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Quantum systems out of equilibrium

Idea:
A. Consider a quantum many-particle system with Hamiltonian H
B. Prepare the system in a state |y that is not an eigenstate.

C. Time evolution |Y(t)) = exp(-iHt) [P)

D. Study time evolution of local observables {PH)IOX)IP(+))
in the thermodynamic limit.



Quantum systems out of equilibrium

Why is this interesting?

A. It explores a new regime of Quantum Theory: properties of
states other than ground state/equilibrium states + their
immediate vicinities (low lying excitations).

B. In the thermodynamic limit new physics may occur.

C. Is the time evolution towards a stationary state?

D. If so, is there a general principle that tells us how to
evaluate averages of observables in these states (c.f. Gibbs
distribution).



Experiments: "Quantum Newton’s Cradle”

T. Kinoshita, T. Wenger and D.S. Weiss, Nature 440, 900 (2006)

40-250 8’Rb atoms in a 1D optical trap
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Essentially unitary
time evolution.
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- 1D system "relaxes” very slowly in time, to a strange distribution.
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- 2D and 3D systems relax quickly: Thermalization occurs in ~3 collisions.
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“*Quantum Newton’s Cradle”

T. Kinoshita, T. Wenger and D.S. Weiss, Nature 440, 900 (2006)

Suggestion: the 1D case is special because the system is
"close to being integrable”

N
Without trap:  Hx=-3"2 42 Y 6a, - )

Has infinite number of local higher conservation laws,
solvable by Bethe Ansatz (Lieb+Liniger ‘63)

My opinion: experiments not sensitive to integrability, but to
dimensionality (difficulty of mtm relaxation in D=1)



“*Quantum Newton’s Cradle”

T. Kinoshita, T. Wenger and D.S. Weiss, Nature 440, 900 (2006)

Suggestion: the 1D case is special because the system is
"close to being integrable”

. N 62
Without '|'I"C1PZ Hy = — —5 + 2¢ Z O(z; — xp).

Ox*
j=1 3 N>j>k>1

Has infinite number of local higher conservation laws,
solvable by Bethe Ansatz (Lieb+Liniger ‘63)

Question: is the nonequilibrium evolution of integrable models
special and if so, how?



“Thermalizafion" (Deutsch ‘91, Srednicki '94)

Belief: "generic” system “thermalize” at infinite times.

Density matrix: p=lp><yl
Reduced density matrix: ps=tra [W><yl

If A is infinite then pe=exp(-Pesr Hs)/Zs




Rigol et al (2007): Integrable systems do not thermalize.

Let I be local integrals of motion [In, In]=0

Late time behaviour described Pge=exp(-2 Am Im)/Zgc
by generalized Gibbs ensemble: Zg=tr exp(-Z Am Inm)

limi—e (YHIOX)W(E)) =tr[pgs O(X)]

Am fixed by trlpgs Iml= <P(O)! Im IW(0)>



Transverse Field Ising Chain

Simplest paradigm of a T=0 Quantum Phase Transition

Hamiltonian: =—J) [0}0%,, + hoF]
71=1
Zo symmetry: rotation by m around x-axis. o; — —0; , a=y,2.
. T4
Phase Diagram: Quantum
Critical Point
order parameter: (0;) /
((o7) #0 always) 0 : R




Transverse Field Ising Chain

Jordan-Wigner local

transformation

. . nonlocal
to spinless fermions:
Fourier+Boqoliubov Qg
37 ¢ e 1) = Rh(k)( tk)
transformations: - a'

1

_ T
ﬁ H = ; €n(k) [akak - 5‘ en(k) = 2J4/1 + h? — 2hcos(k).

Ground State: a;|0) = 0. | This will be our initial state



Quantum Quench h—h’
: 1
New Hamiltonian: H(W) =) ew(k) [ﬁ{ﬁk — 5]
L
Time evolution: Br(t) = et (RNt

New vs old Bogoliubov (;3k ) U (aqf_k)

: , U(k) = R, (k)R (k
fermions: 5L, (k) = Ky (k) Rn (k)

Time evolution of oX (Barouch, McCoy & Dresden ‘70)

T 1 —i(k—p)J ., Qp .
o5 (t) = —5 Y _e "7 (o}, ai) S(k.p,1) (af_p) S(k,p,t) a known 2x2 matrix.

k.p
L— o0 i straightforward calculation

Ola*(H)]o) > C(h')+0(+372).

t—o0



Thermalization?
Gibbs ensemble with Terr  po = Le H )/ Tert

Tesr fixed by tr [pc H(R')] = (0|H(h')|0)

lim tr[pg 0% (t)] # C(). — no thermalization.



How about the Generalized Gibbs Ensemble?

Conserved Quantities:  I(k) = 8] 5k

BEEIPES SAP Y (05

Density Matrix: PeC = Z -
Fix Lagrange OLT(R)I0) = tr [pya 1(K)]
Multipliers:

. 1 S H(K) Tase(k
Like a mode-dependent temperature rsc = zge = /T

lim tr[pge 0%(t)] = C(R). = GGE works.



(Rossini et al’10)

The role of lOCdll'l'Y (Fioretto and Mussardo ‘10)

0% is quite special (non generic): it is local w.r.t. fo the fermion
excitations and couples only to 2-particle states.

oZ is non-local (couples to states with arbitrary number of
fermions) and its difficult to say from numerical studies

whether 2-point function thermalizes (particularly for small
quenches).

Is it possible that certain operators integrable
models thermalize and others dont?



Our work: 1 and 2-point functions of o=

Calculations are difficult. Developed two analytic methods
based on (a) determinants (b) form factors.

Result 1: t=co behaviour for arbitrary h,h’

Jim (0]075(t) 07,,()|0) ~ exp (=£/€) ,£> 1,

¢ a simple function of hh'

—In[z, 4+z_+ 3z 2] if h, ' < 1
¢ ' =< In(minfh,hy]) —In[zy +2_ + Az 2_] ifhh >1
—Infzy +2_], else.
!/ ’2
T, = %[min(h',h'_l) + 1])[min(h, A1) £ 1] hy — 1+hh+ \/(h —1)(h? —1)

h' + h



Our work: 1 and 2-point functions of o=

Calculations are difficult. Developed two analytic methods
based on (a) determinants (b) form factors.

Result 1: t=co behaviour for arbitrary h,h’

Jim (0]075(t) 07,,()|0) ~ exp (=£/€) ,£> 1,

Compatible with GGE, but not with thermalization!

Interpretation in terms mode-dependent temperature: (cf. Calabrese/

Cardy '07)

v [Tdk__, .. [Tdk en (k) /
£ _/O 7{ (k)_/(; —In [tanhQTeH(k)]. (h,h'<1)

m

tanh Eh'(k)l :

thermal correlation length: & =/w % o7

o 2T



Result 2: Time dependence for late times

Quenches within the ordered phase (h<l to h'<l):

h'h — (R + h)cosk + 1

AL =
S en(K)en ()

(0|0 (t)|0) ~ exp (t /07r %6;1 (k) In [cos(Ak)])

(approaches zero although we remain in the ordered phase).

" dk

. ?eh: (k) In [cos Ak] .

Mode-dependent decay rate: 7' = —r-l(k):/

o T

Decay rate and correlation

length related by §(k) = ew (k) 7(K).

Can understand approach to stationary state in terms of GGE



Quenches within the ordered phase (h<l to h'<l):

(0|07 (t) 07, ¢(t)|0) ~exp |t / %26;1,(13) In [cos(Ag)] + ¢ / % In [cos(Apg)]

2te, , (k)<£ 2te} , (k)>€

£=20]
. £=40
Asymptotics ]
VS B
Numerics: :
0 Ol.5 ll IIS 2




Approach I: Block-Toeplitz Determinants

Express o;(t) in terms of the “old” Bogoliubov fermions .

Wick's thm
(Olo7(t) 07, ,(¢)]0) > P(T)

Tin = (gf:: :?;:i) Block-Toeplitz matrix

fi

z/ ﬁe"‘“ sin (Ag) sin (2€,(k)t)

2m

a = / %e’ik(l"l) [cos (Ag) +isin (Ay) cos (2€,(k)t) ]



Approach I: Block-Toeplitz Determinants

Express 0;(t) in terms of the “old” Bogoliubov fermions .

Wick's thm
(Olo7(t) 07, ,(¢)]0) > P(T)

Multi-dim
stationary
phase approx.

v

exp (t / %26;1,(1;:) In [cos(Ag)] +n / % In [cos(Ak)])

2te;l,(k)<n 2te;l,(k)>n



Approach II: “Form-Factor” Sums
Consider a quench within the ordered phase h,h'1

1. Go to large, finite volume L

2. initial state = one of the two ground states

=7 |O>Ri|0 NS CYqIO)R:O Im = —pm, Mm=-—35

7N

periodic bcs  antiperiodic bc's
on fermions on fermions

3. Express this in terms of the new Bogoliubov fermions

0)ns = exp (z‘ZK(q)ﬁ;ﬁiq) 0)ns

p>0

O)r = exp (ZZK (Q)ﬁlﬁiq) 0)R

qg>0

K(q) = tan

[9h' (9) :

— 9h(‘1)]

.....



4. Lehmann representation in terms of new Bogoliubov fermions

o0

Ns{(0loZ,(D)[0)r = ) ]

[.n=0

.....

> HK(’%‘)

{]i[l K (pi)}

NS(’_kl) k’l? “ ey _knaknlofn(tﬂpl? —P1,5---5DP1, _pl>R




4. Lehmann representation in tferms of new Bogoliubov fermions

00 i n i [
wsO @0 = > —7 > |[[Kk) [HK(p,-)}

i=1

form factors are known exactly for the lattice model

(Vaidya&Tracy 1978, vonGehlen, Iorgov, Pakuliak, Shadura & Tykhyy 2008)



4. Lehmann representation in terms of new Bogoliubov fermions

o0

[ n ) [
Ns(OloBI0)r = D>, — 11 K (k) [HK@»]

l’nzo : : kl ..... kn

NS<—k11k1a°"1—knakn|01zn(t)|pla—pla'"?plw—pl>R
Ki )
—_ 1
_k; — —_
=2 o :
— n!l :
kn ((/ PI
T ——
= \n

Idea: Consider K(q) as expansion parameter:

_ (01BiBe|0) _ _ K*(q)

00) ~ 1+K2(q) density of excitations

n(q) small < K(g) uniformly small in g



4. Lehmann representation in tferms of new Bogoliubov fermions

o0

i n ) [
nsOL @O0 =Y == > T Kk [HK@»]

l’nzo kl ..... kn

NS<—A'1 klﬂ--1—knaknlafn(t)|pla—pla'"ﬁpla—pl>R
Ki ,
\)S 1
_k; — 5
=2 -
— n! l :
kn ((/ PI
o ——
- nN\n

1. Dominant contributions from even orders K?2"

2.Leading contributions at order K2" from terms
Wiﬂ'l n=| Clnd {kl,...,kn}z {Pl,...,Pn}



sum these to all orders =

Haor e ([ 5 (K0 + 0k )

- Low density expansion of the full answer.
- Works well everywhere except very close to QCP.
- 2-point function calculated similarly (more complicated).



Conclusions

1. Nonequilibrium evolution in integrable models appears to be
special.

2. Nonlocality does not save the day. ©®

3. "Form factor” approach generalizes to “integrable” quenches
(initial state < integrable boundary conditions)

= mass quench (m=co to m finite) in sine-Gordon

4. What happens for more general initial states (e.g. break
translation invariance) ? = Ising chain.



