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Quantum systems out of equilibrium

A. Consider a quantum many-particle system with Hamiltonian H

B. Prepare the system in a state |ψ〉that is not an eigenstate.

C. Time evolution |ψ(t)〉= exp(-iHt) |ψ〉

D. Study time evolution of local observables 〈ψ(t)|Ο(x)|ψ(t)〉
    in the thermodynamic limit.

Idea:



Quantum systems out of equilibrium

Why is this interesting?

A. It explores a new regime of Quantum Theory: properties of 
states other than ground state/equilibrium states + their 
immediate vicinities (low lying excitations).

B. In the thermodynamic limit new physics may occur.

C. Is the time evolution towards a stationary state?

D. If so, is there a general principle that tells us how to 
evaluate averages of observables in these states (c.f. Gibbs 
distribution).



Experiments: “Quantum Newton’s Cradle”
T. Kinoshita, T. Wenger and D.S. Weiss, Nature 440, 900 (2006)

40-250 87Rb atoms in a 1D optical trap

Essentially unitary
 time evolution.



- 1D system “relaxes” very slowly in time, to a strange distribution.

0τ 2τ 4τ 9τ

Thermalization occurs in ~3 collisions. - 2D and 3D systems relax quickly:



“Quantum Newton’s Cradle”

T. Kinoshita, T. Wenger and D.S. Weiss, Nature 440, 900 (2006)

Suggestion: the 1D case is special because the system is  
“close to being integrable”

Without trap:

Has infinite number of local higher conservation laws, 
solvable by Bethe Ansatz (Lieb+Liniger ’63)

My opinion: experiments not sensitive to integrability, but to 
dimensionality (difficulty of mtm relaxation in D=1)



“Quantum Newton’s Cradle”

T. Kinoshita, T. Wenger and D.S. Weiss, Nature 440, 900 (2006)

Suggestion: the 1D case is special because the system is  
“close to being integrable”

Without trap:

Has infinite number of local higher conservation laws, 
solvable by Bethe Ansatz (Lieb+Liniger ’63)

Question: is the nonequilibrium evolution of integrable models 
special and if so, how?



“Thermalization”

Belief: “generic” system “thermalize” at infinite times.

Density matrix: ρ=|ψ›‹ψ|
Reduced density matrix: ρB=trA |ψ›‹ψ| A

B
If A is infinite then ρB=exp(-βeff HB)/ZB

(Deutsch ’91, Srednicki ’94)



Integrable systems do not thermalize.Rigol et al (2007):

ρgG=exp(-Σ λm Im)/ZgG

ZgG=tr exp(-Σ λm Im)

Let Im be local integrals of motion [Im, In]=0

Late time behaviour described 
by generalized Gibbs ensemble:

limt→∞〈ψ(t)|Ο(x)|ψ(t)〉=tr[ρgG Ο(x)]

tr[ρgG Im]=〈ψ(0)| Im |ψ(0)〉λm fixed by



Transverse Field Ising Chain

Hamiltonian:

T

h1
0

0

〈σz〉≠0

Quantum 
Critical Point

Phase Diagram:

Simplest paradigm of a T=0 Quantum Phase Transition

order parameter:

(          always)



Transverse Field Ising Chain

Jordan-Wigner
transformation

to spinless fermions:

Fourier+Bogoliubov
transformations:

local
nonlocal

Ground State: This will be our initial state



Quantum Quench h→h’

New Hamiltonian:

New vs old Bogoliubov 
fermions:

Time evolution of σx (Barouch, McCoy & Dresden ’70)

Time evolution:

S(k,p,t) a known 2x2 matrix.

straightforward calculationL→∞

t→∞
C(h’)+O(t-3/2).〈0|σjx(t)|0〉



Teff fixed by

→ no thermalization.

Thermalization?

Gibbs ensemble with Teff ρG = 1
Z e−H(h�)/Teff

tr [ρG H(h�)] = �0|H(h�)|0�



How about the Generalized Gibbs Ensemble?

Conserved Quantities:

Density Matrix:

⇒ GGE works.

Fix Lagrange 
Multipliers:

�0|I(k)|0� = tr [ρgG I(k)]

Like a mode-dependent temperature ρgG = 1
ZgG

e−
P

k H(k)/Teff(k)



The role of locality (Rossini et al’10)

σx is quite special (non generic): it is local w.r.t. to the fermion 
excitations and couples only to 2-particle states.

σz is non-local (couples to states with arbitrary number of 
fermions) and it’s difficult to say from numerical studies 
whether 2-point function thermalizes (particularly for small 
quenches).

Is it possible that certain operators integrable 
models thermalize and others don’t?

(Fioretto and Mussardo ’10)



Our work: 1 and 2-point functions of σz

Calculations are difficult. Developed two analytic methods 
based on (a) determinants (b) form factors.

Result 1: t=∞ behaviour for arbitrary h,h’

ξ a simple function of h,h’:



Our work: 1 and 2-point functions of σz

Calculations are difficult. Developed two analytic methods 
based on (a) determinants (b) form factors.

Result 1: t=∞ behaviour for arbitrary h,h’

Compatible with GGE, but not with thermalization!
Interpretation in terms mode-dependent temperature:

thermal correlation length:

(c.f. Calabrese/
Cardy ‘07)

(h,h’<1)



Quenches within the ordered phase (h<1 to h’<1):

(approaches zero although we remain in the ordered phase).

Result 2: Time dependence for late times

Mode-dependent decay rate:

Decay rate and correlation 
length related by

Can understand approach to stationary state in terms of GGE



Quenches within the ordered phase (h<1 to h’<1):

Asymptotics 
vs

Numerics:



Approach I: Block-Toeplitz Determinants

 Express       in terms of the “old” Bogoliubov fermions 

Wick’s thm
Pf(T)

Block-Toeplitz matrix



Approach I: Block-Toeplitz Determinants

 Express       in terms of the “old” Bogoliubov fermions 

Wick’s thm
Pf(T)

Multi-dim
stationary

phase approx.



Approach II: “Form-Factor” Sums

1. Go to large, finite volume L

2. initial state = one of the two ground states

Consider a quench within the ordered phase h,h’<1

periodic bc’s
on fermions

antiperiodic bc’s
on fermions

2. initial state = one of the two ground states

3. Express this in terms of the new Bogoliubov fermions



2. initial state = one of the two ground states

4. Lehmann representation in terms of new Bogoliubov fermions
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form factors are known exactly for the lattice model

(Vaidya&Tracy 1978, vonGehlen, Iorgov, Pakuliak, Shadura & Tykhyy 2008)



2. initial state = one of the two ground states

4. Lehmann representation in terms of new Bogoliubov fermions
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Idea: Consider K(q) as expansion parameter:

density of excitations

n(q) small ⇔ K(q) uniformly small in q



2. initial state = one of the two ground states

4. Lehmann representation in terms of new Bogoliubov fermions
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1. Dominant contributions from even orders K2n

2.Leading contributions at order K2n from terms 
with n=l and {k1,...,kn}= {p1,...,pn}



2. initial state = one of the two ground states

sum these to all orders ⇒

- Low density expansion of the full answer.
- Works well everywhere except very close to QCP.
- 2-point function calculated similarly (more complicated).



Conclusions

1. Nonequilibrium evolution in integrable models appears to be 
special.
2. Nonlocality does not save the day. ☹
3. “Form factor” approach generalizes to “integrable” quenches

(initial state ⇔ integrable boundary conditions)

⇒ mass quench (m=∞ to m finite) in sine-Gordon

4. What happens for more general initial states (e.g. break
 translation invariance) ? ⇒ Ising chain.


