Scenarios for LHC physics

Andrea Romanino SISSA

Scenarios

MSSM

MSSM

MSSM

5

Fine tuning in the MSSM

 $M_Z^2 \approx (91 \,\mathrm{GeV})^2 \left[\frac{\tilde{m}_Q^2}{(70 \,\mathrm{GeV})^2} - \frac{\tilde{m}_H^2}{(80 \,\mathrm{GeV})^2} + \frac{M_{1/2}^2}{(40 \,\mathrm{GeV})^2} - \frac{\mu^2}{(70 \,\mathrm{GeV})^2} \right]$ ***** FT \approx maximum contribution in [...] (+ possibly in tan β and m_t) **Benchmark** points: * $M_{1/2} = (250 \div 1840) \,\text{GeV}: \text{FT} \simeq 40 \div 2000$ [De Roeck, Ellis, Gianotti, Moortgat, Olive, Pape] $\tilde{m}_Q = (1500 \div 4300) \,\text{GeV}: \text{FT} \simeq 430 \div 3700 \text{ or } M_{1/2} = 500 \,\text{GeV}: \text{FT} \simeq 150$ [Lykken, Mrenna, Nelson, Wang, Wang] * Direct lower limits on squark and gluinos $M_{\tilde{g}} \gtrsim \begin{cases} 195 \,\mathrm{GeV} \\ 260 \,\mathrm{GeV} \Rightarrow \mathrm{FT} \gtrsim \begin{cases} 3 \\ 6 \\ 500 \,\mathrm{GeV} \end{cases} \begin{pmatrix} 3 \\ 6 \\ 20 \end{cases} \qquad m_{\tilde{t}} \gtrsim \begin{cases} 300 \,\mathrm{GeV} \\ 260 \,\mathrm{GeV} \Rightarrow \\ 100 \,\mathrm{GeV} \end{cases} \begin{cases} 25 \\ 10 \\ 50 \end{cases}$ Indirect lower limit on the stop mass * $(114 \,\text{GeV})^2 < m_h^2 < M_Z^2 \cos^2 2\beta + \frac{3}{4\pi^2} h_t^2 m_t^2 \log \frac{\tilde{m}_t^2}{m^2} \Rightarrow \text{FT} \sim 50 \div 100$

What is left?

- Quantitative measure of naturalness nicely taking into account and combining all the considerations above
 - Scan the relative sizes of SUSY parameters and the SM parameters in their ranges
 - Set the overall scale of SUSY parameters from <H> = 174 GeV
 - Calculate SUSY spectrum and compare with experiment
- Few O(1%) of points satisfy all experimental constraints

[Giusti R Strumia]

Beyond MSSM: xMSSM

Minimal extension: $\lambda SH_{u}H_{d}$ (with no $\mu H_{u}H_{d}$ because of symmetries) *

- harmless (unification OK)
- welcome ($\mu = \lambda < S > \approx$ susy scale)
- * Spectrum: $h H \rightarrow h_1 h_2 h_3$, $A \rightarrow a_1 a_2$, $N_1...N_4 \rightarrow N_0 N_1...N_4$
- * Help with FT from $(114 \,\text{GeV})^2 < m_h^2 < M_Z^2 \cos^2 2\beta + \frac{3}{4\pi^2} h_t^2 m_t^2 \log \frac{\tilde{m}_t^2}{m_t^2}$: $\lambda_H = \frac{g^2 + g'^2}{4} \cos^2 2\beta + \frac{\lambda^2}{2} \sin^2 2\beta + \text{loops}$ (λ bound by Landau poles)

 - $m_h^2 < (114 \,\mathrm{GeV})^2$ through invisible decays h \rightarrow aa (ma protected by PQ, R)
- * Persistent FT from
 - direct bounds on SUSY partners
 - arranging the invisible decay [Shuster Toro hep-ph/0512189]
- * Signatures:

* Invisible Higgs decays: $h \rightarrow aa \rightarrow 4X$ [No loose theorem? Ellwanger Gunion Hugonie Moretti hep-ph/0401228, ...]

★ 3leptons → multileptons from additional steps in chargino/neutralino decays

- C₁+N₂ and then
- $N_2 \rightarrow N_1+2l \rightarrow N_0+4l$ (if N_0 is lightest and mainly singlino)
- $C_1 \rightarrow N_0 + l + \nu$ (5l overall) or even $C_1 \rightarrow N_1 + l + \nu \rightarrow N_0 + 3l + \nu$ (7l overall)
- * Deviation from MSSM coupling relations: VVh = VHA = $sin^2(\alpha \beta)$, VVH = VhA = $cos^2(\alpha \beta)$ (optimistic)
- * Z' if μ is protected by a gauge symmetry

Combine MSSM with extra-dimensions not far from TeV

[Pomarol Quiros hep-ph/9806263 Barbieri Hall Nomura hep-ph/0011311]

Combine MSSM with extra-dimensions not far from TeV

[Pomarol Quiros hep-ph/9806263 Barbieri Hall Nomura hep-ph/0011311]

Higgsless (technicolor & C): Q_{NP} < TeV, EWPT: not calculable or excluded; recent progress via duality to weakly coupled 5D theory

Higgsless (technicolor & C): Q_{NP} < TeV, EWPT: not calculable or excluded; recent progress via duality to weakly coupled 5D theory

* Composite Higgs: $Q_{NP} = Q_{strong}$, $Q_{NP} \gtrsim \sqrt{c_i} \cdot 5 \text{ TeV} \approx 5 \text{ TeV}$

- Higgsless (technicolor & C): Q_{NP} < TeV, EWPT: not calculable or excluded; recent progress via duality to weakly coupled 5D theory
- * Composite Higgs: Q_{NP} = Q_{strong}, $Q_{\rm NP} \gtrsim \sqrt{c_i} \cdot 5 \,{\rm TeV} \approx 5 \,{\rm TeV}$
- Protect Higgs mass from Q_{NP}: Higgs = pseudo-NGB ⇔ shift symmetry
 - $H(\mathbf{x}) \rightarrow H(\mathbf{x}) + \mathbf{c}. \text{ Explicit breaking by } \lambda_{t} \lambda_{H} \text{ g:}$ $\delta m_{h}^{2} \sim \frac{3G_{F}}{\sqrt{2}\pi^{2}} m_{t}^{2} Q_{\text{NP}}^{2} = m_{h}^{2} \left(\frac{Q_{\text{NP}}}{0.5 \text{ TeV}}\right)^{2} \text{ for } m_{h} = 115 \text{ GeV}$

- Higgsless (technicolor & C): Q_{NP} < TeV, EWPT: not calculable or excluded; recent progress via duality to weakly coupled 5D theory
- * Composite Higgs: Q_{NP} = Q_{strong}, $Q_{\rm NP} \gtrsim \sqrt{c_i} \cdot 5 \,{\rm TeV} \approx 5 \,{\rm TeV}$
- * Protect Higgs mass from Q_{NP} : Higgs = pseudo-NGB \Leftrightarrow shift symmetry $H(x) \rightarrow H(x) + c$. Explicit breaking by $\lambda_t \lambda_H g$: $\delta m_h^2 \sim \frac{3G_F}{\sqrt{2}\pi^2} m_t^2 Q_{NP}^2 = m_h^2 \left(\frac{Q_{NP}}{0.5 \text{ TeV}}\right)^2$ for $m_h = 115 \text{ GeV}$
- * More clever explicit breaking ("collective breaking"): Little Higgs
 - no 1-loop $Q^2_{
 m NP}$ terms (exact-NGB unless 2+ non-vanishing couplings)
 - the top (gauge, Higgs) loop must be cancelled at a lower scale (= global symmetry breaking scale f « Q_{strong}) by same statistics partners

Little Higgs

Higgs mass protected by $H(x) \rightarrow H(x) + c$

[Arkani-Hamed Cohen Georgi 01, Arkani-Hamed Cohen Katz Nelson 02, Arkani-Hamed Cohen Katz 02, Nelson Gregoire Wacker 02]

Little Higgs

Higgs mass protected by $H(x) \rightarrow H(x) + c$

[Arkani-Hamed Cohen Georgi 01, Arkani-Hamed Cohen Katz Nelson 02, Arkani-Hamed Cohen Katz 02, Nelson Gregoire Wacker 02]

LH @ LHC

* Observe the partners responsible for the divergence cancellation

- $q\bar{q} \rightarrow Z_H \rightarrow l^+l^-$ up to few TeV (standard); in general \rightarrow ff, VV, Vh
- T, T^c: single production via Wb fusion dominates (b pdf up to $x \approx 0.2$)
 - $\Gamma(T \rightarrow th) = \Gamma(T \rightarrow tZ) = \Gamma(T \rightarrow bW)/2$ all identifiable: $tZ \rightarrow bWl^{+}l^{-}(m_{T})$, th → bWbb (m_h, m_T), bW → blv
- additional (++) Higgs states
- * Observe the divergence cancellation

[Burdman Perelstein Pierce hep-ph/0212228 Han Logan Wang hep-ph/0301040 Azuelos et al hep-ph/0402037]

[Perelstein Peskin Pierce hep-ph/0310039]

Warping and composite Higgs

- Breaking of G_{bulk} by bc's:
 H = (A₅)₀, or Little Higgs + UV completion and solution of the hierarchy problem
- m_H protected from Q_{strong} by 5D gauge symmetry, or collective breaking
- UV brane: elementary
 IR brane: composite (H, t_R)
- Relation ≈ 2 TeV as usual m_{KK} > TeV, watch Z → bb
- Gauge coupling unification in a novel way (but limited calculability)

[Contino Nomura Pomarol hep-ph/0306259 Agashe Contino Pomarol hep-ph/0412089 hep-ph/0605341]

@LHC (a first look)

* Production:

- $A(SM_1 SM_2 \rightarrow KK_3)$
- SM₃ needs to be substantially composite: t_R (bW fusion) or V_{long} (DY) (analogous to LH)

* Decay

- into V_{long} and heavier particles (t_R b_R , τ if non negligible) dominates
- also: (gluon)_{KK} \rightarrow t_Rt_R
- possibly lepton excitations (if open)

Back to the residual hierarchy

$$\delta m_h^2 \sim \frac{3G_F}{\sqrt{2}\pi^2} m_t^2 Q_{\rm NP}^2 =$$

$$\begin{pmatrix} m_h^2 \left(\frac{Q_{\rm NP}}{0.5\,{\rm TeV}}\right)^2 & \text{if } m_h = 115\,{\rm GeV} \\ m_h^2 \left(\frac{Q_{\rm NP}}{2\,{\rm TeV}}\right)^2 & \text{if } m_h = 250\,{\rm GeV} \end{pmatrix}$$

50 TeV composite SM fermions $Q_{\rm NP} \gtrsim \sqrt{c_i} \cdot 5 \,{\rm TeV} \approx \begin{cases} 5 \,{\rm TeV} \,{\rm composite} \,{\rm Higgs} \\ 0.5 \,{\rm TeV} \,1{\rm -loop} \,{\rm perturbative} \end{cases}$

- m_h = 500 GeV would help (Q_{NP} up to 2 TeV); disfavoured by EWPTs only within the SM
- * Cancel SM heavy Higgs contributions to EWPT with NP (good SM + light H fit accidental); does not require a large FT
- * Generic prediction of NP giving $\Delta T = 0.25 \pm 0.1$
- UV completion? *

An inert Higgs

* H1 (h): usual Higgs (but heavier): EWSB, MW Mz, mf

- ★ H₂ (H, A, H[±]): inert Higgs (60 GeV-1TeV): no vev, no coupling to fermions $(H_2 \rightarrow -H_2)$, gives $\Delta T = 0.25\pm0.1$
- ★ DM candidate for m_H ≈ 70 GeV (LEP?)
- * Pair production: pp $\rightarrow W^* \rightarrow H^+H$, H⁺A or pp $\rightarrow Z^* \rightarrow H^+H^-$, HA
- ★ Decay into the lightest + gauge bosons (no fermions) → charged leptons in the final states

[Barbieri Hall Rychkov hep-ph/0603188]

* DM: μ < 1.2 TeV (M₁ < M₂), mostly Bino favourable for LHC

DM: $\mu < 1.2$ TeV (M₁ < M₂), mostly Bino favourable for LHC

20

- ***** DM: μ < 1.2 TeV (M₁ < M₂), mostly Bino favourable for LHC
- * No bounds from EWPTs
- m_H < 170 GeV, in terms of of m̃, tanβ</p>

- * DM: μ < 1.2 TeV (M₁ < M₂), mostly Bino favourable for LHC
- * No bounds from EWPTs
- * m_H < 170 GeV, in terms of of m̃, tanβ</p>
- Long-lived gluino R-hadrons (charged: slow, highly ionizing track; neutral: missing energy, mild hadronic activity; actually: Energy, charge, Baryon-number exchange)
 LHC sensitivity up to (1-2.5) TeV

Kraan Hansen Nevski hep-ex/0511014]

- * DM: μ < 1.2 TeV (M₁ < M₂), mostly Bino favourable for LHC
- * No bounds from EWPTs
- * m_H < 170 GeV, in terms of of m̃, tanβ</p>
- Long-lived gluino R-hadrons (charged: slow, highly ionizing track; neutral: missing energy, mild hadronic activity; actually: Energy, charge, Baryon-number exchange)
 LHC sensitivity up to (1-2.5) TeV
 [Kilian Plehn Richardson Schmidt hep-ph/0408088, Hewett Lillie Masip Rizzo hep-ph/0408248, Kraan Hansen Nevski hep-ex/0511014]
- * (quasi-stable coloured particles also e.g stop in some 5D SUSY models or in MSSM with fine-tuned $\tilde{m}_t \approx M_{N1}$)

- * DM: $\mu < 1.2$ TeV (M₁ < M₂), mostly Bino favourable for LHC
- * No bounds from EWPTs
- * m_H < 170 GeV, in terms of of m̃, tanβ</p>
- Long-lived gluino R-hadrons (charged: slow, highly ionizing track; neutral: missing energy, mild hadronic activity; actually: Energy, charge, Baryon-number exchange)
 LHC sensitivity up to (1-2.5) TeV
 [Kilian Plehn Richardson Schmidt hep-ph/0408088, Hewett Lillie Masip Rizzo hep-ph/0408248, Kraan Hansen Nevski hep-ex/0511014]
- * (quasi-stable coloured particles also e.g stop in some 5D SUSY models or in MSSM with fine-tuned $\tilde{m}_t \approx M_{N1}$)
- Wilder: stopping gluinos (1-2 jets in any direction from denser parts of the detector + m.e.), displaced vertexes (low m), charge flips

- Is a % tuning really worth worrying?
- * If not, NP could as well be out of reach of the LHC
- * Barring independent arguments (e.g. DM)
- * Useful and fruitful guideline within models addressing the naturalness issue
- Surprises are not unlikely
- * Interpretation might not be unique

Upper pressure on QNP

$$m_h^2 \approx (m_h^2)_{\text{tree}} + \frac{3G_F}{\sqrt{2}\pi^2} m_t^2 Q_{\text{NP}}^2 + \dots = \begin{cases} (m_h^2)_{\text{tree}} + m_h^2 \left(\frac{Q_{\text{NP}}}{0.5 \,\text{TeV}}\right)^2 & \text{if } m_h = 115 \,\text{GeV} \\ (m_h^2)_{\text{tree}} + m_h^2 \left(\frac{Q_{\text{NP}}}{2 \,\text{TeV}}\right)^2 & \text{if } m_h = 250 \,\text{GeV} \end{cases}$$

Depends on the Higgs mass (see below)

Lower bounds on QNP

- * Negative searches
- No evidence of D>4 relics at E < Q_{NP}
 - no L-violating operators \rightarrow Q_L > 10¹⁵ GeV
 - no flavour violating operators \rightarrow Q_{FCNC} > 10⁶ GeV
 - no contribution to EWPT → Q_{NP} > (0.5-5) 10³ GeV (model dependent but unavoidable)

EWPT and the type of physics at QSM

$$\mathcal{L}_{\rm SM}^{\rm eff}(E < Q_{\rm SM}) = \mathcal{L}_{\rm SM}^{\rm ren} + \sum_{i} \frac{c_i}{Q_{\rm SM}^2} O_i + \dots$$

$$c_i = \lambda^2 \left(\frac{\lambda^2}{16\pi^2}\right)^n$$

$$\text{EWPT: } \frac{c_i}{Q_{\text{SM}}^2} \lesssim \frac{1}{(5 \text{ TeV})^2} \Rightarrow Q_{\text{SM}} \gtrsim \sqrt{c_i} \cdot 5 \text{ TeV} \approx$$

50 TeV if NP is strongly interacting 5 TeV if NP is perturbative, tree level, $\lambda \sim 1$ 0.5 TeV if NP is perturbative, one loop, $\lambda \sim 1$

The hierarchy problem is best solved by perturbative physics

EWPT and the type of physics at QSM

$$\mathcal{L}_{\rm SM}(E < Q_{\rm SM}) = \mathcal{L}_{\rm SM} + \sum_{i} \frac{1}{Q_{\rm SM}^2} O_i + \dots$$

$$n = 1$$

$$c_i = \lambda^2 \left(\frac{\lambda^2}{16\pi^2}\right)^n$$

$$n = 0$$

EWPT:
$$\frac{c_i}{Q_{\rm SM}^2} \lesssim \frac{1}{(5 \,{\rm TeV})^2} \Rightarrow Q_{\rm SM} \gtrsim \sqrt{c_i} \cdot 5 \,{\rm TeV} \approx$$

 $C^{\text{eff}}(F < O_{i}) = C^{\text{ren}} + \sum_{i=1}^{C_{i}} O_{i}$

 $\begin{array}{l} 50\,{\rm TeV}~{\rm if}~{\rm NP}~{\rm is~strongly~interacting}\\ 5\,{\rm TeV}~{\rm if}~{\rm NP}~{\rm is~perturbative,~tree~level,~}\lambda\sim1\\ 0.5\,{\rm TeV}~{\rm if}~{\rm NP}~{\rm is~perturbative,~one~loop,~}\lambda\sim1 \end{array}$

The hierarchy problem is best solved by perturbative physics

LH at LHC

[Han Logan Wang hep-ph/0301040]

f (TeV)

[Azuelos et al hep-ph/0402037]