Generalized Mathieu Equation and Liouville TBA: An unpublished work of Alexei Zamolodchikov

Vladimir Bazhanov

Australian National University

CFT and Integrable Models Istituto Nazionale di Fisica Nucleare, Bologna

Introduction

- Integrable QFT in 2D
 - Infinite volume: (a) exact mass spectrum of asymptotic particle states. (b) factorized S-matrix, Yang-Baxter equation.
 - infinite number of "Local Integrals of Motion" (LIM): all momenta of particles remains unchanged after scattering
 - Finite volume: The problem is to find egenvalues and eigenstates of Local Integrals of Motion (should reproduce scattering states in the infinite volume limit)
 - Thermodynamic Bethe Ansatz (TBA), Truncated Conformal Space Approach (TCSA), "Excited states TBA"
- High Energy Limit (SG model as an example: soliton mass $M \to 0$).
 - \bullet Conformal Field Theory. Symmetry group $\Gamma = \mathsf{Vir} \otimes \overline{\mathsf{Vir}}.$ Virasoro algebra $\mathsf{Vir}:$

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}(n^3 - n)\delta_{m+n,0}, \quad c = 1 - 6(\beta - \beta^{-1})^2$$

• Local Integral of Motion $\{I_k\}$, $k=1,2,\ldots,\infty$, form an (infinite-dimensional) Abelian subalgebra of Vir. The problem is to find eigenvalues and eigenstates.

September 2011

Introduction (continued)

- CFT analogs of Baxter commuting **T** and **Q**-operators.
 - T(E) and Q(E) are entire functions of the spectral parameter E,

$$\mathbf{T}(E)\mathbf{Q}(E) = \mathbf{Q}(q^2 E) + \mathbf{Q}(q^{-2} E), \quad q = e^{i\pi\beta^2},$$

$$Q(E_k) = 0, \quad \Rightarrow \quad \frac{Q(q^{+2}E_k)}{Q(q^{-2}E_k)} = -1; \qquad E_k \sim k^{2(1-\beta^2)}, \quad k \to \infty$$

• Spectral zeta-function

$$Z(\nu) \sim \frac{1}{\Gamma(i\nu/2 - 1/2)} \sum_{k=1}^{\infty} E_k^{-i\nu/2(1-\beta^2)}, \qquad I_{2n-1} = Z(i(2n-1)), \quad n = 1, 2, \dots$$

- Connection of integrable models with ODE (Voros, Dorey-Tateo, BLZ, Suzuki, Dunning, Fendley, Mangazeev, Fioravanty, Fateev, Lukyanov, S.Zamolodchikov)
 - \bullet there is one-to-one correspondence between eigenstates of LIM in the Verma module of the Virasoro algebra with c<1 and potentials for 1D Schrödinger equation (rather simple potentials)
 - The zeroes E_k are the corresponding energy eigenvalues

Verma module of Vir:

$$\mathcal{V}(\Delta, c): L_n | \Delta >= 0, \quad n > 0; \quad L_0 | \Delta >= \Delta | \Delta >$$

 $| \Delta >, \quad L_{-1} | \Delta >, \quad L_{-1}^2 | \Delta >, \quad L_{-2} | \Delta >, \quad \dots$

Differential equation for the vacuum state $|\Delta>$:

$$\left\{-\partial_x^2 + \frac{l(l+1)}{x^2} + x^{2\alpha}\right\}\psi(x) = E\psi(x), \quad \alpha = \beta^{-2} - 1, \quad \Delta = \frac{(2l+1)^2\beta^2}{16} + \frac{c-1}{24}$$

One regular and one essential singular points. Change of variables

$$\left\{ -\partial_y^2 + e^{2y/\beta^2} - Ee^{2y} + (l + \frac{1}{2})^2 \right\} \psi(y) = 0$$

For higher states there are algebraic potentials with parameters determined by the locus of stationary points for some Calogero-Moser system.

Verma module of Vir:

$$\mathcal{V}(\Delta, c): L_n|\Delta>=0, n>0; L_0|\Delta>=\Delta|\Delta>$$

$$|\Delta>, L_{-1}|\Delta>, L_{-1}^2|\Delta>, L_{-2}|\Delta>, \dots$$

Differential equation for the vacuum state $|\Delta>$:

$$\left\{-\partial_x^2 + \frac{l(l+1)}{x^2} + x^{2\alpha}\right\}\psi(x) = E\psi(x), \quad \alpha = \beta^{-2} - 1, \quad \Delta = \frac{(2l+1)^2\beta^2}{16} + \frac{c-1}{24}$$

One regular and one essential singular points. Change of variables

$$\left\{ -\partial_y^2 + e^{2y/\beta^2} - Ee^{2y} + (l + \frac{1}{2})^2 \right\} \psi(y) = 0$$

For higher states there are algebraic potentials with parameters determined by the locus of stationary points for some Calogero-Moser system.

Question: Why there is a connection of the Bethe Ansatz to ODE?

Alyosha Zamolodchikov remarked: "Here is a distinctive smell of sulphur!!!"

Alyosha Zamolodchikov at Rutgers University, 1999(?)

Verma module of Vir:

$$\mathcal{V}(\Delta, c):$$
 $L_n|\Delta>=0, n>0;$ $L_0|\Delta>=\Delta|\Delta>$
 $|\Delta>, L_{-1}|\Delta>, L_{-1}^2|\Delta>, L_{-2}^2|\Delta>, \dots$

Differential equation for the vacuum state $|\Delta>$:

$$\Big\{-\partial_x^2 + \frac{l(l+1)}{x^2} + x^{2\alpha}\Big\}\psi(x) = E\psi(x), \quad \alpha = \beta^{-2} - 1, \quad \Delta = \frac{(2l+1)^2\beta^2}{16} + \frac{c-1}{24}$$

One regular and one essential singular points. Change of variables

$$\Big\{ - \partial_y^2 + e^{2y/\beta^2} - Ee^{2y} + (l + \frac{1}{2})^2 \Big\} \psi(y) = 0$$

Generalized Mathieu equation (GME)

Replace $\beta \to ib$ (transition from SG/CFT with $c \le 1$ to ShG/Liouville CFT with $c \ge 25$)

$$\Big\{ - \partial_y^2 + P^2 + e^{(\theta - y)b} + e^{(\theta + y)/b} \Big\} \psi(y) = 0, \qquad \Delta = \frac{P^2}{4} + \frac{c - 1}{24}$$

Two essential singular points. Becomes the (modified) Mathieu equation for self-dual point b=1. Assume P,b>0, $\theta=\text{real}$.

Functional equations for connection coefficients

$$\left\{ -\partial_y^2 + P^2 + e^{(\theta - y)b} + e^{(\theta + y)/b} \right\} \psi(y) = 0,$$

Two uniquely defined decaying solutions

$$V_0(y) \simeq (b/u)^{\frac{1}{2}} e^{-u}, \qquad u = 2b^{-1}e^{(\theta-y)b/2}, \qquad y \to -\infty,$$

 $U_0(y) \simeq (bv)^{-\frac{1}{2}} e^{-v}, \qquad v = 2b e^{(\theta+y)/2b}, \qquad y \to +\infty$

Spectral problem: find the values $\{\theta_k\}$, $k = 1, 2, \ldots$, such that

$$X(\theta_k) = 0,$$
 $X(\theta) = Wr[V_0, U_0],$ (spectral determinant)

For these values the solution $U_0(y) \sim V_0(y)$ decays at both infinities.

Use the symmetry transformations to generate new solutions

$$\begin{array}{lll} \Omega_b: & y \to y + \pi i b, & \theta \to \theta + i \pi b \,, \\ & \Omega_{1/b}: & y \to y - \pi i / b, & \theta \to \theta + i \pi / b \\ & U_1(y) & = & \Omega_b \; U_0(y), & V_0(y) & = & \Omega_b \; V_0(y), \\ & U_0(y) & = & \Omega_{1/b} \; U_0(y), & V_1(y) & = & \Omega_{1/b} \; V_0(y), \end{array}$$

Consider all possible Wronskians among these solutions

$${\rm Wr}[U_1,U_0] = -i, \quad {\rm Wr}[V_1,V_0] = i, \quad X(\theta) = {\rm Wr}[V_0,U_0], \quad X(\theta+i\pi/b) = [V_1,U_0], \ldots$$

Linear relations

$$iV_0(y) = X(\theta + i\pi b) U_0(y) - X(\theta) U_1(y),$$

 $iV_1(y) = X(\theta + i\pi Q) U_0(y) - X(\theta + i\pi/b) U_1(y)$

Functional relation

$$X(\theta) X(\theta + i\pi Q) - X(\theta + i\pi b) X(\theta + i\pi/b) = 1, \qquad Q = b + 1/b$$

Note that $X(\theta)$ is an entire function of θ . Define

$$T(\theta) = X(\theta + i\pi b) X(\theta - i\pi(b - b^{-1})) - X(\theta + i\pi(b + b^{-1})) X(\theta - i\pi b)$$

and also $\widetilde{T}(\theta) = T(\theta)|_{b \leftrightarrow 1/b}$. It is just another connection coefficient:

$$T(\theta)U_0(y) = \Omega_b U_0(y) + \Omega_b^{-1} U_0(y) = U_1(y) + U_{-1}(y)$$

Baxter TQ-equations

$$T(\theta)X(\theta) = X(\theta + i\pi b) + X(\theta - i\pi b), \qquad T(\theta) = T(\theta + i\pi/b),$$

$$\widetilde{T}(\theta)X(\theta) = X(\theta + i\pi/b) + X(\theta - i\pi/b), \qquad \widetilde{T}(\theta) = \widetilde{T}(\theta + i\pi b)$$

Further properties of $X(\theta)$: WKB approximation, expansions in e^{θ} , etc.

Massless sinh-Gordon/Liouville TBA

$$\begin{split} \frac{MR}{2}e^{\theta} &= \varepsilon + \varphi * \, \log{(1+e^{-\varepsilon})}, \qquad MR = 2\pi \\ 2\pi\varphi(\theta) &= \frac{1}{\cosh{(\theta-i\pi a)}} + \frac{1}{\cosh{(\theta+i\pi a)}}, \qquad a = \frac{1-b^2}{1+b^2} \end{split}$$

Asymptotic condition

$$\varepsilon(\theta) = -4PQ\theta + \text{const}, \qquad \theta \to -\infty$$

The quantity

$$X(\theta) = \exp \Big[-\frac{\pi e^{\theta}}{2 \sin{(\pi b/Q)}} + \int \frac{\log{(1 + \exp{^{-\varepsilon(\theta')}})}}{\cosh{(\theta - \theta')}} \frac{d\theta'}{2\pi} \Big]$$

satisfy the above functional equation and

$$X(\theta)\Big|_{\theta\to\infty} \sim \exp\Big(-\frac{\pi e^{\theta}}{2\sin(\pi b/Q)}\Big), \quad X(\theta)\Big|_{\theta\to-\infty} \sim \exp(-2PQ\theta + \text{const}),$$

Spectral zeta-function

$$Z(\nu) = \int_0^\infty dP P^{-i\nu} \frac{d}{dP} \log X(\theta, P)$$

contains all information about vacuum eigenvalues of LIM in Liouville CFT with $c \geq 25.$

Mathieu equation (its theory is yet to be completed)

$$\partial_x^2 u + [P^2 + 2e^\theta \cos x]u(x) = 0, \qquad b = 1$$

Bloch wave solutions

$$u_{\pm}(x) = e^{\pm \mu x} f_{\pm}(x), \qquad f_{\pm}(x) = \sum_{k=-\infty}^{\infty} \hat{f}_{\pm}(k) e^{ikx}$$

The exponent $\mu = \mu(\theta, P)$ is a function of P and θ . It satisfies

$$\sin^2 \pi \mu = \Delta_H(P, e^{\theta}) \sin^2 \pi P,$$

where $\Delta_H(P, e^{\theta})$ is the Hill determinant

$$\Delta_H(P,e^{\theta}) = \det \begin{pmatrix} \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \gamma_{-2} & 1 & \gamma_2 & \cdots & \cdots & \cdots \\ \cdots & \cdots & \gamma_0 & 1 & \gamma_0 & \cdots & \cdots \\ \cdots & \cdots & \cdots & \gamma_2 & 1 & \gamma_2 & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \end{pmatrix}, \qquad \gamma_{2n} = \frac{e^{\theta}}{4n^2 - P^2}.$$

Alyosha showed that

$$2\cos 2\pi\mu(\theta, P) = T(\theta, P) = \frac{X(\theta + i\pi) + X(\theta - i\pi)}{X(\theta)}$$

where $T(\theta, P)$ is the eigenvalue of the CFT analog of Baxter's **T**-operator on the Virasoro

vaccum state with $\Delta = P^2/4 + 1$ and c = 25.

Recent developments

- \bullet minimal surfaces in AdS^5 with polygonal boundary (Alday, Gaiotto, Maldacena)
- Factorized basis of states in CFT (Alba, Fateev, Litvinov, Tarnopolsky)
- Generalization to massive QFT: Sine(h)-Gordon model (Lukyanov-Zamolodchikov) Simple potential $x^{2\alpha}$ is replaced by a solution of GSG equation

$$\partial_z \partial_{\overline{z}} \eta - e^{2\eta} + p(z)p(\overline{z})e^{-2\eta} = 0, \qquad p(z) = z^{2\alpha} - \mu, \quad \alpha = 1/\beta^2 - 1$$

$$\eta(z, \overline{z}) = l \log(z\overline{z}) + \eta_0 + \dots, \qquad z, \overline{z} \to 0$$

Eigenvalues of the **Q**-operators, $Q_{\pm}(\theta)$ appear as connection coefficients for

$$[\partial_z^2 - u(z,\overline{z}) - e^{2\theta}p(z)]\psi = 0, \quad u(z,\overline{z}) = (\partial_z \eta)^2 - \partial_z^2 \eta$$

In particular, when $\beta \to 0$, $\alpha = \infty$, the polynomial

$$p(z) = \mu$$

is constant and GSG reduce the Painlevé III equation. Then eigenvalues $Q_{\pm}(\theta)$ are solutions of the Mathieu equation!

• advances in the theory of ODE (the classics did not know the Bethe Ansatz).

Is there a physical reason behind the correspondence between integrable QFT and ODE?

Alyosha Zamolodchikov at Rutgers University, 1999(?)

