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Thus, geometric constraints can induce effective long-range interactions
(a well-known fact, actually).

As a result, thermodynamic limit may depend on boundary conditions.

In particular, it may happen that:
« order parameter acquires spatial dependence;
. free-energy and entropy densities acquire spatial dependence;

« Spatial phase separation occurs, with emergence of regions of
order and disorder sharply separated by some smooth curves.

Let us make this more definite:



Domino tiling of a square domino:= 2 x 1 tile

http:/faculty.uml.edu/jpropp



N x N Square Aztec Diamond of Order N

(N=38)



Domino tiling of an Aztec diamond N = 64
[Jockush-Propp-Shor '95]

x http:/faculty.uml.edu/jpropp



The Arctic Circle Theorem
[Jockush-Propp-Shor '95]

Ve > 0, dN such that “almost all” (i.e. with probability
P > 1 —¢) randomly picked domino tilings of AD(N)

have a temperate region whose boundary stays
uniformly within distance ¢/N from the circle of radius

N/V2.



The Arctic Circle Theorem
[Jockush-Propp-Shor '95]

Ve > 0, dN such that “almost all” (i.e. with probability
P > 1 —¢) randomly picked domino tilings of AD(N)

have a temperate region whose boundary stays
uniformly within distance ¢/N from the circle of radius

N/V2.

Fluctuations:

. boundary fluctuations N!/3 [Johansson'00]

« fluctuations of boundary intersection with main diagonal obey Tracy-
Widom distribution [Johansson'02]

« after suitable rescaling, boundary has limit as a random function,
governed by an Airy stochastic process [Johansson'05]

> fluctuations are described by random matrix models
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« Boxed plane partitions [Cohn-Larsen-Propp'98]



« Corner melting of a crystal [Ferrari-Spohn '02]
« Plane partitions [Cerf-Kenyon'01][Okounkov-Reshetikhin'01]



« Skewed plane partitions[Okounkov-Reshetikhin '05]
[Boutillier-Mkrtchyan-Reshetikhin-Tingley '10]



So we have seen:

« domino tilings;

plane partitions; skewed plane partitions ...
Actually they are all avatars of the same model, dimer covering of regular planar
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bipartite lattices’, exhibiting emergence of phase separation, limit shapes, frozen
boundaries /arctic curves, and fluctuations governed by Random Matrix models.
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implications in algebraic geometry and algebraic combinatorics.

The model has been solved in full generality
[Kenyon, Sheffield, Okounkov, '03-'05] with deep



So we have seen:

« domino tilings;

« rhombi tilings;

« partitions; plane partitions; skewed plane partitions ...
Actually they are all avatars of the same model, dimer covering of reqular planar
bipartite lattices’, exhibiting emergence of phase separation, limit shapes, frozen
boundaries /arctic curves, and fluctuations governed by Random Matrix models.
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Remark:

All these examples can be viewed as
2-d discrete free fermions

(or as dimer coverings with uniform probability)

The model has been solved in full generality R STl

[Kenyon, Sheffield, Okounkov, '03-'05] with deep
implications in algebraic geometry and algebraic combinatorics.



Introducing a non-uniform probability

(i.e., an interaction between dimers)
[Elkies-Kuperberg-Larsen-Propp'92]

Assign weight ¢ /2 to:

> 0

and weights a and b, respectively, to:

> Six-vertex model with :

« free boundary conditions (square)
« Domain Wall b.c. (Aztec Diamond)

An exactly solvable model of statistical mechanics




The six-vertex model
[Lieb '67] [Sutherland'67]

e



The six-vertex model
[Lieb '67] [Sutherland'67]

R
+ =



The six-vertex model
[Lieb '67] [Sutherland'67]

R A
+ = -
a a b b C C

a = sin(A+n)
b = s?n(Q)\n—n)
A232+2[;2b :

I




The Domain Wall six-vertex model

[Korepin '82]
+ =
a a b b c c

.
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With Domain-Wall b.c., for A =0 we have the Arctic Circle Theorem.

And for generic A and t? And for generic regions? And what about fluctuations?



Domain Wall six-vertex model: numerical results
[Eloranta'99] [Zvonarev-Syluasen'04] [Allison-Reshetikhin'05]

i

i

S

A = 0 (free fermions)

[Allison-Reshetikhin'05]

Area of disordered region increases with A.



(Anti-ferroelectric regime)

White pixels represents c-vertices [Allison-Reshetikhin'035]



Domain Wall six-vertex model: analytic results
(For generic A, not so many: translation invariance is broken!)

. Partition function:

« |-K determinant representation and Hankel determinant
representation for Zy [Korepin'82] [lzergin'87]

« Large N behaviour of Z :
Bulk free energy: DWBC # PBC
[Korepin Zinn-Justin'00] [Zinn-Justin'01]
[Bleher-Fokin-Liechty'05-'09]

« Boundary correlation functions:

« one-point boundary correlation function
[Bogoliubov-Pronko-Zvonarev'02]



One-point boundary correlation function

HN(F) -

ST




Domain Wall six-vertex model: analytic results
(For generic A, not so many: translation invariance is broken!)

« Partition function:

« |-K determinant representation and Hankel determinant
representation for Zy [lzergin'87]

« Large N behaviour of Zy :
Bulk free energy: DWBC # PBC
[Korepin Zinn-Justin'00] [Zinn-Justin'01]
[Bleher-Fokin-Liechty'05-'09]

« Boundary correlation functions:

« one-point boundary correlation function
[Bogoliubov-Pronko-Zvonarev'02]

« two-point boundary correlation function [FC-Pronko'05]
(all these again in terms of N x N determinants)

« Bulk correlation functions: Nothing!




Fn(r,s)  Emptiness Formation Probability (EFP)
r [FC-Pronko'08]




Fn(r,s)  Emptiness Formation Probability (EFP)
r [FC-Pronko'08]

(7, 5)

. Stepwise behaviour in correspondence of the Arctic curve
« Ability to discriminate only the top-left portion of the curve



Multiple Integral Representation for EFP

[FC-Pronko'08]

Define the generating function for the 1-point boundary correlator:

N
hn(z) ==Y Hn(r)z™',  hy(1)=1.

Now define, fors =1, ..., N
h(s)(zl e Zs) = ! det {h/\/_ +k(z)(zj — 1)k_1z.5_k}
NATD =l Az, Zs) 1<j,k<s ST J
« The functions hs\f)(zl ..... zs) are totally symmetric polynomials of order N — 1 in
21,y e v, Zs

« They define a new, alternative representation (with respect to Izergin-Korepin
determinant) for the partition function Zy,.

Two important properties of hs\f)(zl ..... Zs):

hs\f)(zl ..... zs—1,0) = hN(O)hﬁ:i)(zl ..... Zs—1),



Multiple Integral Representation for EFP

[FC-Pronko'08]

The following Multiple Integral Representationis valid (r,s=1,2,..., N ).
Fre) _ ]{ ]{ 5, H [(£2 = 2tA)z + 1)
sl(2m)5a5<s s o i ZG-1p

hy s(z1, ..., hs (u(z1), ..., o
[_[ tzzzk_MZJ —os(@, - z)hes(u(2). - u(z:))

J7#k

e z—1
where u(z) = (@ oA

Ingredients:

« Quantum Inverse Scattering Method to obtain a recurrence relation, which is
solved in terms of a determinant representation on the lines of lzergin-Korepin
formula;

« Orthogonal Polynomial and Random Matrices technologies to rewrite it as a
multiple integral.

Remark:

Similar expressions occurs for correlation function in ASEP [Tracy-Widom'08-"11].



Scaling limit of EFP [FC-Pronko'10]

Evaluate: F(x,y):= Nlim Fn(xN, yN) x,y €[0,1]

in the limit: N,r.s— o0 =X N=Y
using Saddle-Point method.

NB1:
« s X s Vandermonde determinant
« s-orderpoleatz=1 — Penner Random Matrix model

[Penner'88]
NB2:

« By construction, in the scaling limit, EFP is 1 in the frozen region, and 0 in the
disordered one, with a stepwise behaviour in correspondence of the Arctic curve.

« From the structure of the Multiple Integral Representation, such stepwise
behaviour can be ascribed to the position of the SPE roots with respect to the pole
at z = 1.

« The considered generalized Penner model allows for condensation of "almost all'
SPE roots at z = 1. [Tan'92] [Ambjorn-Kristjansen-Makeenko'94]

Condensation of "almost all'

<l Arctic Curves
SPE roots at z=1 ic Curv



Mathematically, the condition of total condensation (i.e. the Arctic curve) is given by:

y X yt L 1
z—1 =z t?2z—2At+1 N—=xN

must have two coinciding real roots in interval: z € [1, oo] .

82 In hN(Z) =0

Remarks:

« Arctic curve depends ONLY on the BOUNDARY correlation function!
(a miracle of integrability)
1

. We thus need to evaluate  lim —0, In hy(z) for generic A, t:
N—oo N

disordered regime, |A| < 1 [FC-Pronko'10];
anti-ferroelectric regime, A < —1 [FC-Pronko-Zinn-Justin'10].

« It appears that the Arctic curve is: algebraic, in “roots of unity' cases;
transcendent, otherwise.
[FC-Pronko'10],[FC-Pronko-Noferini'11]

« This differs from the dimer covering case, where only algebraic curves appear, for
any choice of lattice and b.c. [Kenyon-Okounkov-Sheffield'03-'05].



Evaluation of hy(z) (disordered regime |A| < 1)

[FC-Pronko'10]
For|A| < 1, we have

ey o~ [snvA=m) ] [sin(¢ + A = m)sin(v) 1" o)
P o lvsin(k—n)] [sinv(CJrA—n)sinC]

where
_sin(A+mn)sin(¢ +A—n) T
2(6) = sin(A—n)sin(C+A+n)’ and i T — 27
B _sin(A —1n)
A = cos?2n t_sm()\—l—n)

NB: z€[l,+00) correspondsto ¢ [0, 7 — X —n)



Evaluation of hy(z) (anti-ferroelectric regime |A| < —1)

[FC-Pronko-Zinn-Justin'10]
For A < —1, the large N behaviour of hy(z) is given by

P2 (v (X +77))] § [sinh@ + A+ 001 (7€) ] " o

MWAN:”[RQMKA+n) V1(7(C + A +m))sinh ¢

where Jacobi Theta function ¥; has nome g = e™ /(7).

We have
sinh(n — A) sinh(n 4+ A + () 7'('
= — d = .
20 = = Gan( £ 0) sinh(n = A —¢) o 7= o
B _sinh(n + A)
A = —cosh2n = Sinh(n — )

NB: z < [1,+00) correspondsto ¢ €[0,\+17)



In both cases we get the Arctic curve in parametric form ( ¢ € [0, (maz] )
1

T B A= 2mP(C,20) — B+ A —n, 2m)B(C, 2n)
< {[Z(C A —n) =¥ T(v¢, v (A —n))] D(¢, 2n)
—[@(¢. A = 1) = v2(v¢. v (A =) ¥(¢.2n)}
1
YT B+ A= 2m)P(C,20) — B+ A —n, 2m)B(C, 2n)
XA =n) = VZ (¢ v (A =) B+ A —n,2n)
— [D(¢, A = 1) = vP(v (. YA =) (C+ A —n,2n)} .
Where V= 7r—ar7crcosA
O(j1) = sin(2n)

sin(u +n) sin(u — 1) -
U(¢) :==cot( —cot(( + A —n) —~ycoty( +ycoty(C+ A —n),
(Disordered regime)

or nh(20) (-1<A<1)
- sinh(2n
D) = sinh(n — p) sinh(n + @)

V() := cot( — coth(n — A — ()

 0i(vQ) | (€ +A =)
"0 TG EA =)

(Anti-ferroelectric regime)
NB: (A tz) — (nAC) (—oo< A< —1)




Red curve: disordered regime [FC-Pronko'10]
Green curve: anti-ferroelectric regime [FC-Pronko-Zinn-Justin'10]

NB: A=0 —>  Arctic Circle
A=— —> straight line



(2x — 1)+ (2y — 1)* —4xy =1, x,y €[0,3].
[FC-Pronko'10]

ASMs: N=500

199 samples

A=1/2

Ben Wieland (January 2008) http://www.math.brown.edu/~wieland



ASMs: N=1500 /\ — 1/2

10 samples [FC-Pronko'10]

Ben Wieland http://www.math.brown.edu/~wieland
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Use the theory provided by [Kenyon-






Six-vertex model with generic (fixed) BC?
[FC-Sportiello, in progress]

Our previous result on the Arctic curve in a square domain can be rephrased as
follows:

The arctic curve is the geometric caustic (envelope) of the family of straight lines:

1 (2 — 2At + 1)

(z—1)(t?z — 24t + 1) T ||_r>noo N@ Inhy(z) =0, z € [1, +00)

Questions:

« What is the geometrical meaning of this family of straight line?
- why the constant term is determined by the boundary correlator hy(z)?

- what determines the angular coefficient of these lines?

Understanding this would provide:
« an alternative (geometrical) derivation of the Arctic curve;

« a geometrical strategy to attack the problem of Arctic curves in generic
domains.



Some numerical results
[FC-Sportiello, in progress]

From now on we restrict to the case of A = % and t = 1.

Pictures are produced with a C code based on a version kindly provided by Ben
Wieland, exploiting the so-called "Coupling From The Past' algorithm.
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= So the Arctic curve on the N x (N — 1) lattice with a
*z bottom heavy edge at site r is the usual Arctic plus a i
' straight tangent line crossing the boundary at r. =~

This is also observed in a variety
of more general situation.
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Probability of having a weighted
directed path from X to Z
(with weights given by 6VM)




Maximizing the above probability with respect to X, one obtains a family of straight
lines, parameterized by z :

1 (t? —2At + 1) 1
—_ R | _8Z| h == 0, 11
Y oz —aar 1) T A woe Inn(z) 2 € [14o0)

which we immediately recognize! The point is that this ‘geometrical' construction
interpretation holds for generic domains!

Thus on generic domains the problem of computing the
Arctic curve is reduced to the evaluation of the (generating
function of the) boundary correlation function, hy(z) .



Does this really work?

« Checking our recipe in two cases where the boundary correlation function
hn(z) is available, we have reproduced:

- the Arctic circle of the rhombus tiling of an hexagon
- the Arctic curve of the DW 6VM for generic values of A and t

« On the particular domain:

the boundary correlator hy(z) can be

evaluated numerically, and the
corresponding Arctic curve worked out
from our recipe matches numerical data.

« Forthe 6VM at A = 1/2 on a particular tetravalent graph, made of 3 bundles

crossing each other (introduced in [Cantini-Sportiello'10]), the boundary
correlator can be worked out thanks to a corrollary of Razumov-Stroganov
correspondence. The Arctic curve worked out according to the above recipe
matches numerical data.

So, any further evaluation of hy(z) on different domains is welcome!



Question 1: Fluctuations

Fluctuations of the Arctic curve are driven by the evaporation of SPE solutions from
the logarithmic well (Penner potential of Random Matrices), just like in the A=0
case. From universality considerations, Tracy-Widom behaviour, and the Airy
process of the Arctic circle [Johansson'05] are again expected.



(Anti-ferroelectric regime)

White pixels represents c-vertices [Allison-Reshetikhin'035]



Question 1: Fluctuations

Fluctuations of the Arctic curve are driven by the evaporation of SPE solutions from
the logarithmic well (Penner potential of Random Matrices), just like in the A=0
case. From universality considerations, Tracy-Widom behaviour, and the Airy
process of the Arctic circle [Johansson'05] are again expected.

What is the D/AF phase separation curves?
What are its fluctuations?
New universality class?



Question 2: polarization
(one-point correlation function)




Row Configuration Probability

[FC-Pronko'11]



Question 3: Other approaches (CFT ?)

« At least in the disordered regime, —1 < A <1, the model is critical and has a
field-theory description (¢ =1 CFT) in the scaling limit.

« Of course, the boundary condition is not conformal at all; nevertheless a field-

theory approach could provide a useful, and perhaps even more powerful
alternative.

How to rephrase our problem in field-theory language?
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