
2005-12-31 

Course Name 
More Description About the Course 

Your Name 
Your Title 

1st Line of Your Organization 

2nd Line of Your Organization 

On the structure of typical states of 
a disordered Richardson model and  

many-body localization 
 

14-09-2011 

Andrea De Luca 
Sissa -  Trieste 

In collaboration with: 
F. Buccheri (SISSA) 
A. Scardicchio (ICTP) 



2 

Talk Outline 

What do we mean by many-body localization 
transition? 

Why an integrable model? 

The Richardson model and an algorithm for its solution 

In quest of an order parameter 

The structure of the many-body quantum state 

Is it delocalized or not? 

The role of integrability: Mazur's inequality and 
integrability breaking 

Conclusions 
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The many-body localization transition 

In 1958, P. Anderson came out with a groundbreaking 
paper: disorder gives localization → No conductivity 

What happens if we put interactions? 

Basko, Aleiner & Altshuler showed (cond-
mat/0506617v2) a transition is still there at finite 
temperature 

Pal & Huse studied the XXZ model in random field: 
localization transition even at infinite temperature 

Anderson localization in the Hilbert space 

Physical interpretation 

Local energy 
 excitation 

Will it 
spread after 
some time? 
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The Richardson model and its spin-representation 

The Richardson model can be seen as a fully-
connected XY model with random field: 

 

 

It belongs to the family of Gaudin models, solvable by 
the tecnique of: Algebraic Bethe Ansatz 

We look for quantum states of the form 

 

 

Imposing that they are eigenstates of the Richardson 
hamiltonian, we get the Bethe-Ansatz equations: 

 

 

HOW TO DEAL WITH IT? 

Fully-connected 

Integrable 

Disordered 
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The standard approach to the Richardson equation 

 

Analytic solutions? Only for M less than 2! 

Numerical solutions? Known algorithms typically: 

 start from g=0 (non-interacting case) where all the 
solutions are known as all the possible subsets of 
the set of fields  

 slowly increase the value of g using the Newton 
method to find the interacting solutions 

 change variables to “smooth” around the critical 
points 

This works extremely well for the groundstate and the 
low-excited states. 
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The general eigenstate case: the polynomial trick 

For high energy states such procedure fails! 

 

 

 

 

 

The algebraic equations transform into differential 
equation for the polynomial 

We used a mixed approach: 

solve the Richardson equations 

compute the coefficients of the polynomial 

extrapolate them toward the new g value 

use the roots of the new polynomial as guess for the 
Richardson equation 

Solutions are 
always real or 

complex 
conjugate 

The associated 
polynomial will 

have real 
coefficients 

IDEA 

Critical points: 
 where roots bump! 

Evolution with g of 
the coefficients 

Evolution of 
the roots (real 
part) 
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In quest of an order parameter 

Now we have the eigenstates: we managed to work 
till 40 spins. But... 

How to define delocalization? 

Non-interacting states are localized 

How to quantify if interaction is able to make them 
delocalize? 

IPR is the 
number of 

significative 
states 

L is the 
average 

Hamming 
distance 

L Hilbert state  
structure for  

N = 6 
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The q Edward-Anderson order parameter 

 

  
Hardly computable: 

it involves 
exponential number 

of terms. 
We tried important 
sampling through 
Montecarlo and it 

worked! 

N determinant 
of N/2xN/2 
matrices: 

computable! 

Other interpretation of the qEA order parameter: 

it is the average survival 
fraction of the initial 

magnetization after very long 
times. 
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Numerical results and an almost sure guess 

  

 

Pointwise 
extrapolation of q 

Linear relation with 
LogI: states are 
omogeneously 

spreading 

Extremely accurate fit! 
We could guess the 
analytic expression 
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To be or not to be localized? 

With a finite coupling each eigenstate is spread over 
an exponential number of classical states 

But just an infinitesimal fraction of the whole system is 
covered (the entropy is always smaller than log2, 
actually close to its half) 

A local excitation will remain localized forever (q != 0) 

The Montecarlo dynamics recalls the one obtained by 
random percolation on the hypercube 

The system remains localized on a larger and 
larger region, uniformly spread in a much larger 

hilbert space 
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The role of integrability:Mazur's inequality 

The strange behavior we found may be due to: 

The space-structure of the model: fully-connected! 

Integrability 

To quantify the role of the second, we use the Mazur's 
inequality: 

If the conserved charges of 

the integrable model are 
local, local observables will 

be localized forever 
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Summary and conclusions 

We developed a new algorithm to numerically deal with 
the Richardson equation for general fields and arbitrary 
energy states 

Through a Montecarlo procedure we were able to 
perform a random walk in a quantum state 

We obtained such an extraordinary fit that we could 
guess the analytic expression for the qEA, but the proof 
is missing 

The Richardson model seems to be always localized: 
we analyzed the role played by integrability using the 
Mazur's inequality 

We considered through exact diagonalization the effect 
of integrability breaking: the existence of a transition is 
however questionable 


