sets among seven ones. 

The output of the Address_Generator is also used as addresses for the 
4_Parameter_Memory_Banks memories: in these memories 4 parameters are stored for 
defining each of the 7 MFs of the 4 input variables. 

The following step is to calculate the premise degree of truth θ by performing 
the minimum or product operations on α. First the four α values have to be selected by 
the α_Selector depending on the value assumed by the Rule_Premise_Code and then 
the MIN_or_PROD_Operator performs the minimum or product operations on demand. 
If for example one variable is not present the corresponding α value has to be changed 
to 1111 in order to avoid affecting minimum or product operations; this is exactly what 
the α_Selector does.  

It is to be noted here that 1111 does not affect the minimum operation since it is 
the highest 4-bit value and does not also affect the product operation since a 
normalization process has been implemented so that each 4-bit value multiplied by 1111 
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returns itself; in fact 1111 represents the highest degree of truth. So the 
MIN_or_PROD_Operator block receives as input the corrected α and is able to extract 
the final premise degree of truth θ among them. Then a fast 7x4 multiplier, 
implemented using the Wallace algorithm [10], performs the multiplication between θi 
and Zi. Two parallel adders carry out the additions between θi and the products θi*Zi 
and a final divider performs the division between the 15-bit ∑(θi*Zi) and the 8-bit ∑θi 
giving in output the desired value Y. The previous additions are respectively represented 
by 15 and 8 bits since θi is a 4-bit word that, once added  up to 16 times give a 8 bit 
addition (denominator of formula 2.2.), while θi*Zi is a 4-bit word multiplied by a 7-bit 
word that is 11-bit word; once again added 16 times gives a 15-bit addition (numerator 
of formula 2.2.). 
  
2.4.1.3. Fuzzification Process: Trapezoidal Shape Membership Function Generator 
 

The proposed solution reduces dramatically the layout area in comparison to the 
look-up table solutions, by a factor that depends on the size of the look-up table and, of 
course on the definition in terms of number of bit [11], [12]. The circuit approximates a 
generic trapezoidal shape function by two straight lines and three strictly fixed zones for 
high and low levels. More precisely, in digital electronics the straight lines are digitized 
into 15 steps for 4-bit values. Of course, to define a trapezoidal MF, four parameters are 
anyway required as previously mentioned. Here, as parameters, we have used the two 
starting points of the Rising and the Falling Straight Lines and two coefficients related 
to the two desired slopes. To give a generic example on how the trapezoidal shape is 
generated suppose to have a 7-bit fuzzy variable, and a 4-bit degree of membership α 
(16 values). As shown in Figure 2.3., it is easy to understand that the two Low Zones 
and the High Zone can be generated by implementing digital comparators. For each 
zone the related comparators check whether the input value is included or not; this 
means that the degree of membership has to be carried out by choosing it between low 
and high logic level or, in other words, the degree of membership α is put either to 0 or 
15. The rest of the MF, corresponding to the straight lines, may be carried out in another 
manner.  
Let us now consider the Falling Straight Line: the circuit must generate a straight line 
from the Falling Edge to the beginning of the Low Zone.  
This straight line must fall down linearly by giving a digital output result from 15 to 0. 
In short terms, the architecture related to this job executes equation 1 without 
performing any division computation that, as well known, is a big time consuming 
operation. In the following equations we give some more details about this fast solution. 
In particular, as shown in Figure 2.3., ∆X_Rise and ∆X_Fall are the intervals under 
which respectively the rising and the falling straight lines are defined. For example let 
∆X_rise(fall) be lower than 128 (taking into account that the universe of discourse of X 
is 128 [0,127]). Let us define in the below equations some parameters related to the 
input variables, such as Rise, Fall, A and B. The parameters Rise and Fall are allowed to 
vary wherever into the universe of discourse while A and B can assume integer values 
always belonging to the interval [0,127]. 
 
Rise = X - Rising_Edge ; Fall = X - Falling_Edge ; A=128/∆X_rise ;
 B=128/∆X_fall 
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where Rise, Fall,  A and B belong to [0,127]. 
Using the previous terms the straight-line equation becomes: 
 
α = XOR[(∆Y/∆X_fall)*Fall;1111];  8*α = XOR[ 8*(∆Y/∆X_fall)*Fall;1111]; 
8*α = XOR[ (128/∆X_fall)*Fall;1111]; 8*α = XOR[A*Fall ;1111]; 
α = XOR[(A*Fall)/8;1111];                                (2.1) 
  
Here ∆Y is put to 16 and is directly the degree of membership α. Nevertheless, the right 
∆Y should be 15 but, since 15/∆X_fall is a non-integer number and must be rounded 
anyway, the approximation is really reasonable. The same reasoning can be extended to 
the number 127 that is replaced with 128. 

So far, we have not been dealing with the hardware implementation of formula 
2.1. Nevertheless, this operation just needs a multiplication between the operands A and 
Fall. The operand A stands for an 8-bit slope parameter while the Rise one is the 
shifted-input variable. The division by 8 does not take effect at all since it is a division 
by a power of 2 (truncation operation). Thus, the XOR operation with the code 1111 
just makes the complement to 1 that transposes a rising straight line into a falling one 
with the opposite slope.  

Finally, the rising and falling straight-line generation solutions are very similar 
since just the output αs are different. Obviously, the α related to the rising straight line 
are not complement to by means of XOR operation. This feature allows generating the 
two straight lines by sharing most of the applied hardware reducing again the global 
layout silicon area. For example, for a 7-bit fuzzy variable, 4-bit degree of membership 
α and 1 bit of precision, we have obtained a standard-cell layout area of about 2 mm2 
and it works properly within 20 ns with a pipeline structure.  

 
2.4.2. Rule Memory 
 

 

 
 

Figure 2.3. Trapezodal Shape Membership Function 
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The Rule_Memory stores all the fuzzy rules for describing any given problem. 
As just mentioned this memory is composed of 2401 7-bit words for taking into account 
the largest case in which 4 input variables are used. In the other cases where the Fuzzy 
Processor is used for 2 or 3 input variables just a subset of this memory cells will be 
loaded. In these cases only the first 72=49 or 73=343 will be used. 
A description of how the fuzzy rules are stored into the Rule_Memory follows below. 
 
2.4.2.1. Rule Memory: Data Organization 
  

As well known, the fuzzy reasoning is made of fuzzy rules that involve several 
input and one-output variables. For example, one of the typical way to code the fuzzy 
reasoning is storing into the Rule_Memory the fuzzy set code of the input and output 

variables involved by each rule. Let us give an example by means of a general fuzzy 
rule like 
 

if  (Input_0 is Very_Low) and (Input_1 is Medium) and .... then (Output is High) 
 
This fuzzy rule is a generic one while the Fuzzy Processor here presented deals only 
with fuzzy active rules to reduce the processing time. As previously mentioned fuzzy 
active rules mean the fuzzy rules that give a non null contribution to the output result. 
For example, let us have N input variables, K fuzzy sets for each input variable, only t-
norm operator for the rules and at most an overlap of 2 (at most only two different 
consecutive fuzzy sets can overlap each other for any given input variable value). With 
these conditions we would have KN possible fuzzy rules that, especially for large K and 
N numbers, are too many to deal with. On the other hand, the active fuzzy rules, under 
the constraint of a fuzzy sets overlap of 2, are just 2N. This is the main point usually 
adopted to find a way to reduce the number of processed fuzzy rules by selecting  the 
active ones. The basic idea of this solution is to dimension the Rule_Memory by means 
of the number of all possible KN combinations of input variables and fuzzy sets. This 
reasonably applies for KN smaller than few thousands that means for example 74, 133, 
etc. In addition the fuzzy rules are to be loaded into the Rule_Memory in a sorted way 
starting, for example, from the one that involves all the lowest fuzzy sets Very_Low for 
all the input variables up to the one that involves all the highest corresponding fuzzy 
sets Very_High. So for example, the first fuzzy rule corresponds to the input fuzzy sets 
Very_Low, Very_Low, Very_Low, Very_Low, the second fuzzy rule corresponds to the 
input fuzzy sets Very_Low, Very_Low, Very_Low, Low and so on. Then for any given 
address it is identified in advance, apart from the consequent, which fuzzy rule is 
considered.  

In order to match the high-speed constraints previously described, the fuzzy sets 
related to the input and output variables are to be identified within the fuzzy rules before 
the global inference process takes place. To match this purpose a specific code has been 
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developed and  stored into the rule memory. In other words the Rule_Premise_Code 
allows identifying if the rule is present in the fuzzy system and which input variables 
and output fuzzy sets are involved. If for example in Figure 2.1. the 
Rule_Premise_Code was 0110 the related active fuzzy rule in the fuzzy system would 
involve only Input_1 and Input_2 while would not consider the Input_0 and Input_3 by 
means of the (1111) 4-bit codes described in sections 4.1. and 4.1.1. Moreover the 
Rule_Consequent_Code identifies the crisp value Zi of the output fuzzy set. If we had 
0000, as Rule_Premise_Code, it would mean that the fuzzy system do not need its 
contribution and, if involved by the input variable values, the contribution must be zero. 

 
2.5. Sugeno Order Zero Defuzzifier Block: Numerator/Denominator Adder 
 

The Sugeno_Order_Zero_Defuzzifier_Block performs the two additions ΣZiθi 
and Σθi by two parallel pipeline stages and,  once all the rules have been processed, the 
data stored into the two adders of the defuzzifier go to the divider circuit to compute the 
crisp output  value by means of the Sugeno order zero formula 2.2. that here follows: 
In the formula 2.2. #Act stands for the number of fuzzy active rules that is 2# Input Variables. 
In case of 4 input variables #Act is 16, in case of 3 is 8 and in case of 2 is 4.  

The above division operation is computed in parallel to the pipeline stages while 
the system begins a new data set processing. The division of the two above sums is 
performed in a combinatorial circuit in less than 90 ns. Eventually, each rule is 
processed in one clock period and, for a 50 MHz clock signal and 4 input variables (16 
active rules as explained below) we obtain that the total processing time is given by 
adding altogether the:  
• number of active rules times the clock period: 16 x 20 ns = 320 ns; 
• the delay due to the number of pipeline stages which is 12 x 20  ns = 240 ns; 
• the delay due to the time required by the division process, which is less than 90 ns. 
 
2.6. Pipeline stages 
 

The overall architecture of the Fuzzy Processor is pipeline as shown in Figure 
2.4., where it is displayed the data flow for every pipeline stage. Besides that, two 
different pipeline architectures work in parallel since, for many pipeline stages, more 
than one computation has to be carried out. This, for example, applies for the two final 
adders Numerator_Adder and Denominator_Adder, it also applies for the memories 
read cycles since, while the 4_Parameter_Memory_Banks are read, the Rule_Memory is 
just addressed and so on. Thus the whole pipeline structure has to be considered as a 
double branch parallel pipeline one. It is to be noted that the 20 pipeline stages shown in 
the Figure 2.4. are composed of 12 actual pipeline stages into which the fuzzy 
architecture has been divided and 8 pipeline stages due to the number of fuzzy active 
rules. In fact, in the Figure 2.4. is shown the case of just three input variables where 
only 23=8 fuzzy active rules are present. Nevertheless this time is considered as a 
pipeline time; it also should be noted that if four input variables would be used, the 
fuzzy active rules would rise to 16 and, consequently 16 pipeline stages would be 
required. 

From the moment a new data set enters the processor 12 pipeline stages are 
required for the fuzzification and inference processes. In the first clock period the input 
data have to be synchronized with the internal clock signal. Then the two addresses for 
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the 4_Parameter_Memory_Banks and the Rule_Memory are computed. This is done by 
selecting the involved fuzzy sets for each input variable. This processes take place into 
the Active_Rule_Selector. First, during the second pipeline stage, the 
MF_Memory_Address is produced and a period later, during the third one, the four MF 
parameters are available for the Trapezoidal_Shape_Membership_Function_Generator. 
This circuit takes three pipeline stages to compute the input variable degree of truth, 
from the fourth to the sixth pipeline stages. This process is computed while the 
Rule_Memory is also addressed and read. Once the three α are ready they have to be 
selected depending on the Rule_Premise_Code and this is done in the seventh pipeline 
stage. Then the four α (three selected plus one put to the highest value ”1111” for not 
affecting the minimum or product operation) are processed two at a time for giving the 
premise degree of truth θ. The first θ is produced in the tenth pipeline stage since during 

 
 

Figure 2.4. Pipeline Stages 
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the eight and nine pipeline stages the minimum and product operation are computed and 
in the ninth one of the two is selected. The first θ*Z is valid two period later during the 
twelfth  pipeline stage. Thus, after 12 periods both sums ∑θ and ∑(θ*Z) are carried out, 
so that the final process of division, which requires about 90 ns, can start. What is really 
remarkable in this pipeline structure is that a new input data set can enter the system 
after only eight clock periods since at this stage all the eight memory addresses have 
already been generated and the first logic blocks can accept new data.  Figure 2.4. 
shows a data flow shaded representation of a first input data set and a normal 
representation of a new data set that immediately follows.  
Altogether in the Figure 2.4. the delays give rise to a global processing time of 490 ns if 
a 50 MHz clock rate is used. Nevertheless it has to be noted that this time does not have 
anything to do with the input data set rate which depends on the number of fuzzy active 
rules: in the previous case would have been 160 ns. 
 
2.7. Layout Representations 
 

Below is shown a view of the whole layout. Particularly, during the layout 
design, firstly the main fuzzy Rule_Memory has been divided into five smaller blocks 
for reducing both the access time (read cycle) and the power consumption. In fact, being 
able to predict which part of the Rule_Memory will be read, it is possible to enable just 
the correspondent memory block instead of enabling all the Rule_Memory. This 
solution reduces the memories power consumption to one fifth of their global value. In 
other words, enabling just one Rule_Memory block at a time and leaving the others in a 
stand-by mode, the power consumption is greatly reduced if compared to the global 
memory consumption that would be required for one bigger memory block. In addition, 
generally the smaller is the memory block, the lower is the access time. Nevertheless, 
all these considerations give rise to a larger chip area but this can be afforded and 
accepted for high-speed constraints. 

In addition, all the standard cells that have been implemented for the rest of the 
Fuzzy Processor, from the membership function generators to the Active_Rule_Selector, 
from the inference circuits to the defuzzifier, have also been divided into four main 

 
 

Figure 2.5. Layout Representation 
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blocks, according to the logical function they were designed to. In more details, the 
defuzzification circuits have been grouped together in one 
Sugeno_Order_Zero_Defuzzifier_Block; all the circuits related to the memories address 
selection and to the four membership function generators have been put together with 
the circuits dedicated to the input variable interval identification, into the 
Premise_Block (see Figure 2.5.). 

This chip organization allows a pretty simple layout design from several points 
of view. For example the clock net distribution can be faced easily by a tree structure 
routed within the main blocks; the standard cells related to the same circuits are forced 
to stay close to each other; the power and ground nets can be interdigitized for the 
power supply distribution and so on. In other words the clock wire has been routed by 
means of a main vertical 25 µm wide trunk and several 3 µm wide branches among all 
the standard cell lines. The choice of this net routing style has been justified by the fact 

 
 

Figure 2.6.  Microphotograph of the Fuzzy Processor 
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that, in this case, the global net capacitance is mainly due to the logic gates and does not 
depend much on the parasitic effects; otherwise a H clock tree structure would have 
been more appropriated. Finally the microphotograph of the Fuzzy Processor is shown 
in Figure 2.6. 
 
2.8. Input-Output Implemented Features 
 

As already explained above, for HEPE applications the speed in terms of 
computation time is a strong constraint and is absolutely to be met and, for making the 
Fuzzy Chip flexible, it has to be easy-to-use as far as the input-output handshake 
signals. The Fuzzy Processor is to be used with a printed board and synchronized with 
an on-board clock signal. So, it provides itself with all the synchronization phases 
between itself and the external device write and load cycles. The Fuzzy Processor, in 
fact, does not delegate the input-output handshake synchronization signals to external 
devices such as controllers or dedicated processors, but a simple handshake signal 
configuration has been designed.  
In more details an Input_Ready signal, synchronous with the on-board clock signal, is 
used for enabling the external device write cycle (External Input Device in Figure 2.7.). 
In other words the external device can write its data into the Fuzzy Processor, by means 
of an external driven Load_Input signal, just when this Input_Ready signal is activated. 
In addition, the external device must hold the input data set and the Load_Input signal 
valid for at least two on-board clock periods. In this way the Fuzzy Processor can both 
recognize the external device write cycle and synchronize the device data with the on-
board clock signal. Moreover, an output signal named Output_Ready has been 
implemented to enable the external device (External Output Device in Figure 2.7.) for 
loading the output datum of the Fuzzy Processor. Since the Fuzzy Processor may be 
synchronized with a up to 50 MHz (20 ns) clock rate, and since the division process can 
take up to 90 ns, this output handshake signal is to be synchronized five clock periods 
after the division process starts and lasts one clock period. In addition, this output 
handshake signal may be considered both during rising and falling edge since it is low 
when non active while goes high for one on-board clock cycle when is activated. This is 
for a flexible output handshake configuration.  
 

 

 
 
 

Figure 2.7. Fuzzy Processor Implementation 
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2.9. Conclusions 
 

The Fuzzy Processor has met the constraints for which it has been designed in 
terms of speed, flexibility and feasible implementation on a printed board. We are going 
to apply it to physics experiments where high computation speed are required for 
detecting, selecting and recognizing particle trajectories. Nevertheless, due to the 
implemented features for making it configurable in different ways it may be applied as a 
general purpose Fuzzy Processor. In more details the Fuzzy Processor has an 
architecture configurable in different ways in terms of number of input variables, shape 
of input membership functions, minimum or product inference operation. The estimated 
power consumption is about 1300 mW for a 50 MHz clock frequency while the global 
silicon area is 60 mm2 [13]. It has been implemented with a 0.7 µm digital technology. 
Moreover, since the Fuzzy Processor has been mostly designed by means of VHDL 
language apart from the memory blocks, it may be adapted for future, more dedicated 
applications.  
 


