3-point functions of finite-size (dyonic) Giant magnons

Changrim Ahn Plamen Bozhilov (IEU @ Ewha)

Holographic approach to

3-pt correlation functions (strong coupling limit)

*Related talk by Romuald Janik

Plan

Introduction

Formulation for 3-point function

3-pt for Giant Magnon

Ref: arXiv PLB702, PLB703; 1106.5656

Introduction

AdS / CFT

• Type IIB superstrings on $AdS_5 \times S^5$

dual to

 $\mathcal{N}=4$ $SU(N_c)$ super-Yang-Mills theory

[Maldacena (1997)]

Parameter relations

$$g_s = \frac{4\pi\lambda}{N_c} \quad \& \quad \frac{R^2}{\alpha'} = \sqrt{\lambda}$$

$$\lambda = N_c g_{\rm YM}^2$$

a planar limit of SYM = no quantum gravity limit

$$g_S \to 0 \equiv N_C \to \infty$$
 with fixed λ

Classical string theory

$$\alpha' \ll 1 \implies \lambda \gg 1$$

N=4 Super Yang-Mills theory

• $\mathcal{N} = 4 \ SU(N_c) \ SYM$

$$S = \frac{{\rm Tr}}{g_{\rm YM}^2} \int d^4x \left\{ -\frac{1}{4} F_{\mu\nu}^2 + (D_\mu \Phi^a)^2 + \left[\Phi^a, \Phi^b \right]^2 + \bar{\chi} D\!\!\!/ \chi - i \bar{\chi} \Gamma_a [\Phi^a, \chi] \right\}$$

- R-symmetry: N=4 SUSY so(6)
- Conformal field theory

Irreducible rep. are given by eigenvalues of Cartan subalgebra

Scalar fields

$$Z \equiv \Phi_1 + i\Phi_2, \quad Y \equiv \Phi_3 + i\Phi_4, \quad X \equiv \Phi_5 + i\Phi_6$$
$$\overline{Z} \equiv \Phi_1 - i\Phi_2, \quad \overline{Y} \equiv \Phi_3 - i\Phi_4, \quad \overline{X} \equiv \Phi_5 - i\Phi_6$$

General gauge-invariant composite operators

$$\tilde{O}(x) = \text{Tr}\left[O_1(x)O_2(x)\dots O_L(x)\right]$$

½ -BPS operator

$$\operatorname{Tr}\left[Z^{L}\right] \rightarrow (L,0,0|L,0,0)$$

Conformal Data

- CFT: all correlation functions are in principle decided by
 - Conformal dimensions : 2-pt functions
 - Structure constants : 3-pt functions

2-point function

$$\langle O_n(x)O_m(y)\rangle$$

Conformal dimensions

$$\langle O_n(x)O_m(y)\rangle = \frac{\delta_{mn}}{|x-y|^{2\Delta_n}}$$

- Conformal symmetry determines x,y dependence
- Need to know only conformal dim's $\Delta = \Delta_0 + \gamma$
- Exact dimension can be determined due to

INTEGRABILITY

Integrable spin chain

Operator mixing: (ex) su(2) sector

$$\left\{\operatorname{Tr}\left[Z^{L}\right],\operatorname{Tr}\left[Z^{L-1}X\right],\operatorname{Tr}\left[Z^{L-n-1}XZ^{n-1}X\right],\ldots,\operatorname{Tr}\left[X^{L}\right]\right\}$$

- Maps to Heisenberg spin chain model $|\uparrow \rangle \equiv |Z\rangle, |\downarrow \rangle \equiv |X\rangle$
 - Map: $|\uparrow \downarrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \dots \rangle + \dots \equiv \text{Tr} [ZXZXZZ + \dots] + \dots$
 - Excited states: Bethe roots

$$e^{ip_j L} = \prod_{\substack{k=1\\k\neq j}}^{M} \left[\sigma^2(u_j, u_k) \frac{u_j - u_k + i}{u_j - u_k - i} \right]$$

$$\Delta = M + \gamma = \sum_{j=1}^{M} \sqrt{1 + 16g^2 \sin^2 \frac{p_j}{2}} \qquad \xrightarrow{g \gg 1 \text{ limit}} \quad 4g \sin \frac{p_j}{2} \qquad \left(g \equiv \frac{\sqrt{\lambda}}{4\pi}\right)$$

Main Problem

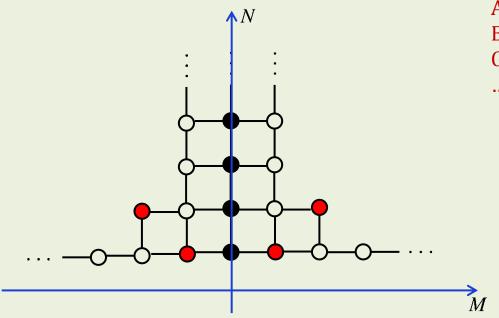
- All-loop BAE applies only to infinite size spin chain
- If it is finite size, the asymptotic BAE fails due to wrapping problem

Need a new approach based on

S-MATRIX

TBA, Y, NLIE systems

Need to solve infinitely coupled nonlinear integral equations



Arutyunov,Frolov; Bombardelli,Fioravanti,Tateo Gromov,Kazakov,Kozak,Vieira

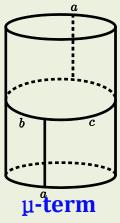
 $\ln Y_{N,M} = s \star \left[\ln(1 + Y_{N,M+1}) + \ln(1 + Y_{N,M-1}) \right] - s \star \left[\ln(1 + Y_{N+1,M}^{-1}) + \ln(1 + Y_{N-1,M}^{-1}) \right]$

Extremely complicated for strong coupling limit

Luscher correction for $\lambda \gg 1$

Ambjorn, Janik, Kristjansen; Janik, Lukowski

- Finite-size effect: "µ-term" Luscher correction
 - Interaction with a virtual particle



• Conformal dimension for a magnon state $J \gg g \gg 1$

$$\Delta \approx 4g \sin \frac{p}{2} - 16g \sin^3 \frac{p}{2} \exp \left[-\left(\frac{J}{2g \sin \frac{p}{2}} + 2\right) \right] + \dots$$

3-point function

$$\langle O_l(x_1)O_m(x_2)O_n(x_3)\rangle$$

Structure constants

$$\langle O_l(x_1)O_m(x_2)O_n(x_3)\rangle = \frac{C_{lmn}}{|x_1-x_2|^{\Delta_1+\Delta_2-\Delta_3}|x_2-x_3|^{\Delta_2+\Delta_3-\Delta_1}|x_3-x_1|^{\Delta_3+\Delta_1-\Delta_2}}$$

Conformal symmetry determines x_i dependence

- Exact results so far
 - Chiral primary operators dual to supergravity fields

Freedman, Mathur, Matusis, Rastelli Lee, Minwalla, Rangamani, Seiberg Arutyunov, Frolov

Recent interesting developments from the string theory side

Marginal deformation

Deformed CFT

Costa, Monteiro, Santos, Zoakos

$$S_{\text{New CFT}} = S_{N=4} + u \int d^4 y \, \mathcal{D}(y)$$

Two-point function of new CFT

$$\langle O(x)O(0)\rangle_{\text{New}} = \langle O(x)O(0)\rangle_{\mathcal{N}=4} - u \int d^4y \, \langle \mathcal{D}(y)O(x)O(0)\rangle_{\mathcal{N}=4} + \text{renorm}$$

$$= |x|^{-2\left[\Delta + 2\pi^2 u C_{\mathcal{D}OO} + ...\right]} \equiv |x|^{-2\Delta_{\text{New}}(u)}$$

$$2\pi^2 C_{\mathcal{D}OO} = \frac{\partial}{\partial u} \Delta_{\text{New}}(u)|_{u=0}$$

• Special case: $g^2 \rightarrow g^2 = g^2(1 - u)$: $\mathcal{D} = \mathcal{L}_{\mathcal{N}=4 \text{ SYM}}$

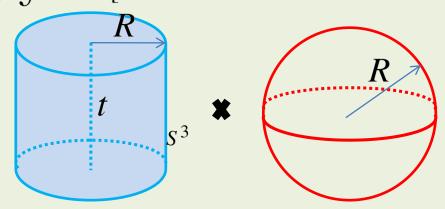
$$2\pi^2 C_{\mathcal{L}OO} = -\lambda \frac{\partial}{\partial \lambda} \Delta(\lambda)$$

Classical string theory

Superstring on AdS background

• Type IIB superstrings on $AdS_5 \times S^5$ is described by

$$S = \frac{R^2}{\alpha'} \int d\tau d\sigma \left[G_{mn}^{(S^5)} \partial_a X^m \partial^a X^n + G_{mn}^{(AdS)} \partial_a Y^m \partial^a Y^n + \text{fermions} \right]$$



Metsaev, Tseytlin (1998)

Bena, Polchinski, Roiban (2003)

Virasoro constraints

$$\dot{X}^m X'_m + \dot{Y}^n Y'_n = 0, \quad \dot{X}^m \dot{X}_m + \dot{Y}^n \dot{Y}_n + X'^m X'_m + Y'^n Y'_n = 0$$

Classically integrable nonlinear sigma model

• $AdS_5 \times S^5$ space embedding coordinates

$$X_1^2 + \dots + X_6^2 = 1,$$
 $Y_0^2 - Y_1^2 - \dots - Y_4^2 + Y_5^2 = 1$

Global coordinates

$$Y_{1} + iY_{2} = \sinh \rho \cos \psi e^{i\phi_{1}}, \qquad Y_{3} + iY_{4} = \sinh \rho \sin \psi e^{i\phi_{2}},$$

$$Y_{5} + iY_{0} = \cosh \rho e^{it}, \qquad X_{5} + iX_{6} = \cos \gamma e^{i\varphi_{3}},$$

$$X_{1} + iX_{2} = \sin \gamma \cos \theta e^{i\varphi_{1}}, \qquad X_{3} + iX_{4} = \sin \gamma \sin \theta e^{i\varphi_{2}}$$

$$(ds^{2})_{AdS_{5}} = R^{2} \left[d\rho^{2} - \cosh^{2}\rho dt^{2} + \sinh^{2}\rho (d\psi^{2} + \cos^{2}\psi d\phi_{1}^{2} + \sin^{2}\psi d\phi_{2}^{2}) \right]$$

$$(ds^{2})_{S^{5}} = R^{2} \left[d\gamma^{2} + \cos^{2}\gamma d\varphi_{3}^{2} + \sin^{2}\gamma (d\theta^{2} + \cos^{2}\theta d\varphi_{1}^{2} + \sin^{2}\theta d\varphi_{2}^{2}) \right]$$

- 6 isometry coordinates t, ϕ_1 , ϕ_2 , φ_1 , φ_2 , φ_3
- Conserved charges

$$E \qquad S_{pq} = \sqrt{\lambda} \int_{0}^{2\pi} \frac{d\sigma}{2\pi} (Y_{p}\dot{Y}_{q} - Y_{q}\dot{Y}_{p}), \quad J_{mn} = \sqrt{\lambda} \int_{0}^{2\pi} \frac{d\sigma}{2\pi} (X_{m}\dot{X}_{n} - X_{n}\dot{X}_{m})$$

$$(S_{50}, S_{12}, S_{34}|J_{12}, J_{34}, J_{56}) \quad \leftrightarrow \quad (\Delta, S_{1}, S_{2}|J_{1}, J_{2}, J_{3})$$

AdS/CFT: Energy of string configuration = Conformal dim.

Giant magnon

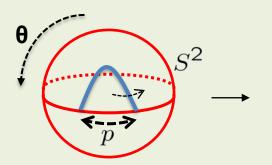
Classical string configuration in R x S²

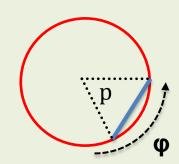
Hofman, Maldacena

$$Y_5 + iY_0 = e^{it},$$

$$X_1 + iX_2 = \cos \theta e^{i\varphi},$$

$$X_3 = \sin \theta$$





$$\cos\theta = \frac{\sin\frac{p}{2}}{\cosh\xi}, \quad \tan\varphi = \tan\frac{p}{2}\tanh\xi, \quad \xi \equiv \frac{\sigma - \cos\frac{p}{2}\tau}{\sin\frac{p}{2}}$$

- Energy of the string $E = 4g \sin \frac{P}{2}$
- Sine-Gordon solition after Pohlmeyer reduction
- Dual to magnons in the SYM spin chain · · · ↑↑ ↓ ↑↑ · · ·

Dyonic giant magnon

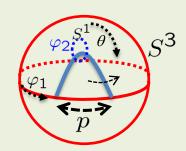
GM in R x S³

Chen, Dorey, Okamura

$$Y_5 + iY_0 = e^{it},$$

$$X_1 + iX_2 = \cos \theta e^{i\varphi_1},$$

$$X_3 + iX_4 = \sin \theta e^{i\varphi_2}$$

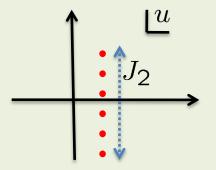


– Energy-charge relation:

$$E - J_1 = \sqrt{J_2^2 + \frac{\lambda}{\pi^2} \sin^2 \frac{p}{2}},$$

 $J_2 \sim \sqrt{\lambda} >> 1$

- Complex sine-Gordon solition
- Dual to magnon bound states "Bethe string"



Finite-size GM in R x S²

Elliptic solution

Arutyunov, Frolov, Zamaklar; Klose, McLoughlin

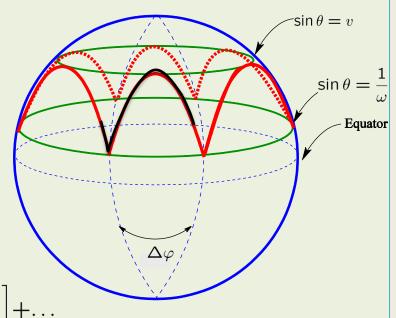
$$\begin{split} \cos\theta &= \sqrt{1-v^2} \mathrm{dn} \left(\frac{1}{\sqrt{\eta}} \frac{\sigma - v\omega\tau}{\sqrt{1-v^2\omega^2}}, \eta \right), \quad \eta = \frac{1-\omega^2 v^2}{\omega^2 (1-v^2)} \\ &\approx \frac{\sin\frac{p}{2}}{\cosh\xi}, \quad \left[\eta \to 1, \quad v \to \cos\frac{p}{2}, \quad \omega \to 1 \right] \end{split}$$

Correction to E-J relation

$$J_1 \gg \sqrt{\lambda} \gg 1$$

$$E-J \approx 4g \sin \frac{p}{2} - 16g \sin^3 \frac{p}{2} \exp \left[-\left(\frac{J}{2g \sin \frac{p}{2}} + 2 \right) \right] + \dots$$

Finite-size effect



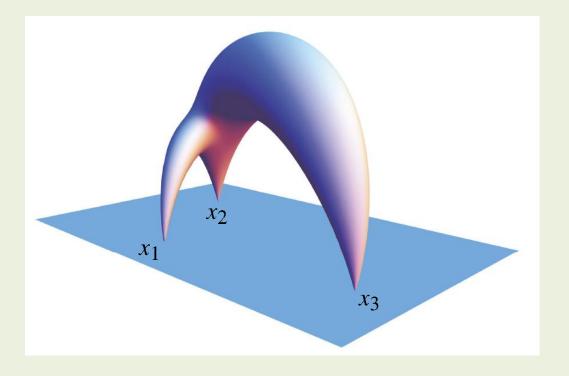
Direct computation of 2-point function



3-point function

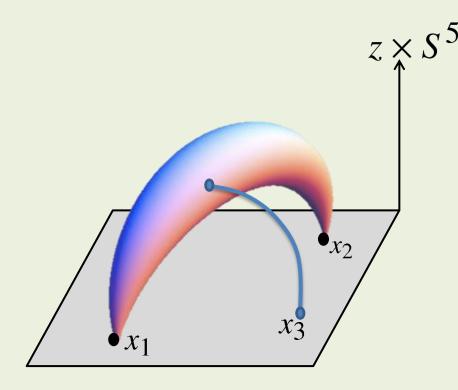
General 3-point function

$$\langle V_H(x_1)V_H(x_2)V_H(x_3)\rangle$$



Simpler 3-point function

• One light mode $\langle V_H(x_1)V_H(x_2)V_L(x_3)\rangle$



Zarembo
Costa,Monteiro,Santos,Zoakos
Roiban, Tseytlin
Hernandez
Arnaudov, Rashkov
Georgiou
Park, Lee
Buchbinder, Tseytlin
Bak, Chen, Wu
Bissi, Kristjansen, Young, Zoubos

$$\frac{J_{1,2}}{\sqrt{\lambda}} \to \infty$$

Formulation

Insertion of a light vertex does not change H background

$$C_{LHH} = \frac{\langle V_H(x_1)V_H(x_2)V_L(0)\rangle}{\langle V_H(x_1)V_H(x_2)\rangle} \qquad \propto \qquad V_L(0)[\text{H background}]$$

L= dilaton ← dual to → SYM Lagrangian

$$V_L(0) = c_d \int_{-\infty}^{\infty} d\tau_e \int_{-L}^{L} d\sigma (Y_4 + Y_5)^{-4} \left[z^{-2} (\partial_+ x_m \partial_- x^m + \partial_+ z \partial_- z) + \partial_+ X_k \partial_- X_k \right]$$

Classical background

Our problem: H = finite-size (D)GM

$$\frac{J_{1,2}}{\sqrt{\lambda}}$$
 = arbitray, $\sqrt{\lambda} \to \infty$

Neumann-Rosochatius reduction

Arutyunov, Russo, Tseytlin

• A string in $R_t \times S^3 \rightarrow \rho = 0, \ \gamma = \frac{\pi}{2}, \ \varphi_3 = 0$

$$t = \kappa \tau$$
, $\cos \theta(\sigma, \tau) = r_1(\xi)$, $\sin \theta(\sigma, \tau) = r_2(\xi)$, $\varphi_j(\sigma, \tau) = \omega_j \tau + f_j(\xi)$, $\xi = \alpha \sigma + \beta \tau$

Effective 1d Lagrangian (Neumann-Rosochatius):

$$f'_{j} = \frac{1}{(\alpha^{2} - \beta^{2})^{2}} \left(\frac{C_{j}^{2}}{r_{j}^{2}} + \beta \omega_{j} \right)$$

$$L_{NR} = (\alpha^{2} - \beta^{2}) \sum_{j=1}^{2} \left[r'_{j}^{2} - \frac{1}{(\alpha^{2} - \beta^{2})^{2}} \left(\frac{C_{j}^{2}}{r_{j}^{2}} + \alpha^{2} \omega_{j}^{2} r_{j}^{2} \right) \right] + \Lambda \left(\sum_{j=1}^{2} r_{j}^{2} - 1 \right)$$

Conserved charges and Virasoro constraints

$$E = \frac{\lambda}{2\pi} \frac{\kappa}{\alpha} \int d\xi, \quad J_j = \frac{\lambda}{2\pi} \frac{1}{\alpha^2 - \beta^2} \int d\xi \left(\frac{\beta}{\alpha} C_j + \alpha \omega_j r_j^2 \right), \qquad \sum_{j=1}^2 C_j \omega_j + \beta \kappa^2 = 0$$

Eq. of motion

$$\theta'(\xi) = \pm \frac{1}{\alpha^2 - \beta^2} \left[\kappa^2 \left(\alpha^2 - \beta^2 \right) - \frac{C_1^2}{\sin^2 \theta} - \frac{C_2^2}{\cos^2 \theta} - \alpha^2 \left(\omega_1^2 \sin^2 \theta + \omega_2^2 \cos^2 \theta \right) \right]^{1/2}$$

- GM: $C_2 = 0$, $\omega_2 = 0$
- DGM: $C_2 = 0$, $\omega_2 \neq 0$
- Gamma-deformed (Lunin-Maldacena) $C_2 \neq 0$, $\omega_2 \neq 0$

Change of integration variable

$$\int_{-L}^{L} d\sigma \quad \to \quad 2 \int_{\theta_{\min}}^{\theta_{\max}} \frac{d\theta}{\theta'}$$

Finite-size GM

Energy and charges

ergy and charges
$$E = \frac{\sqrt{\lambda}}{\pi} \sqrt{(1 - v^2)(1 - \epsilon)} \mathbf{K}(1 - \epsilon),$$

$$J_1 = \frac{\sqrt{\lambda}}{\pi} \sqrt{\frac{1 - v^2}{1 - v^2 \epsilon}} [\mathbf{K}(1 - \epsilon) - \mathbf{E}(1 - \epsilon)],$$

$$p = 2v \sqrt{\frac{1 - v^2 \epsilon}{1 - v^2}} \left[\frac{1}{v^2} \Pi \left(1 - \frac{1}{v^2} | 1 - \epsilon \right) - \mathbf{K}(1 - \epsilon) \right]$$

$$E - J_1 \equiv \Delta = \frac{\sqrt{\lambda}}{\pi} \sqrt{\frac{1 - v^2}{1 - v^2 \epsilon}} \left[\mathbf{E}(1 - \epsilon) - \left(1 - \sqrt{(1 - v^2 \epsilon)(1 - \epsilon)} \right) \mathbf{K}(1 - \epsilon) \right]$$

$$v, \epsilon \iff J_1, p$$

Structure constant derived from above formula for general J₁

$$C_{LHH} = \frac{16}{3}c_d \sqrt{\frac{1-v^2}{1-\epsilon}} \left[\mathbf{E}(1-\epsilon) - \epsilon \mathbf{K}(1-\epsilon) \right]$$

Consistency with SYM side

Take λ-derivative

$$\frac{dJ_1}{d\lambda} = \frac{dp}{d\lambda} = 0 \quad \rightarrow \quad \frac{dv}{d\lambda} = -\frac{v(1 - v^2)\epsilon \left[\mathbf{E}(1 - \epsilon) - \mathbf{K}(1 - \epsilon)\right]^2}{2\lambda(1 - \epsilon)\left[\mathbf{E}(1 - \epsilon)^2 - v^2\epsilon\mathbf{K}(1 - \epsilon)^2\right]},$$

$$\frac{d\epsilon}{d\lambda} = -\frac{\epsilon \left[\mathbf{E}(1 - \epsilon) - \mathbf{K}(1 - \epsilon)\right]\left[\mathbf{E}(1 - \epsilon) - v^2\epsilon\mathbf{K}(1 - \epsilon)\right]}{\lambda\left[\mathbf{E}(1 - \epsilon)^2 - v^2\epsilon\mathbf{K}(1 - \epsilon)^2\right]}$$

Mathematica computation yields

$$\lambda \frac{\partial (E - J_1)}{\partial \lambda} = \frac{\sqrt{\lambda}}{2\pi} \sqrt{\frac{1 - v^2}{1 - \epsilon}} \left[\mathbf{E} (1 - \epsilon) - \epsilon \mathbf{K} (1 - \epsilon) \right]$$
$$2\pi^2 C_{LHH} = -\lambda \frac{\partial}{\partial \lambda} \Delta(\lambda)$$

Finite-size DGM

Energy and charges

$$E = \frac{\sqrt{\lambda}}{\pi} \frac{\kappa(1 - v^2)}{\sqrt{1 - u^2} \sqrt{\chi_p}} \mathbf{K} (1 - \epsilon),$$

$$J_1 = \frac{\sqrt{\lambda}}{\pi} \frac{\sqrt{\chi_p}}{\sqrt{1 - u^2}} \left[\frac{1 - v^2 \kappa^2}{\chi_p} \mathbf{K} (1 - \epsilon) - \mathbf{E} (1 - \epsilon) \right],$$

$$J_2 = \frac{\sqrt{\lambda}}{\pi} \frac{u \sqrt{\chi_p}}{\sqrt{1 - u^2}} \mathbf{E} (1 - \epsilon)$$

$$p = \frac{2v}{\sqrt{1 - u^2} \sqrt{\chi_p}} \left[\kappa^2 1 - \chi_p \Pi \left(-\frac{\chi_p}{1 - \chi_p} (1 - \epsilon) | 1 - \epsilon \right) - \mathbf{K} (1 - \epsilon) \right]$$

$$\epsilon = \chi_p / \chi_m,$$

$$\chi_p, \chi_m = \frac{1}{2(1 - u^2)} \left\{ q_1 + q_2 - u^2 \pm \sqrt{(q_1 - q_2)^2 - \left[2(q_1 + q_2 - 2q_1 q_2) - u^2 \right] u^2} \right\},$$

$$(q_1 = 1 - \kappa^2, \quad q_2 = 1 - v^2 \kappa^2)$$

$$v, \quad u, \quad \kappa \iff J_1, \quad J_2, \quad p$$

Structure constant

$$\begin{split} C_{LHH} &= \frac{8}{3} c_d \frac{1}{\sqrt{(1-u^2)\kappa^2 \chi_p (1-\chi_p)}} \Big\{ (1-\chi_p) \Big[2(1-u^2)\chi_p \mathbf{E}(1-\epsilon) \\ &- \Big(u^2 - \Big(1-v^2 \Big)\kappa^2 + (1-u^2)(1+\epsilon)\chi_p \Big) \mathbf{K}(1-\epsilon) \Big] \\ &- \Big[1-v^2 \kappa^4 - \chi_p - (1-\chi_p) \Big(\epsilon \chi_p + u^2 (1-\epsilon \chi_p) \Big) \Big] \Pi \left(-\frac{\chi_p}{1-\chi_p} (1-\epsilon) |1-\epsilon \right) \Big\} \end{split}$$

Too complicated for Mathematica

$$\frac{dJ_1}{d\lambda} = \frac{dJ_2}{d\lambda} = \frac{dp}{d\lambda} = 0 \quad \rightarrow \quad \frac{dv}{d\lambda}, \frac{du}{d\lambda}, \frac{d\kappa}{d\lambda} \quad \rightarrow \quad \frac{d}{d\lambda}(E - J_1)$$

• Instead, small ϵ -expansion for $J_1 \gg J_2 \sim \sqrt{\lambda} \gg 1$

$$E - J_{1} = \Delta_{dyonic} = \Delta_{\infty}(p) - \frac{8\lambda \sin^{4}(p/2)}{\pi \Delta_{\infty}(p)} \exp \left[-\frac{2(J_{1} + \Delta_{\infty}(p)) \Delta_{\infty}(p) \sin^{2}(p/2)}{J_{2}^{2} + \frac{\lambda}{\pi^{2}} \sin^{4}(p/2)} \right] \qquad \Delta_{\infty}(p) = \sqrt{J_{2}^{2} + \frac{\lambda}{\pi^{2}} \sin^{2}(p/2)}$$
Hatsuda, Suzuki

$$2\pi^2 C_{LHH} = -\lambda \frac{\partial}{\partial \lambda} (E - J_1)$$
 Yes

Deformed (N=1) SYM

- AdS/CFT duality seems to hold in the deformed SYM
 - Conformal symmetry
 - Integrability: Exact S-matrix

CA, Bajnok, Bombardelli, Nepomechie

 String theory: target space is deformed by TsT map "Lunin-Maldacena" background

$$S^5 \rightarrow S^5_{\gamma}$$

NR reduction method also works here

Finite-size GM in Lunin-Maldacena

Energy and charges

$$E = \frac{\sqrt{\lambda}}{\pi} \frac{(1 - v^2)\sqrt{W}}{\sqrt{1 - u^2}} \frac{\mathbf{K}(1 - \epsilon)}{\sqrt{\chi_p - \chi_n}},$$

$$J_1 = \frac{\sqrt{\lambda}}{\pi \sqrt{1 - u^2}} \left[\frac{1 - \chi_n - v(vW - uK)}{\sqrt{\chi_p - \chi_n}} \mathbf{K}(1 - \epsilon) - \sqrt{\chi_p - \chi_n} \mathbf{E}(1 - \epsilon) \right],$$

$$J_2 = \frac{\sqrt{\lambda}}{\pi \sqrt{1 - u^2}} \left[\frac{u\chi_n - vK}{\sqrt{\chi_p - \chi_n}} \mathbf{K}(1 - \epsilon) + u\sqrt{\chi_p - \chi_n} \mathbf{E}(1 - \epsilon) \right]$$

$$2\pi n = \frac{2}{\sqrt{1-u^2}} \left\{ \frac{vW - uK}{(1-\chi_p)\sqrt{\chi_p - \chi_n}} \Pi\left(-\frac{\chi_p - \chi_m}{1-\chi_p}|1 - \epsilon\right) - \left[v\left(1 - \tilde{\gamma}K\right) + \tilde{\gamma}u\chi_n\right] \frac{\mathbf{K}(1-\epsilon)}{\sqrt{\chi_p - \chi_n}} - \tilde{\gamma}u\sqrt{\chi_p - \chi_n}\mathbf{E}(1-\epsilon) \right\},$$

$$p = \frac{2}{\sqrt{1-u^2}} \left\{ \frac{K}{\chi_p\sqrt{\chi_p - \chi_n}} \Pi\left(1 - \frac{\chi_m}{\chi_p}|1 - \epsilon\right) - \left[uv + \tilde{\gamma}v\left(vW - uK\right) - \tilde{\gamma}\left(1 - \chi_n\right)\right] \frac{\mathbf{K}(1-\epsilon)}{\sqrt{\chi_p - \chi_n}} - \tilde{\gamma}\sqrt{\chi_p - \chi_n}\mathbf{E}(1-\epsilon) \right\}$$

small ε-expansion for one spin

$$E - J_1 = \frac{\sqrt{\lambda}}{\pi} \sin \frac{p}{2} - \frac{4\sqrt{\lambda}}{\pi} \sin^3 \frac{p}{2} \cos \left(2\pi n - \frac{2\pi\tilde{\gamma}}{\sqrt{\lambda}} J_1 \right) \exp \left(-2 - \frac{2\pi J_1}{\sqrt{\lambda} \sin(p/2)} \right)$$

$$\Phi \qquad \qquad \text{CA. Bozhilov:}$$

CA, Bozhilov; (cf) Bykov, Frolov

Structure constant

$$\begin{split} C_{LHH}^{\tilde{\gamma}} &= \frac{16}{3} c_d \frac{1}{\sqrt{(1-u^2)W(\chi_p-\chi_n)}} \left[\left((1-u^2)(1-\tilde{\gamma}K) - \tilde{\gamma}uvW \right) \sqrt{\chi_p-\chi_n} \mathbf{E}(1-\epsilon) \right. \\ &+ \left. \left(\left(W(1-\tilde{\gamma}uv\chi_n) - (1-\tilde{\gamma}K) \left(1-(1-u^2)\chi_n \right) \right) \mathbf{K}(1-\epsilon) \right) \right] \end{split}$$

small ε-expansion for

$$\frac{\sqrt{\lambda}}{\pi}\sin\frac{p}{2} - 4\sin^3\frac{p}{2}\left(\frac{\sqrt{\lambda}}{\pi}\cos\Phi + J_1\csc\frac{p}{2}\cos\Phi - \tilde{\gamma}J_1\sin\Phi\right)e^{-2-\frac{\pi J_1}{\sqrt{\lambda}\sin\frac{p}{2}}}$$

$$2\pi^2 C_{LHH} = -\lambda \frac{\partial}{\partial \lambda} (E - J_1)$$
 Yes

Concluding remarks

- We compute exact (any J's) three-point correlation functions of a dilaton and two string states which corresponds to strong coupling SYM elementary excitations
 - ✓ Giant magnon
 - ✓ Dyonic giant magnon
 - ✓ Both for N=4 and N=1 SYM
- Still early stage
 - ✓ Quantum corrections ?
 - ✓ <HHH>?

Janik, Wereszczynski

✓ <MMM>

Klose, McLoughlin

✓ Integrability ? (perturbative)

Escobedo, Gromov, Sever, Vieira

Relation to scattering amplitudes?