
Design and development of high speed VLSI architectures for high energy physics
CHAPTER 3 – Applications to HEPE of a Fast Rate 2-Input VLSI Fuzzy Processor

Tesi di Dottorato di Alessandro Gabrielli

25

CHAPTER 3

Applications to High Energy Physics
Experiments of a High Rate 2-Input VLSI
Fuzzy Processor

3.1. Introduction

Although fuzzy logic is currently mainly applied to control systems [3], we have
investigated its applications in other fields such as HEPE. In particular we show how a
fuzzy system can improve the performances of the front-end electronics implemented in
HEPE. In this field every event that is, for example, an elementary particle collision,
generates a big amount of data that has to be analyzed in real time in order to save it
only in case of interesting events. For example, beside significant data, much noise may
also be collected and it should be rejected in real time if possible. As far as the
electronic devices used in HEPE, we call trigger the apparatus able to select or reject the
events depending on their importance. Usually there are several trigger levels depending
on the decision time that is the time required by an electronic device for deciding
whether to store or reject the data: it usually depends on the kind of experiment.
For example, for most HEPE, the first trigger level is designed for a decision time
smaller than 100 ns, while some microseconds are required for the second level and few
milliseconds for the third level.
In most of these experiments the job of these trigger levels is pattern recognition one.
This is due to the fact that each datum of a given event belongs to a defined data cluster.
This is why we are involved in an cluster recognition problem. Since in HEPE any
given area may represent or be associated to a specific particle, the problem of particle
detection or particle recognition may be reduced to an area detection task.
So far, to face and solve these pattern recognition problems in HEPE, rigid electronics
hardware devices have been applied while we have been looking for new, more flexible
and reconfigurable architectures. Although interesting investigations have been carried
out in the last years about fuzzy hardware solutions [14], we have finally decided for
HEPE purposes to design a dedicated fuzzy architecture both to meet the high-speed
constraints and to provide more flexibility within experiment requirements. So we have
firstly evaluated the performances of a fuzzy system to detect a given area and then we
have designed a fast digital fuzzy processor able to do this job, within the time required
by the first or second trigger level: in fact these are the levels that require a more
sophisticated electronics. We have designed and realized a first prototype [8] with a 1.0
µm digital technology and, from that, we have improved its performances by
implementing new technologies and new fuzzy architectures [15]. Eventually, the
reason why we have not used commercial general purpose fuzzy processors [16], [17]
relies on the fact that their computation speed is not as high as required in HEPE [5],
[18] since most of them have been designed for controls.
This work deals with the description of how the fuzzy system works for applications to
area recognition. Three simple examples are given: the first is a three rectangular shape
area differentiation while the second and the third are respectively a normal and a

Design and development of high speed VLSI architectures for high energy physics
CHAPTER 3 – Applications to HEPE of a Fast Rate 2-Input VLSI Fuzzy Processor

Tesi di Dottorato di Alessandro Gabrielli

26

rotated convex area detection within a rectangular shape background. As shown in the
figures 3.1., 3.2. and 3.3., the system reads two inputs by means of integer variables
within a given input domain, and calculates the fuzzy system output, that represents
which of the groups the input data pair belongs to.
In the subsection 3.7. is explained the functional principle of the commercial Adaptive
Fuzzy Modeler (AFM) Software (SW) [19] we have used for generating the fuzzy
systems. Since it is a commercial one we do not describe it in details except for what
regards its features and performances. What we emphasize is the application for our
fuzzy processor. In fact it is one of the neural network fuzzy rule generators that may be
applied for problems like ours in physics experiments [6].

3.2. Pattern Recognition

Since the knowledge base needed to solve a given problem is not always
available, it is useful to extrapolate it from input-output patterns related to the problem.
In this case it proves to be very useful to use a neural network able to learn starting from
the I/O patterns. For the automatic generation of fuzzy systems we used the Adaptive
Fuzzy Modeler (AFM) SW, a neural network based software developed by SGS-
Thomson.
We remind that a fuzzy system consists of all the parameters that identify a given fuzzy
algorithm so that, once an input data set is read, the output value is carried out. In
details, the fuzzy systems include the number of input and output variables, the number
and the shape of the membership functions associated to each variable, the fuzzification
and defuzzification methods and the fuzzy rules.
The AFM software asks the user to provide as inputs the number of input and output
variables and the number of membership functions required by any variable. Then the
input-output patterns teach the neural network that returns as output the features of
every membership function required for the input variables.
The total processing time of a fuzzy system usually depends on the number of fuzzy sets
per input variable and consequently on the number of fuzzy rules that make up the
overall knowledge base of the problem. For this reason the processing time would
increase a lot if we used 8 fuzzy sets per input variable instead of 3 ones. In order to
avoid this kind of problem we have designed a fuzzy architecture whose total
processing time in independent of the number of fuzzy sets and rules.
For the learning stage, we have chosen three membership functions for each variable
and 1000 input/output patterns. This stage takes nearly 600 loops to find the best fuzzy
system in order to recognize most of the examples. After generalization, that is the test
phase with new examples, we have proved that the fuzzy system recognizes up to 99%
of the input patterns. So far the AFM software generates a fuzzy system able to
recognize the areas shown in the examples, and, consequently, it is ready to be
implemented into the fuzzy chip. Thus, the same task that is made by software fuzzy
simulators for example on personal computers may be done in hardware in a very short
time (hardware accelerators).
All in all, the examples here presented made just the first stage of our investigation in
pattern recognition problems using fuzzy logic.
This research is still going ahead and we are using areas of different shapes. As far as
area rotations, Figure 3.3. shows a more complex problem by means of a convex shape
rotated anti-clockwise by an angle of 10 degrees. The problem of rotated shapes may

Design and development of high speed VLSI architectures for high energy physics
CHAPTER 3 – Applications to HEPE of a Fast Rate 2-Input VLSI Fuzzy Processor

Tesi di Dottorato di Alessandro Gabrielli

27

not be solved by traditional algorithms based on, for example, digital comparators. In
fact, if the problem is just to recognize areas delimited by horizontal and vertical lines
like in figures 3.1. and 3.2., very simple digital electronics may do this.
On the other hand, if the same shapes occur rotated with respect to how the electronic
has been designed, as shown in Figure 3.3., a rigid device may no longer solve the
problem in such a short time, while a fuzzy system seems to be more flexible and fast
due to the fact that fuzzy logic implies degrees of truth instead of digital true-false
relationships. Moreover each fuzzy rule has a ”local effect” in the sense that is related to
a given subset of the input variable ranges. In this way it is possible to tune the fuzzy
system to take into account of a local pattern modification suggested by new
experimental data. Consequently the rotated shapes that are not so easy to recognize
using traditional electronics, give acceptable errors using fuzzy logic.
For example in Figure 3.2., in case not rotated, the 99% of input patterns are recognized
while, in case of the same figure after being rotated, are recognized just the 95% of the
patterns but we outline that the decision time is the same.

3.2.1. Pattern Recognition: Three Areas Problem

In this case we have three polygonal areas such as A, B and C as shown in
Figure 3.1. In some cases of pattern recognition problems, it is in use to associate to
each output pattern a crisp value. In our case it has been used an output integer
identification variable that may assume values that belongs to {-2;0;2}.
The job is to detect if a given pair of (x,y) input variables belong to the set A or to the
set B or to the set C. Let us define the three sets A, B and C:

A={(x,y):(x [5,7]Ay [5,14])9(x]7,12]Ay [12,14])}

B={(x,y):(x]7,9]Ay [5,12])A(x]9,12]Ay [9,12]}

C={(x,y):(x]9,12]Ay [5,9[)}

with 5<=x<=12 and 5<=y<=14.

In other words we seek for a function f such that:

f :{A 9%9&} Å {-2;0;2}

So if the result is 2 this means that the input pair (x,y) belongs to A while when is 0 it
belongs to B and belongs to C if the result is -2.

3.2.2. Pattern Recognition: Normal Convex Areas

In this example we have a polygonal area A included within a rectangular
background B such as shown in Figure 3.2. The job is again to detect if a given pair of
(x,y) input variables belongs to the set A or to the set B but in this case, as previously
mentioned, the figure may occur rotated of a given angle.
Nevertheless, let us define the two sets A and B:

Design and development of high speed VLSI architectures for high energy physics
CHAPTER 3 – Applications to HEPE of a Fast Rate 2-Input VLSI Fuzzy Processor

Tesi di Dottorato di Alessandro Gabrielli

28

A={(x,y):(x [5,7]A y [5,14])9�x [10,12]A y [5,14])9�x [8,10[Ay [8,10])9�
�x]7,10[Ay [5,6])9�x]7,10[Ay [12,14])}

B={(x,y):(x]7,8[Ay]6,12[)9(x]8,10[Ay]6,8[)9(x]8,10[Ay]10,12[)}

with 5<=x<=12 and 5<=y<=14.

Figure 3.1. Three Rectangular Shapes Figure 3.2. Normal Convex Area

Figure 3.3. Rotated Convex Area

Design and development of high speed VLSI architectures for high energy physics
CHAPTER 3 – Applications to HEPE of a Fast Rate 2-Input VLSI Fuzzy Processor

Tesi di Dottorato di Alessandro Gabrielli

29

The function research in this case is similar to the case of Figure 3.1. except for the fact
that, having two areas A and B to differentiate, there would be just two output crisp
values:

f :{A9%} Å {-2;2}

3.2.3. Pattern Recognition: Rotated Convex Areas

In this example of Figure 3.3. we again have a polygonal area A included within
a rectangular background B but now the figure is rotated 10 degrees anti-clockwise. The
job is again to detect if a given pair of (x,y) input variables belongs to the set A or to the
set B.

3.3. Two Input Fuzzy Processor

In order to be able to design and realize a fuzzy processor useful for HEPE and
according to the AFM features, our first design step was to force the AFM SW into
using a given fuzzy system configuration that could be quite easily implemented on
hardware later. So far we decided to design a chip that allows to use up to 8 fuzzy sets
for each input variable and an overlap between adjacent fuzzy sets not greater than 2.
8 fuzzy sets have been chosen even if 3 ones have proven to be sufficient in the
examples given of pattern recognition: this has been done to give more flexibility to the
system, so that it can be used even in the case of more complex areas recognition.
Besides limitation on the overlapping(max 2) allows us to design an architecture whose
decision time does not change with the number of fuzzy sets, as described later in the
section.
With these features the number of input fuzzy set combinations is 82=64 as shown in
Figure 3.4. For this reason all the possible fuzzy rules are 64 even if the number of
active rules, which can give a non-null contribution, is reduced to 22=4.
An other key point concerns the rule inference process. We have decided to use fuzzy
rules that imply only the “AND” conjunction implemented with a minimum operation
(see section 3.1 for details). Finally, we have faced the problem of choosing the
inference and defuzzification method. As will be described in section 3.5, we have
implemented the Sugeno order 0 methods [20], [21]. Of course we have chosen this
method since it gives good results in area recognition problems and allows both an easy
hardware implementation and a fast execution time.
All of these features have been the main specifications from which the design of the
fuzzy processor took place. The main features of the fuzzy processor in the final version
are summarized in Table 3.1. Let us now start describing in details the fuzzy processor
blocks.

3.3.1. Two Input Fuzzy Processor: Main Blocks

Follows a list of the main logic blocks that compose the fuzzy processor and a brief
description that refers to the flow chart in Figure 3.5. For each bus the number of bits is
specified.

Design and development of high speed VLSI architectures for high energy physics
CHAPTER 3 – Applications to HEPE of a Fast Rate 2-Input VLSI Fuzzy Processor

Tesi di Dottorato di Alessandro Gabrielli

30

• The active-interval-selector compares the input variables to the points stored into
the membership-functions-interval-memory, and provides an interval 3-bit code to
the address-generator.

• The membership-function-interval-memory (look-up-table) stores the starting and
ending points of the fuzzy sets.

• The address-generator generates the addresses for the rule-memory starting from
the X and Y interval codes generated by the active-interval-selector.

• The rule-memory contains all the rules of the fuzzy system.
• The X and Y membership-function-memory blocks (look-up-tables) store the input

membership function shapes and together compose the fuzzifier.
• The minimum-operator implements the fuzzy and conjunction and extracts the

minimum value, here in called Θ, between the two αs, that represents the rule
premise degree of truth.

• The inference & defuzzifier is the circuit that computes the output result: it is
composed of two adders, a multiplier and a divider. Θ*Z is carried out rule by rule
and added to the previous partial sums ∑Θ*Z while Θ is added to the previous ∑Θ.
Thus the division process ∑Θ*Z/∑Θ takes place.

3.3.2. Two Input Fuzzy Processor: The Rule Memory

The rule-memory is dimensioned as to contain all the possible rules that is 64
words. The rules are loaded in the rule-memory starting from the one that involves all
the lowest fuzzy sets for the two input variables up to the one that involves all the
highest corresponding fuzzy sets. In this way the address word identifies the premise
fuzzy sets involved by each fuzzy rule. Thus the rule-memory can be organized as
words of 9 bits, where a word contains only the Consequent Rule Code Z, a 7-bit word
representing the output membership function crisp value according to Sugeno order 0
inference method, and the Rule Premise Code, a 2-bit word that tells which variables are
present for every rule.

Figure 3.4. Fuzzy Set Distribution

Design and development of high speed VLSI architectures for high energy physics
CHAPTER 3 – Applications to HEPE of a Fast Rate 2-Input VLSI Fuzzy Processor

Tesi di Dottorato di Alessandro Gabrielli

31

For example when the rule premise code is 11 both X and Y are present, when 10 only
X is present and when 00 neither X nor Y are present.

TABLE 3.1. Fuzzy Processor Main Features

Inputs 2-digital 7-bit variables
Outputs 1-digital 7-bit variable

Degrees of Truth 4-bit
Fuzzy Set Overlapping Adjacent fuzzy sets may overlap 2

at a time
Input Fuzzy Sets 8 any shape for X and Y

Output Fuzzy Sets 128 crisp values
Fuzzy Rules 64 9-bit words

Conjunction ‘and’ Operator Minimum
Inference & Defuzzification Method Sugeno order 0

Clock Frequency up to 50 MHz
Input Rate 80 ns

I/O delay time 270 ns
technology ES2 .7 µm CMOS digital

Current on VDD 100 mA at 50 MHz
Power Consumption 500 mW at 50 MHz

Package DIL 48 Plastic
Silicon Area 14 mm2

3.3.3. Two Input Fuzzy Processor: Rule Memory Address Generation

The active-interval-selector is a circuit that compares the input variable values to
the interval points stored into the membership-functions-interval-memory (see Figure
3.4.). Then it sends the two 3-bits interval codes to the address-generator. This circuit,
once got these pair of 3-bit codes, generates the four addresses that derive from the
permutations of the four involved fuzzy sets that select only the active rules. For
example, in Figure 3.4. the four involved fuzzy sets are the fuzzy set 1 and 2 for X
variable and fuzzy sets 0 and 1 for Y variable. Consequently the four permutation codes
would be: 001-000, 001-001, 010-000, 010-001. These addresses fire exactly those
fuzzy rules among the 64 ones that include the involved fuzzy sets. These four fuzzy
rules would be some like the following:

if (X is ’001’) and (Y is ’000’) then (Z is Zh);
if (X is ’001’) and (Y is ’001’) then (Z is Zi);
if (X is ’010’) and (Y is ’000’) then (Z is Zj);
if (X is ’010’) and (Y is ’001’) then (Z is Zk).

The indexes h, i, j, k, stand for an integer number from 0 to 63. In fact, since there are
64 fuzzy rules, each one may have its own Z that corresponds to a singleton output
fuzzy set. This is according to the Sugeno order 0 defuzzification method. In this way

Design and development of high speed VLSI architectures for high energy physics
CHAPTER 3 – Applications to HEPE of a Fast Rate 2-Input VLSI Fuzzy Processor

Tesi di Dottorato di Alessandro Gabrielli

32

the use of the active-interval-selector reduces the number of rules to be processed by a
factor 16 from 64 to 4 without time consuming.

3.3.4. Two Input Fuzzy Processor: Fuzzification Process

The input variables X and Y select the active fuzzy sets. Thus, by addressing
directly the X and Y membership-functions-memory blocks the four possible input
degrees of truth αs are generated. In these two memory blocks 128 (4+4)-bit words are
stored since the input domain is coded with a 7-bit resolution. The pairs of four bits
represent the two overlapping membership function values that are the input degrees of
truth related to the value of each input variable. We refer to the input degrees of truth as
α0 and α1 for X and α2 and α3 for Y (see Figure 3.4.). It is to be emphasized that just
two at a time are selected depending on the fuzzy rule. For example α0 and α2, α1 and
α2 but obviously not α0 and α1 that are both related to X.

3.3.5. Two Input Fuzzy Processor: Premise degree of truth computation

Once the input degrees of truth αs are read from the membership-function-
memory and selected by means of the Rule Premise Code, the rule premise degree of
truth is computed. This is done by means of a minimum-operator block that gives as
output the value of Θ.

3.3.6. Two Input Fuzzy Processor: Inference & Defuzzification Processes

When the rule inference process has been done, the multiplication Θ*Z takes
place. This is the contribution of a given fuzzy rule to the final result named Output.
This process is composed of two additions and a division operation. The two additions,
which concern a numerator and denominator of the weighted sum final result shown in
formula 1, are carried out by adding the Θ*Z and Θ values respectively to the previous
partial sums ∑Θ*Z and ∑Θ. Finally the division process ∑Θ*Z/∑Θ can start. It should
be noted that only the last division process is off pipeline while all the previous ones

Figure 3.5. Flow Chart

Design and development of high speed VLSI architectures for high energy physics
CHAPTER 3 – Applications to HEPE of a Fast Rate 2-Input VLSI Fuzzy Processor

Tesi di Dottorato di Alessandro Gabrielli

33

compose the pipeline stages (see Figure 3.6.). In this way, it does not affect the rate but
just delay time from input to output.
In the below formula 3.1., the two upper indexes 4 stand for the number of fuzzy active
rules.

3.4. Pipeline Subdivision

The overall architecture of the fuzzy processor is pipelined as shown in Figure 3.6.,
where the data flow for every pipeline stage is displayed. It is to be noted that the 9
pipeline stages shown in the figure are composed of 5 actual pipeline stages into which
the fuzzy architecture has been divided and 4 pipeline stages due to the number of
active rules. Nevertheless, since always 4 active rules are processed, this time can be
considered as a pipeline time. So, from the moment a new data set enters the processor
9 pipeline stages are required for the fuzzification and inference processes to be
executed.
In the first clock period two processes are performed in parallel: the four αs are read
from the Membership-Function-Memory and the Active Interval Selector computes the
X and Y interval codes. In the following period the address-generator produces the first
address for the rule-memory and a period later the first rule premise codes are available
for the minimum-operator circuit. The first Θ is produced in the 4th pipeline stage,
whereas the first Θ*Z is valid one period later. After 9 periods both sums ∑Θ and

∑
∑

=
Act

Act

i

iZi

Output
#

1

#

1

*

ϑ

ϑ

 (3.1.)

Figure 3.6. Pipeline Stages

Design and development of high speed VLSI architectures for high energy physics
CHAPTER 3 – Applications to HEPE of a Fast Rate 2-Input VLSI Fuzzy Processor

Tesi di Dottorato di Alessandro Gabrielli

34

∑(Θ*Z) are carried out, so that the final process of division, which requires at most 70
ns, can start. What is really remarkable in this pipelined structure is that a new input
data set can enter the system after only four clock periods, since at this stage all the four
addresses for the rule-memory have already been generated. For what concerns the
whole delay estimated starting from the input data set loading cycle to the
corresponding output data generation, four contributions have to be considered. In fact,
first the startup time due to the input synchronization, which requires one clock period
of 20 ns, has to be considered; then it has to be added the time due to the actual number
of pipeline stages that is 5 as above reported that is 5 x 20 ns = 100 ns; thus the time due
to the number of active fuzzy rules which is 4 x 20 ns = 80 ns; eventually it has to be
considered the division time that takes nearly 70 ns.
All together these delays give rise to a global processing time of 270 ns if a 50 MHz
clock signal is used, but the processing time is reduced to 80 ns.

3.5. Layout Design

Figure 3.7. shows a microphotograph of the fuzzy processor that has already
been realized. The silicon area is nearly 14 square mm in 0.7 µm ES2 digital
technology. As can be seen, the memory blocks on the left side of Figure 3.7. do not
require a large silicon area if compared to the whole layout. This justifies the look-up-
table choice previously mentioned for storing the membership function shapes. In

Figure 3.7. The Fuzzy Chip Microphotograph

Design and development of high speed VLSI architectures for high energy physics
CHAPTER 3 – Applications to HEPE of a Fast Rate 2-Input VLSI Fuzzy Processor

Tesi di Dottorato di Alessandro Gabrielli

35

addition, thanks to the small size layout, both the net parasitic capacitance and,
consequently, the timing delays are quite small. This simplifies the layout design in
terms of power supply and clock net dimensioning [7].
As far as the layout design, the processor components have been firstly divided into the
logic blocks taking in consideration the logic function each component was designed to.
Moreover the input/output pad distribution has been chosen as a trade-off solution in
order to minimize the net connectivity. Thus, the placement and routing phases have
been done after having put some constraints in terms of integrated circuit design
parameters. In particular some global nets such as power supply nets VDD and GND,
clock and reset nets, have been routed manually. In fact, since these nets connect
hundreds of cells, it can be very dangerous let them be routed automatically: the result
could be very far from what one would expect. This does not apply for short nets that
connect not so many components. An other important point during routing phase
concerns the net priorities. This parameter determines the wire overlapping. In fact,
when two nets cross each other, the routing software has to decide which one has to be
left on one single metal layer and which one must be routed on another metal layer by
means of a layer contact. This point, especially for global nets such those previously
mentioned, may affect significantly the connectivity and the functionality of the chip
since different layers have different performances in terms of resistance, maximum
current and parasitic parameters.
The clock net has been designed with a tree shaped routing style. The clock net routing
has be done by means of a large net trunk from the clock pad and many small net
branches from the trunk to the standard cell clock pins. This allows the clock edges to
be distributed quite evenly among the cell rows and to minimize the skews. It is also
important to leave a sufficient margin between the clock pad fan-out and the global net
fan-in. Moreover, the standard cells that are not connected to the clock signal, or better,
the logic blocks that have not to be synchronized, may stay off the clock net. In this
way, the synchronous part of the design may be put together and divided into two main
standard cell row blocks.
The power net width must be dimensioned taking into account the clock frequency, the
number of components and their average power consumption, the estimated number of
involved components for each clock cycle and the percentage of them that really
commutes. This is why even if all the logic gates are always connected, the signal
propagation starting from the input pads does not pass always through all of them.
Moreover, where this signal propagation passes may also do not have any commutation
effect.
Of course the power net dimension operation may be done only approximately and, for
this reason, the net width result can be multiplied by 2 or 3 for being more confident.

3.6. Conclusions

One of the main intents of this work is to explain the possibility to apply fuzzy
logic and, in particular, fuzzy processors, to other application fields beside the control
and pattern recognition fields. For example here is reported the investigation that has
been made in order to apply fuzzy processors to High Energy Physics Experiments.
This can be done by means of a fast parallel-pipeline fuzzy architecture that, in the case
of a small number of input variables, gives rise to a small size fuzzy chip. We had 10
ASIC prototypes fabricated by ES2 foundries at the end of 1997 [22]: then they have

Design and development of high speed VLSI architectures for high energy physics
CHAPTER 3 – Applications to HEPE of a Fast Rate 2-Input VLSI Fuzzy Processor

Tesi di Dottorato di Alessandro Gabrielli

36

been exhaustively tested using the ASIC Tester LV500 by Tektronics, belonging to the
Physics Department of Bologna University. It is able to run the chip up to a frequency
of 50 MHz. All the chip prototypes proved to be working correctly, also thanks to the
goodness of VHDL based ASIC design flow and of the SW simulators used. We feel
confident on applying it for physics experiments due to its fast rate. We remind that the
processor is able to compute a two input variable fuzzy system in just 80 ns for a clock
signal of 50 MHz. It is also one of our future aims to design fuzzy processors that will
be clocked at higher frequencies to further improve the input rate.
We finally outline that the problem of pattern recognition has been solved by using
fuzzy logic obtaining a flexible and fast decision device. We are confident that this
technique can be applied in several fields other than HEPE.

3.7. Fuzzy System Generation

The AFM neural network is composed of four levels as shown in Figure 3.8. The
first level is made of as many neurons as the number of input variables. It is connected
to the second level that is composed of as many neurons as the number of fuzzy sets of
the all input variables. The connection may be done by 2-component vectors that, since
the membership function shapes are triangular, represent the two slopes of the two
triangle sides. These vectors are also to be related to input thresholds that represent the
centers or, in other words, the positions, of the input membership functions. In addition,
these thresholds bind together the second and the third neuron level. These first two
neuron levels are to be taught in a first learning phase. On the other hand, in the third
level of the network each neuron represent a fuzzy rule and it has binary connections to
the previous second level. The connection is 0 if the related input variable is not present

Figure 3.8. The AFM Neural Network

Design and development of high speed VLSI architectures for high energy physics
CHAPTER 3 – Applications to HEPE of a Fast Rate 2-Input VLSI Fuzzy Processor

Tesi di Dottorato di Alessandro Gabrielli

37

in the fuzzy rule and is 1 if is present. This level is also to be taught but in a separate
stage from that used for the first two levels.
The fourth level has as many neurons as the number of output variables so that, in our
case, it is just one. From each fuzzy rule comes to this final neuron a connection whose
weight is the output threshold specified within each fuzzy rule (what we call herein and
below Z).
For the complete sketch of the AFM neural network see Figure 3.8.

