Misura della luminosità in ATLAS e CMS

IV Workshop Italiano sulla Fisica di ATLAS e CMS

Paolo Bartalini e Laura Fabbri

Sommario:

- Misure di Luminosità
 - Motivazioni
 - Luminosità Integrata ed Istantanea
- Processi fisici coinvolti
- Strategie sperimentali di ATLAS e CMS
- Problemi aperti / Conclusioni

Motivazioni

- Fornire un valore di luminosità integrata da utilizzare nell'analisi di tutti i campioni e per tutti i periodi di acquisizione.
 - Misura della sezione d'urto di processi noti
 - ttbar
 - W/Z
 - ...
 - Scoperta di nuova fisica
 - Eventuali deviazioni dalle predizioni SM per sezioni d'urto di produzione di processi noti
 - Misure di processi di produzione di Higgs
 - Sezioni d'urto di produzione
 - tanβ in MSSM Higgs, ...
- Monitorare la luminosità istantanea per un utilizzo efficiente del fascio e un'ottimizzazione del rendimento
 - Ottimizzazione dei Trigger (pre-scaler)
- Controllo veloce delle condizioni di running e del background relativo al fascio (monitorare la struttura temporale del fascio, ...)

Luminosità Integrata *£*

Importanza della Misura di Luminosità Integrata

Errore relativo su $\sigma_H \times BR$ per vari canali in funzione di m_H , a $\int Ldt = 300$ fb-1.

Il sistematico dominante deriva dalla misura della luminosità:

10% (open symbols)
5% (solid symbols)
[ATLAS-TDR-15, May 1999]

Importanza della Misura di Luminosità Integrata II

Errore relativo su $tan(\beta)$ per H/A $\rightarrow \tau\tau$ ed H/A $\rightarrow \mu\mu$ in funzione di $tan(\beta)$ a $\int Ldt = 300$ fb-1.

Il sistematico dominante deriva dalla misura della luminosità

[ATLAS-TDR-15, May 1999]

Luminosità di LHC

La luminosità dipende unicamente dai parametri del fascio:

$$L = \frac{f \sum_{i=1}^{k_b} N_{1i} N_{2i}}{\text{Superficie Impatto}} = \frac{f \sum_{i=1}^{k_b} N_{1i} N_{2i}}{4\pi \sigma_x^* \sigma_y^*} = \frac{f k_b N^2}{4\pi \varepsilon_N \frac{\beta^*}{\gamma}}$$

f = frequenza di rivoluzione (11.2 kHz); N_{ni} = # di protoni per bunch; k_{b} = # di bunch; $\epsilon_{N} = \sigma_{x}^{*}\sigma_{y}^{*}\gamma/\beta$ emittanza normalizzata; β^{*} = funzione β nel punto di impatto; γ = E /m_p

- Fattori che limitano l'accuratezza della misura:
 - Capacità di estrapolare σ_x^* e σ_y^* nel punto di interazione dai parametri del fascio σ_x e σ_y
 - Conoscenza dell'ottica dell'acceleratore (β*)
 - Precisione nella misura della corrente del fascio
 - Altri effetti nel punto di interazione (angolo relativo fra i due fasci,...)

Forward Detectors @ ATLAS

Forward Detectors @ CMS/Totem

ATLAS-CMS: Copertura p_T-η

Importanza della Misura di Luminosità Istantanea

- Controllare il deterioramento del fascio
- Monitorare il numero di interazioni per bunch crossing
- Fornire intervalli temporali a luminosità nota (Luminosity Block) da associare ai dati sperimentali

Deterioramento del fascio

La luminosità istantanea della macchina decresce

esponenzialmente come:

$$L = L_0 e^{-t/\tau} \quad \tau \approx 14 \,\mathrm{h}$$

- Dovuto a:
 - Scattering tra i bunch (IBS)
 - Interazioni tra i fasci
 - Interazioni con il gas residuo
 - Radiazione di sincrotrone

[LHC Design Performance, EDMS CERN-0000020013]

Deterioramento atteso ~ 1% in 10 min

⇒ Taratura dei pre-scaler

Numero di interazioni per BX

Effetto di uno Smearing Gaussiano ad Alta Luminosità

→ Pile-up non Poissoniano

Elevato numero di interazioni per Bunch crossing

Luminosity Block

LB: Intervallo temporale per cui è possibile definire un valore di luminosità istantanea costante (~ min)

- Per poter definire tali intervalli temporali è necessario avere un buon controllo della luminosità del fascio istante per istante (L)
- I dati acquisiti in ogni LB faranno riferimento al relativo valore di luminosità integrata

Misura della luminosità

 Ogni processo fisico avviene con una frequenza (R) uguale al prodotto della sua sezione d'urto (σ) per la luminosità istantanea (L)

$$N = \sigma \times \mathcal{L}$$

$$R = \sigma \times \mathsf{L}$$

Misurare la luminosità significa determinare per un dato processo sia R (N) corretto per le efficienze (trigger ed accettanza) che σ

- Da un processo le cui sezione d'urto ed efficienze siano ben note ed il rate abbastanza grande è possibile ricavare la luminosità
 - LEP: QED Bhabha scattering
 - HERA: ep bremsstrahlung

Misura della luminosità ad LHC

- Interazioni pp calcolabili con buona precisione
 - QED, EW, QCD
 - Piccolo errore statistico (<1%)
 - → campioni omogenei di almeno 10K 100K eventi
- Teorema Ottico
 - frequenza di scattering elastico a piccolo angolo + frequenza totale di scattering
 - Scattering Coulomb

Obiettivo

- misurare \mathcal{L} con un'incertezza $\leq 2-3\%$
- informazione ridondante

Interazioni pp di riferimento

QED: σ_{OED} piccola

$$-pp \rightarrow (p+\gamma^*)+(p+\gamma^*)\rightarrow p+(\mu-\mu+)+p$$

■ Bassa frequenza (<< 1 Hz) anche a L=10³⁴ cm⁻² s⁻¹ No Monitor Online

16

■ Processo calcolabile con un'accuratezza ~1%

I W: W/Z → leptoni

- Processi ben calcolabili da un punto di vista teorico (NNLO disponibile)
- Alta frequenza: ~6Hz per Z→ $\mu^+\mu^-$, ~60Hz W→ μ V a L=10³⁴ cm⁻² s⁻¹
 - Monitor online solo ad alta luminosità
 - $(\Delta \mathcal{L}/\mathcal{L})_{\text{sist}} \sim 4-6\%$; $(\Delta \mathcal{L}/\mathcal{L})_{\text{stat}} \sim 1-5\%$

QCD: $\sigma_{tot} \sim 100 \text{ mb}$

- Misurata con ottima precisione (TOTEM: $\Delta \sigma_{tot} \sim 1\%$)
- Metodo basato sul conteggio dei bunch crossings con interazioni e/o privi di interazioni pp
 - Monitor online principalmente a basse luminosità

QED:

1500

1000

500

background

Segnale

Pondo

 $pp \rightarrow (p+\gamma^*)+(p+\gamma^*) \rightarrow p+(\mu^-+\mu^+)+p$

400

200

25

25

 $p_{T}^{(1)}=p_{T}^{(2)}$

- $\sigma_{\mu\mu} \sim 1 \text{ pb} \ (\sim 0.01 \text{ Hz a } \mathcal{L} = 10^{34} \text{ cm}^{-2} \text{ s}^{-1})$ ⇒ $\mathcal{L} > 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$
- segnale: coppia μμ con
 - $m_{\mu\mu} \sim GeV$, $p_T(\mu\mu) \simeq 0$
 - $p_T(\mu)$ ≥5-6 GeV, $|\eta(\mu)|$ <2.5,
- Fondi:
 - Drell-Yan
 - Decadimenti semileptonici dei quark pesanti
- → tagli offline

 $\Delta \mathcal{L}/\mathcal{L} \sim 2\%$ per 10 fb⁻¹

 $(p_t^{(1)} - p_t^{(2)})/\sigma_{pt}$

[ATLAS-TDR-15, May 1999]

φ (rad)

Normalizzazione con W e Z

$$pp \to W \to \ell \nu$$
 & $pp \to Z \to \ell^+ \ell^-$ barn

- Alti rates (O(10) Hz ad alta L)
- Ricostruzione molto precisa (alte efficienze, fondi trascurabili etc.)
- PDF e sezioni d'urto partoniche conosciute ~ 4-5% al NNLO
 - Assunzione sulle sezioni d'urto per misurare la luminosità o vice-versa
 - Metodo quantitativo per la valutazione simultanea di \mathcal{L} e di $\sigma(Z)/\sigma(W)$ tramite l'utilizzo di PDFs error sets e Confidence Levels [hep-ph/0104053]

$$\frac{\Delta \sigma}{\sigma} (pp \rightarrow Z + X \rightarrow \mu^+ \mu^- + X) = 0.13 \% \pm 2.3 \% \pm \text{lumi uncert.}$$

CMS Note-2006/124

CMS Note-2006/082

$$\frac{\Delta \sigma}{\sigma}(pp \rightarrow W + X \rightarrow \mu \nu + X) = 0.04\% \pm 3.3\% \pm \text{lumi uncert.}$$

Incertezze da PDF e scale QCD

σ(ZZ->4μ)/σ(Z→2μ) vs σ(ZZ->4μ) Normalizzazione a Drell Yan

Nella Regione di ricerca H->4μ: 195 – 203 GeV

 $P_{T}\mu > 16 \text{ GeV}$ M($\mu + \mu$ -)>12 GeV

Normalizzando $\sigma(ZZ -> 4\mu)$ a $\sigma(Z -> 2\mu)$ si ha una riduzione di un fattore ~ 2 delle incertezze teoriche $\Delta(QCD)$ e $\Delta(PDF)$

1.000	$\sigma(ZZ->4\mu)$	$\sigma(Z->2\mu)$	$\sigma(ZZ->4\mu)/\sigma(Z->2\mu)$
	195 GeV $<$ $M_{4\mu}$ $<$ 203 GeV	PTμ > 7 GeV	$195 \text{ GeV} < M_{4\mu} < 203 \text{ GeV}$
	1.12 fb	924 pb	1.24*10-6
Δ (QCD scale)	±3.5%	±4.4%	±1.9%
Δ (PDF)	±4.9%	± 4.3%	±2.3%

[CMS Note 2006/068]

CD: Rates di Minimum Bias (MB)

Numero medio di interazioni:
$$\mu = \frac{\langle N \rangle}{BX} = \frac{\sigma_{mb}L}{f}$$

Conteggio diretto (tipicamente adottato per μ<<1)</p>

- Esempi di richiesta:
 - almeno una torre calorimetrica con $E_T > E_{T0}$ (HF in CMS)
 - segnale negli scintillatori/tubi Cerenkov (BSC e MBTS, BCM e LUCID)

Conteggio indiretto (tipicamente adottato per μ~1)

- Probabilità BX privi di interazione: $p(0;\mu) = e^{-\mu}$
- Esempi di richiesta:
 - tutte le torri con $E_T < E_{T0}$
 - nessun segnale negli scintillatori/tubi Cerenkov

Misura del segnale

- ΣE_{T}
- monitoraggio della corrente anodica (TileCal e LAr)
- Numero di scintillatori/tubi colpiti

Il calorimetro Hadron Forward di CMS (HF)

Caratteristiche principali:

- Risposta veloce
- Dimensioni trasversali dello sciame

Parte attiva in fibra al quarzo per tollerare gli alti livelli di radiazione (>1 Grad accumulati in 10 anni)

Sensibile alla Luce Cherenkov

- L'energia visibile e' trasportata da particelle cariche relativistiche.
- La larghezza dello sciame dipende dal raggio di Moliere, non da λ_i
- La luce e' generata principalmente a 45°

25pppritteractions:

Segmentazione $\Delta \eta \times \Delta \phi = 0.175 \times 0.175$ Copertura 3 $\langle |\eta| < 5$ 1728 torri, i.e. 2 x 432 torri per EM e HAD

FERRO

Rates di Minimum Bias in CMS

- Monitor di luminosità indipendente da DAQ & Trigger
 - Campionamento dei rates 1 ÷ 10 Hz
- Misura basata sul calorimetro adronico forward HF 3<η<5
- Soglia per torre $\Delta \eta \times \Delta \phi \sim 0.175 \times 0.175$
 - 6 FADC, ovvero ~ 2 foto-elettroni
 - 8 GeV di energia incidente: $0.13 \text{ GeV} < E_{T0}(\eta) < 0.75 \text{ GeV}$

[CMS PTDR Vol. 1, Chapter 8]

Pythia 6.227 inclusi diffrattivi + Simulazione dettagliata CMS

- Effetto beam-gas trascurabile
- Ulteriore lavoro necessario per lo studio dei sistematici da modellizzazione degli eventi e dai rapporti delle sezioni d'urto hard / soft (in particolare SD and DD)

(efficienze comunque molto alte per tutti i processi)

22

con quella del trigger specifico

LUCID: monitor di luminosità

LUCID: "LUminosity measurement using Cerenkov Integrating Detector

- Misura relativa della luminosità (bunch per bunch ed integrata);
- Copertura in η per misure di fisica diffrattiva (η =[5.5,6.1])
- ~17 m dal punto di interazione
- Due rivelatori simmetrici disposti attorno alla beam pipe
- 168 tubi di Al riempiti di Isobutano
 - ⇒ luce Cerenkov

LUCID

Conteggio dei segnali

- Ad alti valori di μ è importante distinguere il numero di tracce per tubo
- $\Delta L/L \leq 5\%$

Conteggio degli zeri:

$$\mu=25$$
: $N_{zero}/N_{BX} = 2.8 \ 10^{-8}$
 $N_{zero}/N_{BX} = 5.5 \ 10^{-8}$

Coinc	4h50min	30 min	
NoCoinc	2h30min	15 min	
ΔL/L	1%	3%	

Ad alto pile-up è preferibile il conteggio dei segnali

Coincidenza = no segnale in almeno uno dei due moduli

IV Workshop Italiano sulla Fisica di ATLAS e CMS

[ATLAS-LUM-PUB-2006-001]

Teorema Ottico

$$\begin{cases}
\frac{d\sigma_{\text{el}}}{dt}\Big|_{t=0} = (1+\rho^2)\frac{\sigma_{\text{tot}}}{16\pi} \\
\sigma_{\text{tot}} = \frac{N_{\text{inel}} + N_{\text{el}}}{L}
\end{cases} \qquad \begin{cases}
L = \frac{(1+\rho^2)}{16\pi} \frac{N_{\text{tot}}^2}{\frac{dN_{\text{el}}}{dt}\Big|_{t=0}} \\
\sigma_{\text{tot}} = \frac{N_{\text{tot}}}{L}
\end{cases}$$

- Misurando la frequenza totale dell'interazione (N_{tot}) e quella del solo scattering elastico in avanti $(dN_{el}/dt \mid_{t=0})$ è possibile ricavare sia L che σ_{tot}
 - N_{tot} = misura dell'interazione totale ⇒ grande copertura in accettanza |η|~ 7-8
 - $N_{\rm el}$ = frequenza di protoni deflessi a piccolo angolo ⇒ Roman Pot
 - $-\rho = \text{Re F}(0)/\text{Im F}(0)$ noto con sufficiente accuratezza da non alterare la misura per più dello 0.5%

Il parametro p

- $\rho = \text{Re F}(0)/\text{Im F}(0)$ si lega alla sezione d'urto totale tramite la relazione di evoluzione
- Sensibile alla sezione d'urto totale oltre l'energia a cui ρ è misurata \Rightarrow è possibile fare predizioni di σ_{tot} a energie maggiori di LHC
- La relazione di evoluzione vale ancora all'energia di LHC?

Predizione LHC $\rightarrow \sigma_{\text{tot}} = 111.5 \pm 1.2 \stackrel{+4.1}{-2.1} \text{ mb}$

[Cudell et al., PRL 89 201801 (2002)]

Scattering Coulomb

A t ≈ 0 la sezione d'urto diventa sensibile all'interazione elettromagnetica tramite l'interferenza Coulomb e quindi il rate di eventi può essere espresso come:
Interazione

$$\left. \frac{dN}{dt} \right|_{t=0} = L\pi \left| f_C + f_N \right|^2 \approx L\pi \left| \frac{2\alpha_{\text{EM}}}{|\mathbf{t}|} + \frac{\sigma_{\text{tot}}}{4\pi} (i+\rho) e^{-b^{|t|}/2} \right|^2$$

- Scattering Coulomb + Teorema Ottico N_{tot} Le σ_{tot}
- Raggiungere la regione di scattering Coulomb è un compito molto arduo in quanto molto vicina al fascio

forte

Roman Pots in ATLAS

ATLAS e CMS

- Misura della luminosità integrata basata sullo scattering Coulomb
- 240 m dal punto di interazione
- Utilizzo di ottiche speciali ad alto β*
- Utilizzabile solo a L≈10²⁷ cm⁻² s⁻¹

$$-t = (p\theta^*)^2 = p^2(\overline{\theta}_x^2 + \overline{\theta}_x^2)$$
$$= p^2 \left(\left(\frac{\overline{x}}{L_{eff,x}} \right)^2 + \left(\frac{\overline{y}}{L_{eff,y}} \right)^2 \right)$$

Precisione su 0.17mm $\Delta \mathcal{L}/\mathcal{L} \sim 2-3\%$ reference Al_2O_3 edge in linea con i ceramic substrate requirements! y-measurement detector scintillator plate x-measurement for triggering detector Roman Pot window (0.2mm) $10-15 \sigma \text{ or } >= 1.5 \text{ mm}$ Vorkshop Italiano sulla Fisica di

spacers

Conclusioni

ATLAS e CMS misurano sia luminosita' istantanea (L) che luminosita' integrata (\mathcal{L}) con metodologie ridondanti e un ricco apparato sperimentale, in particolare nella regione forward

Monitor di luminosità L (oltre all'informazione LHC)

- Basato sulla precisa misura di σ_{tot} da parte di TOTEM
 - Principalmente tramite LUCID in ATLAS e HF in CMS
- Ad alte luminosita' anche i rates di W e Z sono utilizzabili

 $(\Delta L/L)_{\rm stat}$ $\sim 1-5\%$

Misura di luminosità L

- Alto β* (10²⁷ cm⁻² s⁻¹)
 - ATLAS userà il metodo della normalizzazione Coulomb per calibrare i monitor di luminosità (LUCID e BCM)
 - CMS ricorrerà alla misura di TOTEM

 $(\Delta \mathcal{L}/\mathcal{L})_{\text{syst}}$

- >1-10 fb⁻¹
 - ATLAS e CMS utilizzano normalizzazione a processi di sezione d'urto calcolabili con buona precisione: W/Z -> leptoni, pp->ppμμ

Backup

Run di calibrazione a 900 GeV

Roadonablo						
k _b	43	43	156	156		
intensity per beam	8.6 1011	1.7 10 ¹²	6.2 1012	1.6 10 ¹³		
Luminosity (cm ⁻² s ⁻¹)	2 10 ²⁸	7.2 10 ²⁸	2.6 10 ²⁹	1.6 10 ³⁰		
event rate ¹ (kHz)	0.4	2.8	10.3	64		
W rate ² (per 24h)	0.5	3	11	70		
Z rate ³ (per 24h)	0.05	0.3	1.1	7		

1.	Assuming 450GeV inelastic cross section	40 mb
2.	Assuming 450GeV cross section $W \rightarrow lv$	1 nb
3.	Assuming 450GeV cross section $Z \rightarrow ll$	100 pb

[R.Tenchini]

Reasonable

Maximum

Pixel Luminosity Telescope (PLT) (proposto per CMS)

Misura della luminosita' istantanea

- Telescopi a piccolo angolo angolo (~1°)
- Tre piani di sensori al diamante (8 mm x 8 mm)
- Sensori collegati al CMS pixel ROC tramite bump bonding
- Coincidenze tra 3 sensori dal segnale veloce del ROC
- Telescopi collocati a r = 4.5 cm, z = 175 cm
- Lunghezza totale 20 cm
- 8 telescopi per parte

Beam Condition Monitor

Realisation

BCM Offline Studies

BCM triggered ATLAS Events:

- BCM triggered (luminosity) events are pre-scaled to meet the allowed event rate for the luminosity data stream
- The trigger information in the event can be used to get the BCM multiplicity in case such triggers are used.
- Luminosity studies can be made offline also using other detectors, e.g. particle counting using the ID etc.
- CTP trigger info and Offline data can be used to study TDAQ (dead-time) corrections
- •Even without BCM data in the ATLAS event, a BCM LVL1 trigger is already good
- Allows for luminosity studies:
 - On-line studies from the CTP information (even per BCID)
 - · Offline studies using other detectors and trigger information
 - · Both synchronized to LBs

