

Paolo Giacomelli (INFN Bologna) Higgs Quo Vadis Sunday, March 10th, 2013

Special thanks to S. Bolognesi and P. Govoni

Outline

- Theoretical introduction
- 6-fermion final states
- VBF experimental signatures
- Prospects
- Summary

Why is the Higgs needed

The Higgs mechanism is a cornerstone of the SM and provides:

- 1) an explanation of the W, Z masses (EWSB)
- 2) a description of the fermion masses

- 1) is the most fundamental argument that makes the SM "work"
- 2) is another way of formulating the same question: why do fermions have those specific masses? why do fermions have those specific Higgs couplings?

(SM could work well also without 2)

VV scattering: unitarity violation

VV \rightarrow **VV**

Without the Higgs, $W^+_LW^-_L \rightarrow W^+_LW^-_L$ violates unitarity at $\sqrt{s} \ge 1.2 \text{ TeV}$

W, Z masses (→ longitudinal degrees of freedom) arise from the Higgs mechanism:

S channel

QGC

$$A(W_L^+W_L^- \to W_L^+W_L^-) \approx \frac{1}{v^2} \left[-s - t + \left[\frac{s^2}{s - m_H^2} + \frac{t^2}{t - m_H^2} \right] \right]$$

VV scattering is the smoking gun for EWSB!

Taken from "Prospects for VV scattering: latest news" by S. Bolognesi (JHU) talk at Implications of LHC results for TeV-Scale physics (March 2012)

VV scattering as a probe for EWSB

VV Scattering spectrum, $\sigma(VV \rightarrow VV)$ vs M(VV)

is the fundamental probe to test the nature of the Higgs boson or to find an alternative EWSB mechanism

Search for possible resonances in VBF spectrum

Adaptation from **"Boson Boson scattering analysis"** by A.Ballestrero (INFN Torino) talk at First LHC to Terascale Workshop (Sept 2011):

Higgs production and decay

VV Scattering at LHC - Paolo Giacomelli

Higgs Quo Vadis

Higgs-like boson at ~125 GeV

- We have discovered a Higgs-like boson with a mass of ~125 GeV.
- •JPC, consistent with SM Higgs boson, couplings will need more data.

In case of doubts...ask the italian press

Corriere della Sera (6/3/13)

Cern, la conferma è arrivata quella particella è il bosone di Higgs

Video Le lacrime dello scienzato il giorno dell'annuncio

Il responso dal primo identikit presentato oggi dai fisici del Cern a La Thuile: quella scoperta nel 2012 è effettivamente la stessa prevista nel 1964 dal fisico inglese. Adesso c'è la certezza di ELENA DUSI

SPECIALE VIDEO

CONDIVIDI

Repubblica (6/3/13)

La conferma del Cern: "La particella scoperta è il bosone di Higgs"

La notizia arriva da La Thulle, In Valle d'Aosta

II bosone di Higgs spiegato ai profani: "Come un fiocco di neve"

La particella individuata lo scorso luglio dagli scienziati del Cern di Ginevra è effettivamente il mitico 'bosone di Higgs', l'inafferrabile 'particella di Dio'. L'identikit completo sarà presentato a luglio

From italian newspaper language to "scientific" language:

At 100% CL CERN has found the SM Higgs boson...

(I don't think CERN ever stated this...)

so, for the italian press we can safely remove "like" from Higgs-like...

(this is for Eilam)

Vector Boson Fusion (VBF)

Generic diagram for vector boson fusion (VBF) process

Signature: forward-backward "spectator" jets with very high energy

- Once the vector bosons decay, we have a six-fermion final state
- The full set of qq→6 fermions diagrams has to be considered
- In order to investigate EWSB, one has to isolate VV processes from all other six-fermion final states
 - Apply tight kinematic cuts

Typical kin. cuts

$$p_{T,j} > 20 \text{ GeV} |\eta_j| < 5 p_T^{tag} > 30 \text{ GeV} |\eta_{j1} - \eta_{j2}| > 4.0$$

 $\eta_{j1} \cdot \eta_{j2} < 0 m_{jj} > 600 \text{ GeV}$

VBF experimental signature

Longitudinal plane

(1) (2) Δη (1) (2)

Transverse plane

- tagging jets (1): large p_T , large $\Delta \eta$
- few jets between tagging jets
- final state $\ell\nu\ell\nu$:
 - leptons (2) between tagging jets
 - \triangleright missing $E_{\rm T}(3)$

From **"Study of Vector Boson Scattering including Pile-up with the ATLAS Detector"** by P. Anger (TU Dresden), DPG Frühjahrstagung Karlsruhe 2011

Central rapidity gap

 Central rapidity gap: no hadronic activity between the two tag jets is expected, because of the EWK nature of the VBF

The two tag jets naturally define the region where no activity is expected

$$z_i^* = rac{z_i}{\Delta \eta} = rac{\eta_i - \langle \eta
angle}{\Delta \eta}$$

The Zeppenfeld variable: a translation and scaling of the (pseudo)rapidity to the reference given by the tag jets

Taken from "CMS-ATLAS VV scattering: any hope soon or reappraisal?" by P. Govoni (CERN) at LHC results for TeV-scale physics, CERN, (August 2011):

VBF signature

Signal and background processes

Also all SM triple and

Signal: resonance

Irreducible BG: QCP ducible BG: EWK

Single top (Wt)

W/Z + jets

Top pairs (tt)

VBF theoretical tools

- VV2H [M. Spira]: only t-channel, NLO QCD http://people.web.psi.ch/spira/vv2h/
- VBFNLO [D. Zeppenfeld et al.]: only t-channel, NLO QCD + NLO EW arXiv:1107.4038
- MCFM [J. M. Campbell, R. K. Ellis, C. Williams]: only t-channel, NLO QCD hep-ph/ 0403194
- HAWK [M. Ciccolini, A. Denner, A. Dittmaier, A. Mück]: NLO QCD and NLO EW, s- and t-channel (s-channel can be switched off), CPS reweighting arXiv:0707.0381
- VBF@NNLO [P. Bolzoni, F. Maltoni, S.-O. Moch, M. Zaro] only t-channel, CPS reweighting arXiv:1003.4451
- POWHEG [C. Oleari, P. Nason]: only t-channel, NLO QCD + PS, CPS reweighting arXiv:0911.5299
- aMC@NLO [S. Frixione et al.] t-channel only, s-channel can be included paper to appear
- Sherpa: [F. Krauss et al.] automatically includes s-channel https://sherpa.hepforge.org/trac/wiki
- PHANTOM: [A. Ballestrero, E. Maina et al.] full calculation @ LO for six fermions final state arXiv:0801.3359
- Pythia/Fortran-Herwig: only t-channel

Taken from "LHC Higgs Cross Section WG: VBF Status Report" by P. Govoni (CERN) at the 7th meeting of the LHC cross-section WG (December 2012):

VBF final states

 According to the vector bosons' decays we have a multitude of possible final states. We can group them in

Fully leptonic

•pp \rightarrow qq $\ell\ell\ell\ell$ ($\ell=\mu,e$)

Clean

•pp→qq ℓℓℓν

Can reconstruct m_{VV} (not with 2v)

•pp→qq ℓℓνν

Very low yields...

Semi-leptonic

pp→qq jetjet ℓℓ

Better yields...

pp→qq jetjet ℓv

Detector needs

Excellent lepton ID, energy resolution, hermeticity, jet tagging at high η

The ATLAS detector

- Tracking and muon coverage: $|\eta|$ <2.5
- Calorimeter with presamplers: $|\eta|$ <1.8
- Forward calorimeters: $3.2 < |\eta| < 5.9$

- e/γ energy resolution:
 σ/Ε ≈ 10-15/√Ε ⊕ ~1%
- Central jet energy resolution
 σ/Ε ≈ 60/√Ε ⊕ 3%
- Missing $E_{x,y}$ resolution $\sigma \approx 0.55 \text{ GeV x } \sqrt{(\sum E_T)}$
- Track inverse-p_T resolution
 σ_{1/pT} ≈ 35 TeV⁻¹ x (1 ⊕ 50/p_T)
- Muon system standalone p_T resolution
 - σ/p_T < 10% up to 1 TeV

The CMS detector

VV scattering: interference effects

☐ Big interference effects considered only in Phantom

JHEP 0603 (2006) 093 Accomando, Ballestrero, Bolognesi, Maina, Mariotti

Longitudinal vs Transversal

Contrary to what one expects LL does not dominate at high m_{VV}

Angular analysis can boost LL-TT separation (new!)

Higgs Quo Vadis

VV Scattering at LHC - Paolo Giacomelli

VV scattering

Same issues (as Higgs search and) as expected in VV scattering search

- fully leptonic: much lower stat, much cleaner uncertainty on VV+2j production
- semileptonic: larger yields, huge background
 V+jets control
 high VV mass → boosted V → jet merging
- first look at fully hadronic final state ongoing
 SUSY-like discriminators (eg, Razor)

News from experiments?

→ characterization of tag jets signature

First look at tag jets

Starting to face issues related with tag jets topology and jet vetoing \rightarrow very relevant for VV scattering:

- control of VV background in jet-multiplicity bins
 - → theoretical systematics (no control regions for ZZ, WW at high mass)
- Z prodution in VBF: a candle for jet tagging and jet veto efficiency?
 - → (after feasibility) real data analysis ongoing
 - MC tools to describe FWD jets and gap events → related with description of UE, MPI and QCD at wide angle
 - → many useful measurements can be done NOW to constrain FWD jets modeling
 - → TO BE REVIEWED WITH HIGHER PU

Fwd jets modelling

- ★ Non-perturbative effects:
- energy lost from jets due to hadronisation
- energy added to jets from UE
- ★ FWD jet spectrum ($|\eta|3.2$ -4.7) with low PU events

★ useful also to commission detectors -> especially in view of pileup

CMS, pp \rightarrow jet_{fwd} + X, \sqrt{s} = 7 TeV, L_{int} = 3.14 pb

NP (PYTHIA - HERWIG)

PDF4LHC with $\Delta \alpha_s = \pm 0.002$

Total uncertainty

30

20

10

-10

Theoretical uncertainty (%)

VBF 2e2µ candidate event

VV scattering: fully leptonic

Only background VV+jets, very low xsec

Number of events for 20 fb⁻¹ (fully MC based, no systematics, 14 TeV)

CMS ZZ->4e, 4μ	N signal	N back.	ATLAS ZZ->2I2ν	N signal	N back.
500 GeV	2.2	1.9	500 GeV	6.4	3.0
>1 TeV	0.1	0.2	ATLAS ZW->IIIv	N signal	N back.
CMS ZW->μμμν	N signal	N back.	500 GeV	8	5
>1 TeV	0.9	0.8	1.1 TeV	1.4	0.4
	I	1			

Latest results:

B~ 6 S~ 10

- reso m₄₁ as expected
- improved reco-id efficiencies

(eg ele ID: TDR time 85-90% -> today 95%)

ZZ resonance

pp→ZZ+2j→4ℓ+2j channel

model	$300 \mathrm{fb^{-1}}$	$3000{\rm fb^{-1}}$
$m_{\text{resonance}} = 500 \text{ GeV}, g = 1.0$	2.4σ	7.5σ
$m_{\text{resonance}} = 1 \text{ TeV}, g = 1.75$	1.7σ	5.50
$m_{\text{resonance}} = 1 \text{ TeV}, g = 2.5$	3.0σ	9.4σ

Sensitivity to anomalous ZZ resonances in Vector boson scattering

VV scattering: semileptonic

Semileptonic is most promising: reasonable signal yield

Number of events for 20 fb⁻¹ (fully MC based, no systematics, 14 TeV)

	ATLAS	N sign.	N back.	CMS	N sign.	N back.		CMS	N sign.	N back.
	500 GeV	6.2	16	500 GeV	337	20759		500 GeV	62	3415
WV -> Injj	800 GeV	13	17				ZV -> Iljj	300 001		0.20
	1.1 TeV	4.8	9.2	>1 TeV	45	3281		>1 TeV	5	348

For recent inclusive Higgs search:

- more sophisticated analysis developed (btag categories, angular analyses, $m_{jj} = m_Z$ kinematic fit)
- data driven background

Improved JES: m_{jj} reso from 20-25% to 10-15%!

Summary

- VV scattering is an essential process to verify EWSB
- It can shed light on the structure of the Higgs boson
- Challenging both theoretically (interference effects) and experimentally (small yields, wide pseudorapidity coverage, many channels)
- Both ATLAS and CMS have performed studies, but these will need to be re-visited and improved
- Some scenarios can be investigated with L ≥ 100 fb⁻¹ of data at √s=13-14 TeV. Other scenarios (like SILH) will require even more luminosity.
- HL-LHC should be able to provide answers to most benchmark cases.

Backup

EWSB and the W, Z masses

$$L_{gauge} = -\frac{1}{4} W_{\mu\nu}^{i} W^{\mu\nu i} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + \frac{1}{2} m^{2} W_{\mu\nu}^{i} W^{\mu\nu i} + \frac{1}{2} m^{2} B_{\mu\nu} B^{\mu\nu}$$

$$W_{\mu\nu}^{i} = \partial_{\nu} W_{\mu}^{i} - \partial_{\mu} W_{\nu}^{i} + g \varepsilon^{ijk} W_{\mu}^{j} W_{\nu}^{k}$$

$$SU(2)$$

$$B_{\mu\nu} = \partial_{\nu} B_{\mu} - \partial_{\mu} B_{\nu}$$

$$U(1)$$

Gauge invariance

scalar potential (λ >0, μ <0) $V(\Phi) = \mu^2 |\Phi^+\Phi| + \lambda (\Phi^+\Phi)$

complex scalar doublet of SU(2)

$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$$

with minimum (= empty state) at $(\mathbf{v} = empty expectation value)$

$$\langle \Phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}$$

$$\langle \Phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}$$
 or $\langle \Phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} v \\ 0 \end{pmatrix}$ — SU(2)

generic Gauge

$$\Phi = \frac{1}{\sqrt{2}} e^{i\frac{\omega^i \tau^i}{2\nu}} \begin{pmatrix} 0 \\ \nu + h \end{pmatrix}$$

1 physical scalar field $\langle h \rangle = 0$

- 3 Goldstone bosons ω;
- 4 Gauge fields $W^{i}_{\ \ u}B_{u}$

Gauge unitario

$$\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v+h \end{pmatrix}$$

- 1 physical scalar field -> Higgs
- 4 Gauge fields combined into known vector bosons: W,Z with mass, photon massless

$$W_{\mu}^{\pm} = \frac{1}{\sqrt{2}} \left(W_{\mu}^{1} \mp i W_{\mu}^{2} \right) M_{W}^{2} = \frac{1}{4} g^{2} v^{2}$$

$$Z^{\mu} = \frac{-g'B_{\mu} + gW_{\mu}^{3}}{\sqrt{g^{2} + g'^{2}}} \qquad M_{Z}^{2} = \frac{1}{4} \left(g^{2} + g'^{2} \right)^{2}$$

$$A^{\mu} = \frac{-gB_{\mu} + g'W_{\mu}^{3}}{\sqrt{g^{2} + g'^{2}}} \qquad M_{A}^{2} = 0 \qquad U(1)_{EN}$$

01/18/2012 seminar

Higgs Quo Vadis

VBF signature

VV resonances (EVBA studies)

- Model-independent treatment of physics below some scale Λ: electroweak chiral Lagrangian with Padé unitarization
- Tested different possibilities
- Special attention to semi-leptonic processes: qqH → VV → jjX

J.M. Butterworth et al., "WW scattering at LHC", arXiv:hep-ph/0201098v1
The ATLAS Collaboration et al., "Expected Performance of the ATLAS Experiment Detector, Trigger and Physics", CERN-OPEN-2008-02

Channel considered

Sample name	Generator	$\sigma \times Br$, fb
$qqWZ \rightarrow qqjj\ell\ell$, $m = 500 \text{ GeV}$	Рутніа-73	25.2
$qqWZ \rightarrow qq\ell vjj, m = 500 \text{ GeV}$	РҮТНІА-73	83.9
$qqWZ \rightarrow qq\ell\nu\ell\ell$, $m = 500 \text{ GeV}$	РҮТНІА-73	8.0
$qqWZ \rightarrow qqjj\ell\ell$, $m = 800 \text{ GeV}$	PYTHIA-ChL	10.5
$qqWZ \rightarrow qq\ell v jj, m = 800 \text{ GeV}$	PYTHIA-ChL	35.2
$qqWZ \rightarrow qq\ell\nu\ell\ell$, $m = 800 \text{ GeV}$	PYTHIA-ChL	3.4
$qqWZ \rightarrow qqjj\ell\ell$, $m = 1.1 \text{ TeV}$	PYTHIA-ChL	3.7
$qqWZ \rightarrow qq\ell vjj, m = 1.1 \text{ TeV}$	PYTHIA-ChL	12.3
$qqWZ \rightarrow qq\ell\nu\ell\ell$, $m = 1.1 \text{ TeV}$	PYTHIA-ChL	1.18
$qqWW \rightarrow qq\ell vjj, m = 499 \text{ GeV (s)}$	PYTHIA-ChL	66.5
$qqWW \rightarrow qq\ell v jj, m = 821 \text{ GeV (s)}$	PYTHIA-ChL	27.5
$qqWW \rightarrow qq\ell v jj, m = 1134 \text{ GeV (s)}$	PYTHIA-ChL	17.0
$qqWW \rightarrow qq\ell v jj, m = 808 \text{ GeV (v)}$	PYTHIA-ChL	29.8
$qqWW \rightarrow qq\ell v jj, m = 1115 \text{ GeV (v)}$	PYTHIA-ChL	17.9
$qqWW \rightarrow qq\ell v jj$, non-resonant	PYTHIA-ChL	10.0
$qqZZ \rightarrow qqvv\ell\ell$, $m = 500 \text{ GeV}$	PYTHIA-ChL	4.0
$jjWZ \rightarrow jj\ell\nu\ell\ell$, background	MADGRAPH	96
$jjZZ \rightarrow jjvv\ell\ell$, background	MADGRAPH	45.5
	E 5 1 TO	σ (no Br), pb
$W^+ + 4$ jets	MADGRAPH	165 ± 0.1
Z + 4 jets	MADGRAPH	87 ± 0.7
$W^+ + 3$ jets	MADGRAPH	6.2 ± 0.02
Z + 3 jets	MADGRAPH	3.8 ± 0.02
$t\bar{t}$	MC@NLO	833 ± 100

$$\sqrt{s} = 14 \ TeV$$

signals

backgrounds

Z in VBF as standard candle?

☐ VBF Z production as reference: feasibility study at parton-level @ 10 TeV

Z+qq (4 pb):

signal (~5%)

isolated
"a posteriori" with par
cuts

-> 2700 events @ 15 fb-1

-> 45% eff for VBF-specific cuts

d d d e 4 v v v v v d 6

-> 23% tighter cuts against Z+jets QCD (2700 pb)

S/B improved of a factor 100: 600/78k events @ 15 fb-1 (S/sqrt(B) $^{\sim}$ 2)

- Observation feasible but to use as reference need high lumi and to know Z+jets with high precision
- Central jet veto suppress only 10% of Z+jets (~useless!)

hep-ex arXiv:1001.4357

irreducible

backgrounc

Jet veto

 \square 3rd jet not well modeled by PS,

central veto $\Delta\epsilon$ btw Pythia and Herwig ~ 40%

-> POWHEG NLO: remaining uncertainty ~%

- ☐ Check with dijet events + rapidity gap (in low PU) (at large pTjet/pTveto or Δy -> fixed order fails)
 - NP effects<2% (pTveto > $\Lambda_{\rm QCD}$)
 - HEJ all-order resummation for wide-angle emissions of similar pT
 -> fails for pT jet>>pTveto
 - POWHEG+Pythia good agreement with data
 - -> differences btw Herwig and Pythia
- ☐ Similar study in ttbar events! hep-ex arXiv:1203.5015

Fermiophobic like

☐ WHY?

Ex of (light) composite higgs:

- ☐ "State of the art"
 - γγ at low mass,WW at high mass
 - NO dedicated VBF analysis yet for ZZ !!

First LHC to Terascale Workshop (Sept 2011)

LCH at LHC by J.R. Espinoza

Higgs-like resonance in VBF

RE-DO all the analyses in VBF mode (eg, fermiophobic)

- □ Today only WW→InIn. Expectations for next year:
 - lumi > 10 fb-1
 - σ(vbf) ~ 0.1×σ(gg)
 - 0.5 effic. VBF cuts

VBF yields in 2012 ~ 0.5 gg yields of 2011 summer results,

with much less background:

- ZZ→4l will be still limited by statistics
- WW→InIn will improve S/B (signal/10, WW* α_s^2)
- semileptonic final states will have reasonable signal yields + much lower background than inclusive analysis

- eg, ZZ→IIjj: signal yields for m_H 300-500 ~ 15 5 events
 - V+(N+1)jets/V+N jets ~ 0.15 → asking 2 jets reduces background to 2%!
 - S/B may increase of a factor 2 (eff 0.5 × σ 0.1 / 0.02)

VV scattering spectrum

□ In no Higgs case: increasing of xsec at high VV is suppressed by

• PDF
• offshell bosons
• unpolarized bosons

→ small difference between SM and violation of unitarity (no Higgs)

 \rightarrow with proper cut (eg $\Delta\eta$ jets) can be enhanced -> selection of the longitudinal W

Phys. Rev. D83, 112008 (2011)

hep-ex arXiv:1203.0718

Graviton → **ZZ** search

☐ Search for G→ZZ: same features discussed for high mass Higgs

