2D and 3D Thin Pixel Technologies for the Layer0 of the SuperB Silicon Vertex Tracker

F. Giorgi

INFN and University of Bologna

On behalf of the SuperB SVT collaboration
Outline

• The SuperB project
• The Silicon Vertex Tracker (SVT)
• TDR layer0 options
 – Baseline
 – Pixel upgrade
• Investigated Pixel Technologies
• Lab and beam tests results
• New digital readout architecture.
• Conclusions and perspectives
The SuperB project

- Flavour physics promises sensitivity to New Physics ... but **large statistics is needed** (50-100 ab\(^{-1}\))
- An upgrade to the first generation of B-Factories (PEP-II and KEKB) of \(\sim 2\) **orders of magnitude** in \(\mathcal{L}\) is needed to get **50 ab\(^{-1}\)**.
- The **SuperB** factory is an Italian e\(^+\) e\(^-\) accelerator concept that allows to reach \(\mathcal{L}=10^{36} \text{ cm}^{-2} \text{ s}^{-1}\) with **moderate beam current** (2A) using very **small beam size** (~1/100 of present B-Factories beams).
- **2007**: Conceptual Design Report published
- **2010**: Approved by the Italian Government (250 ME allocated for the Infrastructures)
- **2011**: Established site: Roma Tor Vergata
- Management under **Cabibbo Lab** consortium (INFN, Uni Tor Vergata, IIT).

Next steps:
- Spring 2012: Technical Design Report
- Mid 2016: 1\(^{st}\) collisions.
Silicon Vertex Tracker

B → π π decay mode, βγ=0.28, beam pipe X/X₀=0.42%, hit resolution =10 μm

Layer0

Design based on the 5-layer Babar SVT (R>3cm)

BUT:

1) Due to reduced beam **energy asymmetry** (7x4 GeV vs. 9x3.1 GeV) required an **improved vertex resolution (~factor 2)**
 - EXTRA Layer0 very close to IP (@1.5 cm) with **low material budget** (<1% X₀) and **fine granularity** (50 μm pitch)
 - Layer0 area 100 cm²

2) Bkg levels depend steeply on radius
 - Layer0 needs to be **fast and rad hard** (>20x5 MHz/cm², >3x5 MRad/yr)
Silicon Vertex Tracker

• **Baseline**
 – 5 layers of *silicon strip* modules (extended coverage w.r.t BaBar)
 – **Striplets** for layer0 @ R~1.5 cm
 • Fast readout chip, ongoing R&D.

• **Layer0 upgrade** for full luminosity run
 – SVT Mechanics will allow a *quick access/removal* of Layer0
 – Upgrading to thin *pixel sensors*
 • **More robust** against background occupancy
 • Several options investigated:
 – **CMOS MAPS**: Continue R&D on *readout speed* and *rad hardness*.
 – **Hybrid Pixels**: FE chip development *50x50 um pitch* with *fast readout* and
 R&D on reduction of total module *material* below 1% X_0.
 – **Vertical Integration**: can we access this technology on time in a *reliable*
 and *stable* way?
 – R&D continue in 2012 after TDR ⇒ pixel technology decision by 2013
Pixel technologies under study

Deep N-well MAPS,
- **In-pixel** front-end electronics (pre, shap, discr).
- **competitive N-well** issue

3D MAPS
- **Separated digital tier:** dense pixel digital logic and peripheral readout
- **In-pixel** analog FE
- **Less competitive N-well issue**

INMAPS technology
- Deep P-well **preventing charge-stealing** by competitive N-wells.
- High resistivity substrate → more robust against radiation.

Hybrid Pixels 50x50 um pitch
- High resistivity, **fully depleted sensor**
- **Fast readout** (analog FE and digital logic at pixel level)

FUTURE... 3D front-end chip
- Dedicated **digital tier**
- **analog tier:** FE electronics.
- **Fully depleted detector** Bump Bonded / Directly Bonded

APSEL4D chip
- **ST 0.13 um**
- Beam test CERN 2008.
 - 90% efficiency compatible with deep N-well fill factor

APSEL3D
- Tezzaron Chartered
- 32x8 matrix with Digital readout. Ongoing tests

INMAPS 0.18 um
- 32x32 matrix submitted June 2011

SuperPix0 chip
- Beam Test Sept. 2011.
- Preliminary results presented
Tezzaron Chartered 3D MAPS: APSEL5T

- **2D structures** (analog tier only) had been tested, encouraging results
- ENC ~ 45 e-
- Preliminary estimate of MIP signal from test Sr90 ~ 850 e-
- **Beam test** in the **end of Sept.**, ongoing analysis.

- **3D structures** (analog + digital) **just arrived**. Currently under test. We observed some problems that must be understood.

2 other Chartered/Tezzaron submissions are foreseen after the 1st run characterization is complete.

(New Readout Architecture same as INMAPS submission)*

- **MAPS 3D** chip APSELVI (128x96)
- **3D FE** chip for hybrid pixel **Superpix1** (32x128) 50 um pitch
Hybrid chip SuperPix0 lab tests

High thresholds (1/2 MIP) scan: Response to ^{90}Sr
Good bump bonding: few defects over 5 chips (~ 2.10^{-4})

5 detectors tested
- Mean ENC 78 e-
- Fully Sensor SNR : 200
- Thr. Dispersion 520 e- (No thresholds fine adjustments, but foreseen for next chip)

→ Phys. Runs with thresholds at 1/4 MIP due to high thr. dispersion.

Some pixels occupancy VS threshold
SuperPix0 Beam Test

End of Sept. 2011, CERN SPS north area - 120 GeV pions

- Preliminary results (analysis started 3 weeks ago)
- Resolution compatible with pitch (50 um)/√12
- Efficiency 98.5 % at 1/4 MIP and 1/8 MIP

Due to known induction problem, the chip was operated in atypical conditions that could affect the efficiency. Quantification in progress.

Preliminary efficiency vs threshold graph:

1/4 M.I.P.

Setup
- Telescope: 6 layers of double sided silicon strip
- 2 DUTs
- Motorized support

DAQ Boards
- 16 FE channels
- 2x 1.3 Gbps
- Optical links
- 120 kHz peak evt. rate
New Pixel Readout Architecture Features

- **In-pixel** Hit & Time Stamp Latch
- **TS request** to the matrix
- Pixel FastOR activates **IF** latched TS == requested TS
- Cascaded column FastORs
- **Only active-FastOR columns are enabled in sequence.** (i.e. 10 active column FastORs → 10 clk cycles readout)
- **Each column sparsified in 1 clk cycle** (whatever the occupancy)
- **Triggered** and **Data-Push** mode.
- **Implemented** in our last INMAPS submission & ready for next 3D submissions

Specifications

- **130 MHz hit rate.**
- **192x256 matrix**
- **50 MHz read clock**
- **2.5 MHz trigger rate (stressed condition)**
- **200k events** per point

Simulations

DO NOT take into account:
- Sensor Efficiency.
- Analog FE.

Graphs

- **TRIGGERED MODE**
 - Pixel latches as latency buffers
 - **98.2% efficiency**

- **DATA PUSH MODE**
 - **130 MHz hit rate.**
Conclusions and Perspectives

• **SuperB machine approved.**
• **TDR by spring 2012**
• Foreseen SVT layer 0 **upgrade** for full luminosity

Several technology options under study:

– Hybrid Pixel, **low pitch** and **fast readout**, high **threshold dispersion**
 →fine threshold adjust at pixel level.
– Encouraging results from 3D MAPS analog tier APSEL_5T **ENC 48 e-**
– 3D structures just arrived, lab tests ongoing.
– INMAPS process just submitted.

• **Next year To Do list:**
 – Wide matrix 3D MAPS & 3D FE chip
 – INMAPS chip and 3D structures on beam
Thank You

The SuperB SVT Collaboration

C. Avanzinia, G. Batignania, S. Bettarinia, F. Bosia, G. Calderinia, G. Casarosaa, M. Ceccantia, R. Cencia, A. Cervellia, F. Cresciolia, M. Dell'Orsoa, F. Fortia, P. Giannettia, M.A. Giorgia, A. Lusianib, S. Greguccia, P. Mamminia, G. Marchioria, M. Massaa, F. Morsania, N. Neria, E. Paolonia, M. Piendibenea, A. Profetia, G. Rizzoa, L. Sartoria, J. Walsha, E. Yurtseva, M. Manghisonic, V. Rec, G. Traversic, M. Bruschid, R. Di Sipiod, B. Giacobbed, A. Gabriellid, F. Giorgid, G. Pellegrinid, C. Sbarrad, N. Semprinid, R. Spighid, S. Valentinettid, M. Villad, A. Zoccolid, M. Citterioe, V. Liberalie, A. Stabilee, F. Palomboe, L. Gaionif, A. Manazzaf, L. Rattif, V. Spezialif, S. Zuccaf, D. Gambag, G. Giraudog, P. Merewg, G.F. Dalla Bettah, G. Soncinih, G. Fontanah, M. Bombeni, L. Bosisioi, P. Cristaudoi, D. Jugovazi, L. Lancerii, I. Rashevskayai, L. Vitalei, G. Venieri

(a) Universita degli Studi di Pisa and INFN-Pisa, Italy
(b) Scuola Normale Superiore and INFN-Pisa, Italy.
(c) Universita degli Studi di Bergamo and INFN-Pavia, Italy.
(d) Universita degli Studi di Bologna and INFN-Bologna, Italy.
(e) Universita degli Studi di Milano and INFN-Milano, Italy.
(f) Universita degli Studi di Pavia and INFN-Pavia, Italy.
(g) Universita degli Studi di Torino and INFN-Torino, Italy.
(h) Universita degli Studi di Trento and INFN-Padova, Italy.
(i) Universita degli Studi di Trieste and INFN-Trieste, Italy.
Backup – Deep N-well MAPS
Backup Deep P-well INMAPS process

Fig. 2. Illustration of the depletion region width (pink) versus resistivity. From left to right: standard resistivity silicon, higher resistivity silicon, full depletion of epitaxial layer (ideal case). The deep p-well implant is also shown underneath the PMOS transistors, preventing charge from being collected by the n-wells in which they are situated.
R&D on pixel for Layer0 upgrade

MAPS radiation hardness: charge collection studied after neutron irradiation up to ~ \(7 \times 10^{12} \text{n/cm}^2\)

~ eq. to 1 yr in Layer0 (no safety included!)

Noise and gain not affected by neutron

Signal degradation after each irradiation step studied with \(\beta \text{ Sr}^{90}\) source:

- SNR \(\rightarrow\) 10 in last step
- severe limitation for application in Layer0

Investigating INMAPS process (180 nm):

high-\(\Omega\) epilayer available for improved charge collection and radiation hardness!

4th well (deep Pwell), below nwells for in-pixel logic, is used to avoid charge stealing by competitors with sensing electrode.

same readout architecture optimized for 3D (more in-pixel logic thanks to 4\(^{\text{th}}\) well)

Summer 2011: submitted 32x32 matrix with digital readout and 3x3 analog structures.
Effects on equivalent noise charge

\[ENC^2 = C_T^2 A_1 S_{ws,in} \frac{1}{t_p} + C_T^2 A_2 A_{f,in} t_p^{\alpha_{fn}^{-1}} + A_3 S_{wp,F} t_p + A_3 S_{wp,\text{leak}} t_p \]

- Channel thermal noise in the input device
- Flicker noise in the input device
- Parallel noise in the feedback MOSFET
- Parallel noise in the detector leakage

DNW-MAPS (900 \(\mu \text{m}^2 \) area)

- Red circles: before irradiation - measured
- Blue squares: 1100 krad - measured
- Orange triangles: after annealing - measured

Affected by ionizing radiation.
Radiation tolerance of DNW MAPS

- Irradiation with 60Co γ-ray up to ~ 10 Mrad
- Gain reduction ~ 3%/MRad
- Noise increase ~ 15%/MRad
- Significant recovery after 100°C/168h annealing cycle
 - Noise increase ~ +33% @ 10 MRad
- Charge collection efficiency under test
- Next step investigate bulk damage

Apsel3T1 test chip ($t_p=200, 400$ ns)

ENC [e- rms] vs Dose [Mrad]

Charge sensitivity [mV/fC] vs Dose [Mrad]
Results on Superpix0

Gain (by C_{inj} scans):
- 38.0 mVfC with sensor (6% dispersion), 40.9 mV/fC w/o sensor (5%)

Noise ($\text{ENC} = \text{RMS}_{\text{noise}}/\text{Gain}$):
- 66 e- w/o sensor, 81 e- with sensor $\Rightarrow S/N = 200!$

Threshold dispersion ($\text{RMS}_{\text{baseline}}/\text{Gain}$):
- 478 e- w/o sensor - 482 e- with sensor
- Pixel threshold tuning circuit implemented in the next design

Response to a Sr90 source (e-)
\rightarrow good quality of the interconnection @ 50x50 μm² pitch & working sensor!!

CHIP12: all ch. working

CHIP19

5 defects on 2 chips
6×10^{-4}

pixels not working

pixel not connected to the sensor

source shifted to the right

due to known problem on the FE chip
In the active sensor area we minimized:
- logical blocks with PMOS to reduce the area of competitive n-wells
- digital lines for point to point connections to allow scalability of the architecture with matrix dimensions

$4K(32 \times 128)$ 50x50 μm2 matrix subdivided in MacroPixel (MP=4x4) with point to point connection to the periphery readout logic:
- Register hit MP & store timestamp
- Enable MP readout
- Receive, sparsify, format data to output bus

S/N ~ 20 with power consumption ~ 30 μW/ch

Signal for MIP (MPV) = 980e-

Landau mV

Cluster signal (mV)

Threshold dispersion = 60 e-

Gain = 860 mV/fC
DNW MAPS Hit Efficiency measured in a CERN beam test (APSEL4D)

Efficiency vs. threshold

Measured with tracks reconstructed with the reference telescope extrapolated on MAPS matrix

MAPS hit efficiency up to 92 % @ 400 e- thr.
300 and 100 µm thick chips give similar results
Intrinsic resolution ~ 14 µm compatible with digital readout.

Competitive N-wells (PMOS) in pixel cell steal charge reducing the hit efficiency: fill factor (DNW/tot N-well) ~ 90 %

2D MAPS: efficiency can improves adding multiple collecting electrodes around competitive nwells, even better using a quadruple well process (INMAPS being considered).

3D MAPS: (2 tiers for sensor&analog + digital) fill factor and efficiency can improves significantly.
SPX0 Gain X-check in Pisa

With Am241 source (10 mCi), 30 DAC-wide (1 DAC~0.3 mV) noise scan around the endpoint. Line-Fit for the extrapolation of the end-point of the spectrum.

Subtract the baseline (from noise scan) from the extrapolated abscissa and assume 60 keV as released energy (∴ 16 600 e-)

This method provides a biased (-10%) estimate of the gain!

The photo-electron of Fe55 has a range of ~1μm. Why don’t use that (~1/10MIP)?

We tried but ... we were sensitive to the baseline fluctuation due to T changes and the tiny signal was smeared in the long run.

\[\frac{dV_{\text{base}}}{dT} \approx -1 \frac{mV}{^\circ C} \]