

CDF

Collider Detector at Fermilab

> 700 Fisici

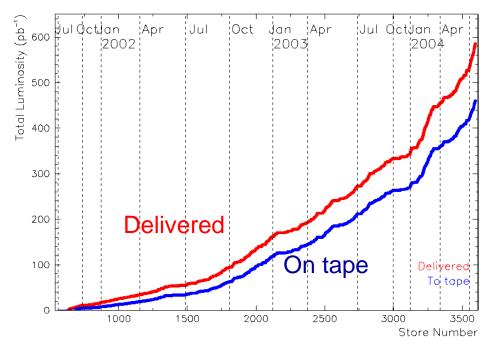
12 Paesi

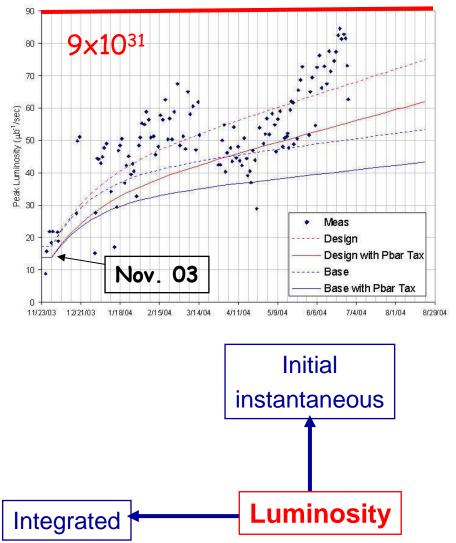
59 Istituzion

6 Istituzioni Italiane Bologna, L.N.F., Padova, Pisa, Roma1, Trieste-Udine

Staff: A.Castro(PA), M.Deninno(RU), P.Mazzanti(1R), F.Rimondi(PA), F.Semeria(Tecn.), S.Zucchelli(RU)

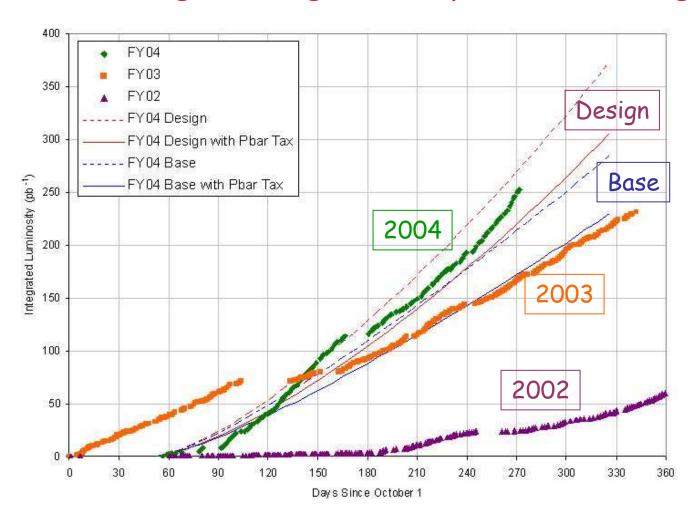
A.Gresele (A.Ric.), F.Margaroli (dott.), N.Moggi (A.Ric.),


A.Petrella (laur.freq.)

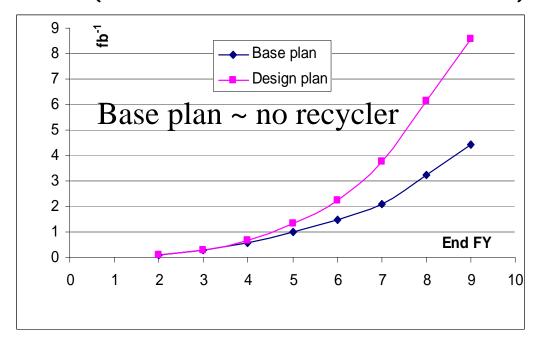

9 ricercatori + 1 tecnologo (7.7+0.5 = 8.2 fte)

Tevatron luminosity

- * Enormi progressi sulla luminosita'! $\mathcal{L}_{max} \sim 9 \times 10^{31} \ (22.6.04)$
 - Est. max. senza recycler 7-8x10³¹
 - Goal with recycler: 2x10³²
 - Delivered/on tape 600/450 pb⁻¹
 - Current analyses on ~250 pb⁻¹ data (Feb.02-Feb.04)



Tevatron luminosity

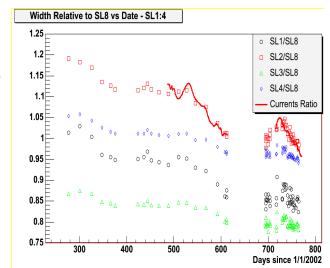

Luminosita' integrata meglio delle previsioni "design"

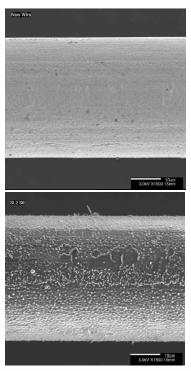
Extended Tev goals

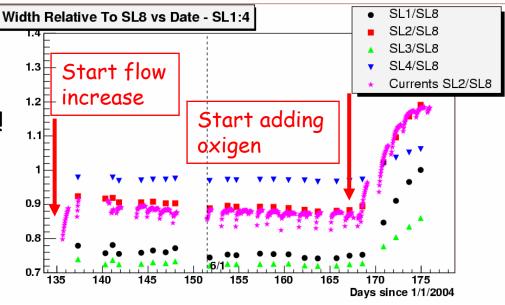
- Luminosity plan 2002
- Goals 2002/03 accomplished
- ❖ Goals 2004 ~ 300 pb⁻¹
 - Very likely
 - Tevatron is performing very well
 - P-bars injected from recycler! (funziona come raffreddatore ad elettroni)

$L_{\rm max} - L_{\rm A}$

Year	Base plan luminosity/yr (fb ⁻¹)	Design plan Luminosity/y r (fb ⁻¹)
FY02	0.08	0.08
FY03	0.20	0.22
FY04	0.31	0.38
FY05	0.39	0.67
FY06	0.50	0.89
FY07	0.63	1.53
FY08	1.14	2.37
FY09	1.16	2.42
Total	4.41	8.56


Stato del rivelatore


- ❖ Il rivelatore CDF ha funzionato molto bene con una importante eccezione:
 - > Si e' osservata una considerevole perdita di guadagno della camera centrale (COT) nel Febbraio 2004
- Il trigger richiede continue attenzioni vista la rapida crescita della luminosita'


Problemi della COT

- COT has experienced an unexpected gain loss ~ 20%/yr
 - Chamber was operating at strongly reduced gain to prevent further damage in March - May 04

- COT problem solution: O₂
- x20 increase of gas flow: slows degradation
- ❖ Add 150 ppm oxigen: heals chamber!
 - Now back to mid-2002 operating conditions

Problemi del Trigger

- > Continuously update to deal with higher luminosity
 - Jan. 2004 (\mathcal{L}_{init} = 4.4E31 cm⁻²s⁻¹): L1A/L2A/L3A: 11kHz/280Hz/50Hz with ~ 26% deadtime
 - L1: improve prescales and XFT
 - L2: cut on muons, faster code, SVT fast abort, Road Warrior (Italy)
 - · L3: 64 more CPU's, faster code
 - \rightarrow (L $_{\rm init}$ = 5.0E31 cm $^{-2}s^{-1}$): L1A/L2A/L3A: 18kHz/280Hz/73Hz with \sim 4% dead time, but...
- Now we have to deal with $\mathcal{L}_{init} \sim 1.0E32 \text{ cm}^{-2}\text{s}^{-1}$!!!

Dealing with trigger:

- Increase all control trigger prescales
- > Tighten physics triggers
- Proceed full speed with all planned trigger upgrades
 - Italian contribution is Road Warrior (mostly done) and SVT upgrade

Upgrade per il Run IIb (2005-06)

SVX II - Cancellato nel 2003 (Bologna)

SVT - Upgrade in progress

CPR - Upgrade in progress

World's best results measured by CDFII

Charm

Misura di *BR* e *CP* asymmetry su *Cabibbo* suppressed *D*⁰ decay

❖ Bottom

- Misura di decadimenti e BR del B_s
- Misure di massa di $B^+, B^0, B_s \in \Lambda_b$

❖ Top

- Misura della sezione d'urto di produzione di coppie t-tbar
- Misura di BR(t->Wb)/BR(t->Wq)

* EW

- Misure di precisione su produzione di W e Z
- Prima osservazione di produzione di coppie WW in p-pbar

Exotics

- Nuovi limiti su ricerca di nuove particelle, SUSY e extra-dimensions

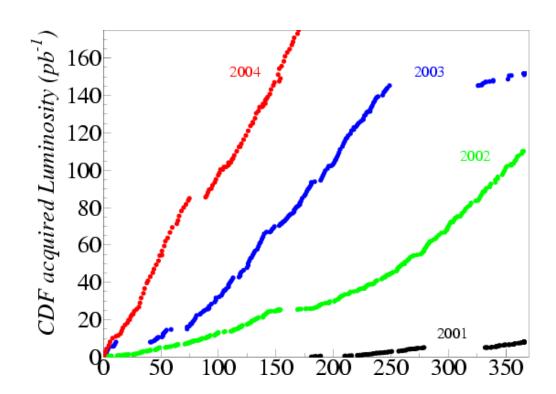
Responsabilita' di CDF-Bologna

- Gestione degli alimentatori di alta tensione di tutta la sezione calorimetrica End-Plug:
 - Ottima stabilita' del sistema per tutto il periodo di run
- Gestione del software di controllo del sistema di alimentazione sopra citato:
 - monitor on-line
 - operabilita' sia locale che remota

Attivita' per il 2005

Attivita' connesse all'analisi dati

- Controllo e mantenimento di 2 trigger speciali, per selezione di eventi MB ad alta molteplicita' e per selezione di eventi multijet
- A Riduzione su n-tuple dei dati di MB
- Riduzione su n-tuple dei dati di trigger multijet


Analisi fisica

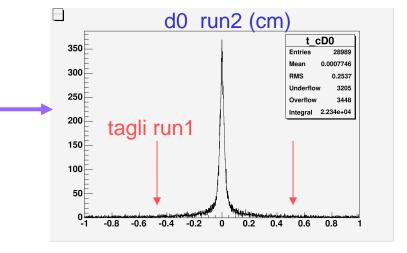
- Analisi dei sistemi a molti corpi in interazioni con basso momento trasferito
- Studio di produzione di top in eventi multijet

Situazione CDF Run II

- ☐ Triggers:
 - Minimum Bias
 (CLC east && west, 1 Hz)
 - > 0-bias (anche crossings vuoti)
 - ➤ Alta molteplicita' COT: mult > 12, 22 (ToF && Tracking-L3)

☐ Min Bias Feb2002 – Feb2004:

```
processati \approx 270/450 \text{ pb}^{-1} \approx 17 \text{ M} \text{ eventi MB (5xrun1)}
( DST = 1640 Gb \rightarrow root-ple = 310 Gb )
```

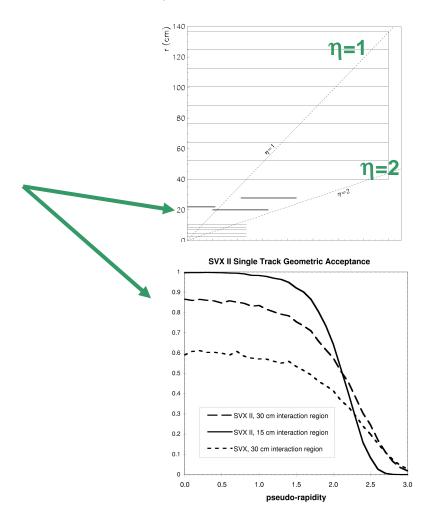


a Bologna

- ☐ Primi step analisi dati MB:
 - Controllo runs "buoni"
 - Ottimizzazione tagli per MB:
 - Eventi, tracce

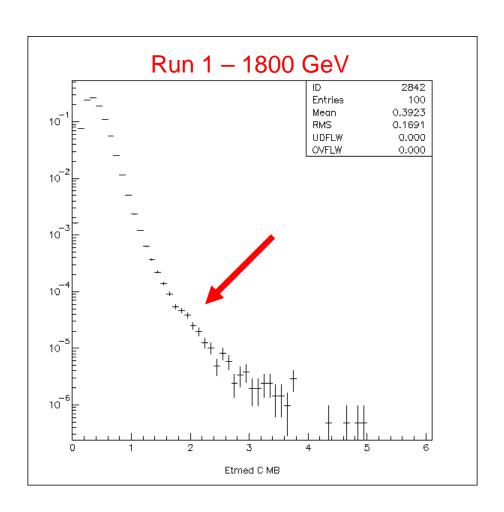
Vertci primari, int. multiple

Primarie/secondarie, spurie etc


- ☐ Efficienze → MonteCarlo
 - Tuning Pythia (6.216)
 - "Tune A" by R. Field:
 - ottimo per p_T,
 - pessimo per molteplicita
 - Altri da definire...

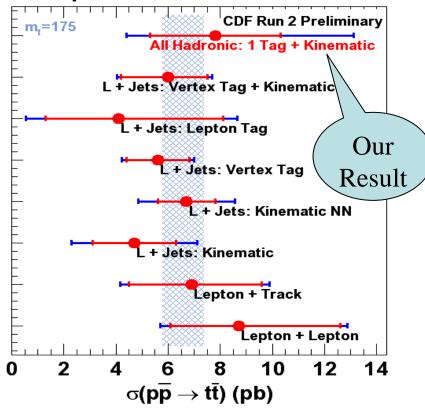
PARP(67)	1.0	4.0	Initial-state radiation scale factor
MSTP(81)	1	1	MPI
MSTP(82)	1	4	Double-gauss matter distribution
PARP(82)	1.9	2.0	p _⊤ cut-off MPI
PARP(83)	0.5	0.5	Warm core % matter
PARP(84)	0.2	0.4	Warm core radius
PARP(90)	0.16	0.25	Energy dependence of p _T cut-off

Le analisi


- ☐ Minimum Bias Run1 (ma mancano dati 630 GeV)
- ☐ Eventi di alta molteplicita':
 - \rightarrow <p_T> vs mult
 - distribuzioni di mult ???
- ☐ Potenzialmente buon tracking con i nuovi layers di silicio (3D)
 - $p_T>250 \text{ MeV/c } \&\& |\eta|<2.0$
 - efficienza ~ 0.8 migliorabile
- ☐ Scomposizione di heavy flavors nel Min Bias (ud, s, c, b) MinBias = somma ???
- ☐ ... vostri suggerimenti ...

...segnali (?)

- \square Misura $\langle E_T \rangle^{\text{cella}}$:
 - 1. cella = gruppo 3x3 torri calorimetro
 - 2. somma E_T cella
 - 3. media E_T celle "accese" in ogni evento
 - 4. distribuzione $\langle E_T \rangle^{\text{cella}}$
- Run2: statistica x 10
- Necessita produzione MC heavy flavors


All hadronic cross section

The tt-bar production x-section measured in the all hadronic channel for

- $L = 165 \text{ pb}^{-1}$,
- M_{top} = 175 GeV ,
- kinematical selection $\&\& \ge 1$ b-tags ,

amounts to:

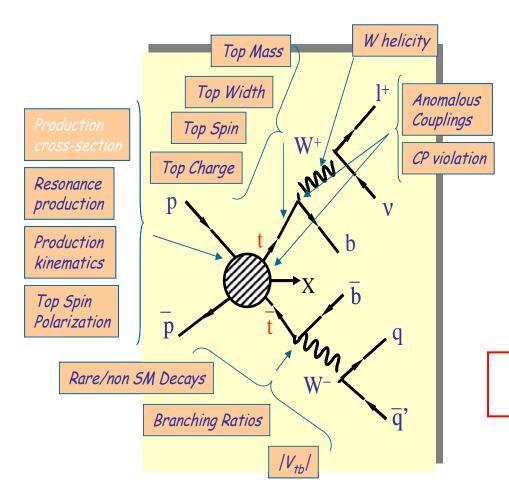
Top Production Cross Sections

$$\sigma_{t\bar{t}} = 7.8 \pm 2.5(stat)_{-2.3}^{+4.7}(syst) = 7.8_{-3.4}^{+5.3} pb$$

Backup slides (2003)

Upgrade per il Run IIb

SVT Upgrade


- Prototype AM Chip submitted for production June 21
- Plan for production in early 2005
- With real design less patterns/chip → more chips needed
- Additional plans of SVT upgrade being made at CDF (more chips, additional board modifications

CPR Upgrade

- * M&S: All material at Fermilab
- Module production started: ~50% modules finished (Italian techs contribution)
- HV work in progress
- Timeline: Installation starts September 04/Ends December 04
 - Module construction ends in July
 - · On schedule
- Performance of first modules as expected
 - Production at full speed

Il quark top

- o Prodotto in coppie al Tevatron $(\sigma = 7pb)$
- o In accordo con lo SM decade:

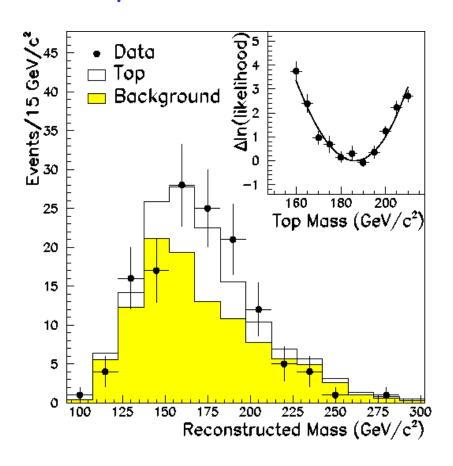
$$\mathsf{t} \to \mathsf{Wb}$$

o Gli stati finali possono essere $(I = e \circ \mu)$

 $t t \to I v b I v b \Rightarrow dilepton (5\%)$

 $t t \rightarrow I v bqqb \Rightarrow lepton + jets (30%)$

 $t t \to bqqbqq \Rightarrow all hadronic (45\%)$


Il canale all-hadronic

o Il canale all-hadronic:

- BR alto (44%)
- S/B molto piccolo
- o L'analisi del RunI (110pb⁻¹) usava due strategie:
 - A) Tight Kinematic + >= 1 btag
 - B) Loose Kinematic + >= 2 btag
- o RunII (60pb⁻¹ analizzati)
 - stiamo riproducendo la vecchia analisi e cercando nuove strade (2 tag)
- o Altri dati saranno pronti presto:
 - applicazione correzioni energetiche per massa top

Run I

Mtop= $186 \pm 10 \pm 6 \, GeV/c^2$

