Alday-Gaiotto-Tachikawa conjecture and Integrability

based on papers with Alexey Litvinov, Vasiliy Alba and Grigoriy Tarnopolsky

2D CFT (review)

• We have the complete set of local fields $\{\mathcal{O}_k(\xi)\}$

$$\mathcal{O}_i(\xi)\mathcal{O}_j(0) = \sum_k C_{ij}^k(\xi)\mathcal{O}_k(0).$$

- ullet The structure constants $C^k_{ij}(\xi)$ are subject to associativity condition
- ullet In CFT the set $\{\mathcal{O}_k(\xi)\}$ can be decomposed as

$$\{\mathcal{O}_k(\xi)\} = \sum_n [\Phi_n].$$

ullet The ancestor of each family Φ_n is called primary field

$$\Phi_n(z,ar{z}) \longrightarrow \left(rac{dw}{dz}
ight)^{oldsymbol{\Delta}_n} \left(rac{dar{w}}{dar{z}}
ight)^{ar{\Delta}_n} \Phi_n(w,ar{w}), \quad z o w(z), \quad ar{z} o ar{w}(ar{z})$$

 \bullet Other representatives of $[\Phi_n]$ are called descendant fields

$$\Delta_n^{(k)} = \Delta_n + k, \qquad \bar{\Delta}_n^{(\bar{k})} = \bar{\Delta}_n + \bar{k},$$

 \bullet In two dimensions the conformal group is $Vir \otimes \bar{Vir}$

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}(n^3 - n)\delta_{n+m,0},$$

$$[\bar{L}_n, \bar{L}_m] = (n-m)\bar{L}_{n+m} + \frac{c}{12}(n^3 - n)\delta_{n+m,0},$$

ullet And hence the conformal family is a tensor product $[\Phi_n] = \pi_n \otimes \bar{\pi}_n$

$$[\Phi] = {\Phi, \Phi^{(-1)}, \Phi^{(-1,-1)}, \Phi^{(-2)}, \dots} \otimes {\{\dots\}}$$

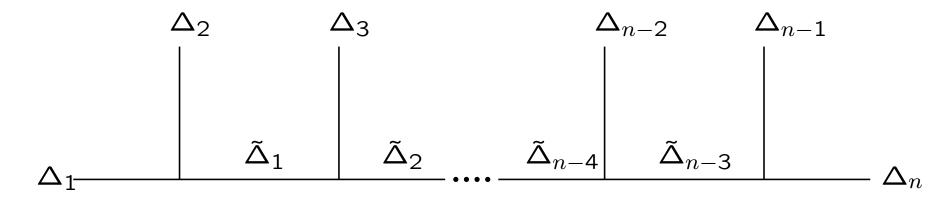
One can show that OPE of primary fields has a form

$$\Phi_1 \Phi_2 = \sum_k C_{12}^k \left(\Phi_k + \beta_1 \Phi_k^{(-1)} + \beta_{1,1} \Phi_k^{(-1,-1)} + \beta_2 \Phi_k^{(-2)} + \dots \right) \otimes (\dots)$$

• We can introduce the notion of the *conformal blocks*. They represent holomorphic contributions to the multi-point correlation function

$$\langle \Phi_1(z_1,\bar{z}_1) \dots \Phi_n(z_n,\bar{z}_n) \rangle$$

and can be represented as



ullet It is also convenient to choose $z_1=0$, $z_{n-1}=1$, $z_n=\infty$ and

$$z_{i+1} = q_i q_{i+1} \dots q_{n-3}$$
 for $1 \le i \le n-3$,

Then the conformal block is a power series expansion

$$\mathcal{F}(q|\Delta_i, \tilde{\Delta}_j, c) = 1 + \sum_{\vec{k}} q_1^{k_1} q_2^{k_2} \dots q_{n-3}^{k_{n-3}} \mathfrak{F}_{\vec{k}}(\Delta_i, \tilde{\Delta}_j, c),$$

where the coefficients $\mathfrak{F}_{\vec{k}}(\Delta_i, \tilde{\Delta}_j, c)$ are some rational functions of Δ_i , $\tilde{\Delta}_j$ and the central charge c.

• There exists an algebraic procedure allowing to compute $\mathfrak{F}_{\vec{k}}(\Delta_i, \tilde{\Delta}_j, c)$ which is equivalent to the computation of the matrix elements

$$\langle i|L_{k'_1}\dots L_{k'_m}\Phi_k(1)L_{-k_n}\dots L_{-k_1}|j\rangle$$

using

$$L_n|j\rangle = 0 \quad \langle j|L_{-n} = 0 \quad \text{for} \quad n > 0,$$

$$L_0|j\rangle = \Delta_j|j\rangle \quad \langle j|L_0 = \Delta_j\langle j|$$

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}(n^3 - n)\delta_{n+m,0},$$

$$[L_m, \Phi_k(z)] = \left(z^{m+1}\partial_z + (m+1)\Delta_k z^m\right)\Phi_k(z)$$

and

$$\langle i|\Phi_k(z)|j\rangle\sim z^{\Delta_i-\Delta_j-\Delta_k}$$

Alday, Gaiotto and Tachikawa suggested to consider the function

$$Z(q|\Delta_i, \tilde{\Delta}_j, c) \stackrel{\text{def}}{=} \prod_{k=1}^{n-3} \prod_{m=k}^{n-3} (1 - q_k \dots q_m)^{2\alpha_{k+1}(Q - \alpha_{m+2})} \mathcal{F}(q|\Delta_i, \tilde{\Delta}_j, c),$$

where

$$\Delta_k = \alpha_k (Q - \alpha_k), \quad c = 1 + 6Q^2.$$

- They proposed that $Z(q|\Delta_i, \tilde{\Delta}_j, c)$ coincides with instanton part of the Nekrasov partition function for $\underbrace{U(2) \otimes \cdots \otimes U(2)}_{n-3}$ $\mathcal{N}=2$ supersymmetric gauge theory with 4 fundamental and n-4 bifundamental hypermultiplets and $q_m = \exp(8\pi^2/g_m^2 + i\theta_m)$
- ullet The function $Z(q|\Delta_i, \tilde{\Delta}_j, c)$ has been computed by Nekrasov

$$Z(q|\Delta_i, \tilde{\Delta}_j, c) = 1 + \sum_{\vec{k}} q_1^{k_1} q_2^{k_2} \dots q_{n-3}^{k_{n-3}} Z_{\vec{k}}(\Delta_i, \tilde{\Delta}_j, c),$$

The coefficients $Z_{\vec{k}}(\Delta_i, \tilde{\Delta}_j, c)$ have explicit combinatorial expressions

$$Z_{\vec{k}}(\Delta_i, \tilde{\Delta}_j, c) = \sum_{\vec{\lambda}_1, \dots, \vec{\lambda}_{n-3}} Z_{\text{Vec}}(P_1, \vec{\lambda}_1) \dots Z_{\text{Vec}}(P_{n-3}, \vec{\lambda}_{n-3}) \times$$

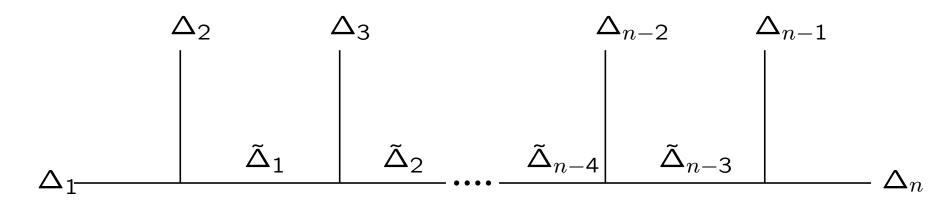
$$\times Z_{\text{bif}}(\alpha_{2}|P,\varnothing;P_{1},\vec{\lambda}_{1})Z_{\text{bif}}(\alpha_{3}|P_{1},\vec{\lambda}_{1};P_{2},\vec{\lambda}_{2})Z_{\text{bif}}(\alpha_{4}|P_{2},\vec{\lambda}_{2};P_{3},\vec{\lambda}_{3})\times ...$$

$$\cdots \times Z_{\text{bif}}(\alpha_{n-2}|P_{n-4},\vec{\lambda}_{n-4};P_{n-3},\vec{\lambda}_{n-3})Z_{\text{bif}}(\alpha_{n-1}|P_{n-3},\vec{\lambda}_{n-3};\hat{P},\varnothing).$$

where $\Delta_k = \alpha_k (Q - \alpha_k)$,

$$\Delta_1 = \frac{Q^2}{4} - P^2$$
, $\Delta_n = \frac{Q^2}{4} - \hat{P}^2$ and $\tilde{\Delta}_j = \frac{Q^2}{4} - P_j^2$,

and $\vec{\lambda}=(\lambda_1,\lambda_2)$ is the pair of Young diagrams such that $|\vec{\lambda}_j|=k_j$

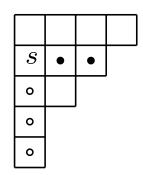


• The function Z_{bif} is given by (Q = b + 1/b)

$$Z_{\mathsf{bif}}(\alpha|P',\vec{\mu};P,\vec{\lambda}) = \prod_{i,j=1}^{2} \prod_{s \in \lambda_{i}} \left(Q - E_{\lambda_{i},\mu_{j}} \left(P_{i} - P'_{j} \middle| s \right) - \alpha \right) \times \prod_{t \in \mu_{j}} \left(E_{\mu_{j},\lambda_{i}} \left(P'_{j} - P_{i} \middle| t \right) - \alpha \right),$$

where
$$\vec{P}=(P,-P)$$
, $\vec{P}'=(P',-P')$ and
$$E_{\lambda,\mu}\!\left(P\Big|s\right)=P-b\,l_\mu(s)+b^{-1}(a_\lambda(s)+1).$$

• We choose the English convention to draw partitions. For example the partition $\lambda = (4,3,2,1,1)$ is drawn as follows



• $Z_{\text{vec}}(P, \vec{\lambda}) = 1/Z_{\text{bif}}(0|P, \vec{\lambda}; P, \vec{\lambda}).$

Special basis of states in Vir⊗H

ullet We consider the algebra $\mathcal{A} = \operatorname{Vir} \otimes \mathcal{H}$

$$[L_n, L_m] = (n - m)L_{n+m} + \frac{c}{12}(n^3 - n)\delta_{n+m,0},$$

$$[a_n, a_m] = \frac{n}{2}\delta_{n+m,0}, \qquad [L_n, a_m] = 0.$$

ullet We will parametrize the central charge c of Virasoro algebra as

$$c = 1 + 6Q^2$$
, where $Q = b + \frac{1}{b}$,

and define the primary field V_{α} as

$$V_{\alpha} \stackrel{\mathsf{def}}{=} \mathcal{V}_{\alpha} \cdot V_{\alpha}^{\mathsf{L}},$$

where V_{α}^{L} is the primary field of Virasoro algebra and \mathcal{V}_{α} :

$$\mathcal{V}_{\alpha} = e^{2(\alpha - Q)\varphi_{-}}e^{2\alpha\varphi_{+}},$$

with
$$\varphi_+(z) = i \sum_{n>0} \frac{a_n}{n} z^{-n}$$
 and $\varphi_-(z) = i \sum_{n<0} \frac{a_n}{n} z^{-n}$.

Proposition: There exists unique orthogonal basis $|P\rangle_{\vec{\lambda}}$ such that

$$\frac{\vec{\mu}\langle P'|V_{\alpha}|P\rangle_{\vec{\lambda}}}{\langle P'|V_{\alpha}|P\rangle} = Z_{\text{bif}}(\alpha|P',\vec{\mu};P,\vec{\lambda}).$$

We stress that the conjugation in the algebra ${\cal A}$ is defined as

$$(L_{-k_n} \dots L_{-k_1})^+ = L_{k_1} \dots L_{k_n}, \qquad (a_{-n})^+ = a_n,$$

and the conjugation of the state $|P\rangle_{\vec{\lambda}}$ does not involve complex conjugation of its coefficients, i.e. for $|P\rangle_{\vec{\lambda}}$ given by

$$|P\rangle_{\vec{\lambda}} = \sum_{|\vec{\mu}|=|\vec{\lambda}|} C_{\vec{\lambda}}^{\mu_1,\mu_2}(P) \, \hat{a}_{-\mu_1} \hat{L}_{-\mu_2} |P\rangle,$$

we define conjugated state $\vec{\lambda}\langle P|$ by

$$_{\vec{\lambda}}\langle P| = \sum_{|\vec{\mu}| = |\vec{\lambda}|} C_{\vec{\lambda}}^{\mu_1, \mu_2}(P) \langle P| (\hat{a}_{-\mu_1})^+ (\hat{L}_{-\mu_2})^+.$$

Examples:

$$|P\rangle_{\{1\},\varnothing} = -(L_{-1} + i(Q + 2P)a_{-1})|P\rangle,$$

 $|P\rangle_{\varnothing,\{1\}} = -(L_{-1} + i(Q - 2P)a_{-1})|P\rangle,$

$$|P\rangle_{\{2\},\varnothing} = \left(L_{-1}^2 - b^{-1}(Q + 2P)L_{-2} + 2i(Q + b^{-1} + 2P)L_{-1}a_{-1} - (Q + 2P)(Q + b^{-1} + 2P)a_{-1}^2 - ib^{-1}(Q + 2P)(Q + b^{-1} + 2P)a_{-2}\right)|P\rangle,$$

$$|P\rangle_{\varnothing,\{2\}} = \left(L_{-1}^2 - b^{-1}(Q - 2P)L_{-2} + 2i(Q + b^{-1} - 2P)L_{-1}a_{-1} - (Q - 2P)(Q + b^{-1} - 2P)a_{-1}^2 - ib^{-1}(Q - 2P)(Q + b^{-1} - 2P)a_{-2}\right)|P\rangle,$$

$$|P\rangle_{\{1,1\},\varnothing} = \left(L_{-1}^2 - b(Q+2P)L_{-2} + 2i(Q+b+2P)L_{-1}a_{-1} - (Q+2P)(Q+b+2P)a_{-1}^2 - ib(Q+2P)(Q+b+2P)a_{-2}^2\right)|P\rangle,$$

$$|P\rangle_{\varnothing,\{1,1\}} = \left(L_{-1}^2 - b(Q - 2P)L_{-2} + 2i(Q + b - 2P)L_{-1}a_{-1} - (Q - 2P)(Q + b - 2P)a_{-1}^2 - ib(Q - 2P)(Q + b - 2P)a_{-2}\right)|P\rangle,$$

$$|P\rangle_{\{1\},\{1\}} = \left(L_{-1}^2 - L_{-2} + 2iQL_{-1}a_{-1} + (1 + 4P^2 - Q^2)a_{-1}^2 - iQa_{-2}\right)|P\rangle.$$

Let us represent Virasoro generators L_n in terms of bosons c_k by

$$L_{n} = \sum_{k \neq 0, n} c_{k} c_{n-k} + i(nQ - 2P)c_{n}, \quad L_{0} = \frac{Q^{2}}{4} - P^{2} + 2\sum_{k > 0} c_{-k} c_{k},$$
$$[c_{n}, c_{m}] = \frac{n}{2} \delta_{n+m,0}, \quad [P, c_{n}] = 0, \quad P|P\rangle = P|P\rangle, \quad \langle P|P = -P\langle P|.$$

Proposition: The states $|P\rangle_{\lambda,\varnothing}$ and $_{\lambda,\varnothing}\langle P|$ can be defined as

$$|P\rangle_{\lambda,\varnothing} = \Omega_{\lambda}(P) \mathbf{J}_{\lambda}^{(1/g)}(x)|P\rangle, \qquad \qquad _{\lambda,\varnothing}\langle P| = \Omega_{\lambda}(P) \langle P| \mathbf{J}_{\lambda}^{(1/g)}(y),$$

where $g = -b^2$,

$$a_{-k} - c_{-k} = -ib \, p_k(x), \qquad a_k + c_k = -ib \, p_k(y),$$

with $p_k(x)$ being k-th power sum symmetric polynomial $p_k(x) = \sum_j x_j^k$ and $\mathbf{J}_{\lambda}^{(1/g)}(x)$ is the Jack polynomial associated with the Young diagram λ normalized as ("integral form" normalization)

$$\mathbf{J}_{\lambda}^{(1/g)}(x) = |\lambda|! \, m_{[1,\dots,1]}(x) + \dots,$$

where $m_{[\nu_1,...,\nu_n]}(x)$ is the monomial symmetric polynomial.

 \bullet The factor $\Omega_{\lambda}(P)$ is defined by

$$\Omega_{\lambda}(P) = (-b)^{|\lambda|} \prod_{(i,j)\in\lambda} (2P + ib + jb^{-1}),$$

index i runs vertically and j runs horizontally over the diagram λ .

- The proof requires Selberg integral with insertion of two Jacks
- We note that $\Omega_{\lambda}(P)$ vanishes for

$$P = P_{m,n} = -\frac{mb + nb^{-1}}{2},$$
 for $(m,n) \in \lambda$

• At $P=P_{m,n}$ the Verma module $|P\rangle$ is degenerate, i.e. there exists a singular vector $|\chi_{m,n}\rangle$ at the level mn

$$|\chi_{m,n}\rangle \stackrel{\text{def}}{=} D_{m,n}|P_{m,n}\rangle = \left(L_{-1}^{mn} + \dots\right)|P_{m,n}\rangle,$$

such that $L_k|\chi_{m,n}\rangle$ for any k>0.

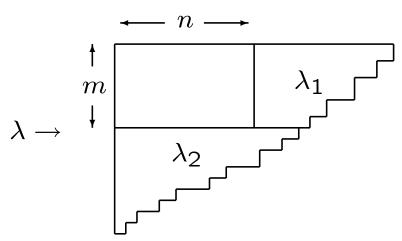
Proposition: Let us define the operator $X_{\vec{\lambda}}(P) = X_{\lambda_1,\lambda_2}(P)$ as

$$X_{\vec{\lambda}}(P)|P\rangle \stackrel{\mathsf{def}}{=} |P\rangle_{\vec{\lambda}},$$

then the following relation holds

$$X_{\lambda,\varnothing}(P_{m,n})|P_{m,n}\rangle = (-1)^{mn}X_{\lambda_1,\lambda_2}(P_{m,-n})D_{m,n}|P_{m,n}\rangle$$
 for $(m,n)\in\lambda$,

where the pair of Young diagrams (λ_1,λ_2) is defined by the following "cutting" rule



This equation can be considered as a definition of $X_{\lambda_1,\lambda_2}(P)$ at $P=P_{m,-n}$.

Integrals of Motion

One can check that the states $|P\rangle_{\vec{\lambda}}$ are the eigenstates of the following infinite system of the Integrals of Motion

$$\begin{split} \mathbf{I}_2 &= L_0 - \frac{c}{24} + 2\sum_{k=1}^{\infty} a_{-k}a_k, \\ \mathbf{I}_3 &= \sum_{k=-\infty, k \neq 0}^{\infty} a_{-k}L_k + 2iQ\sum_{k=1}^{\infty} ka_{-k}a_k + \frac{1}{3}\sum_{i+j+k=0}^{\infty} a_ia_ja_k, \\ \mathbf{I}_4 &= 2\sum_{k=1}^{\infty} L_{-k}L_k + L_0^2 - \frac{c+2}{12}L_0 + 6\sum_{k=-\infty, k \neq 0}^{\infty} \sum_{i+j=k}^{\infty} L_{-k}a_ia_j + \\ &\quad + 12\left(L_0 - \frac{c}{24}\right)\sum_{k=1}^{\infty} a_{-k}a_k + 6iQ\sum_{k=-\infty, k \neq 0}^{\infty} |k| \, a_{-k}L_k + \\ &\quad + 2(1-5Q^2)\sum_{k=1}^{\infty} k^2 a_{-k}a_k + 6iQ\sum_{i+j+k=0}^{\infty} |k| \, a_ia_ja_k + \sum_{i+j+k+l=0}^{\infty} : a_ia_ja_ka_l : \end{split}$$

• In semiclassical limit $b \rightarrow 0$

$$T \to -Q^2 u, \qquad \partial \varphi \to -Q v, \qquad [\ ,\] \to -\frac{2i\pi}{Q^2} \{\ ,\ \},$$

we find that u and v satisfy Poisson bracket algebra relations

$$\{u(x), u(y)\} = (u(x) + u(y)) \delta'(x - y) + \frac{1}{2} \delta'''(x - y),$$

$$\{v(x), v(y)\} = \frac{1}{2} \delta'(x - y), \quad \{u(x), v(y)\} = 0.$$

One can recover classical Hamiltonian system taking $\mathcal{H} = \int G_3(y) dy$

$$G_3 = uv + vDv + \frac{1}{3}v^3,$$

where ${\bf D}=\frac{d}{dx}{\bf H}$ and ${\bf H}$ is the operator of Hilbert transform defined by the principal value integral

$$HF(x) \stackrel{\text{def}}{=} \frac{1}{2\pi} \int_0^{2\pi} F(y) \cot \frac{1}{2} (y - x) dy,$$

So, we defined integrable system of equations

$$\begin{cases} u_t + vu_x + 2uv_x + \frac{1}{2}v_{xxx} = 0, \\ v_t + \frac{u_x}{2} + Hv_{xx} + vv_x = 0, \end{cases}$$

ullet It possesses infinitely many conserved quantities $I_k = \int G_k dx$

$$G_{2} = u + v^{2},$$

$$G_{3} = uv + vDv + \frac{1}{3}v^{3},$$

$$G_{4} = u^{2} + 6uv^{2} + 6uDv + 5v_{x}^{2} + 6v^{2}Dv + v^{4},$$

$$G_{5} = u^{2}v + \frac{1}{2}uDu + 2u_{x}v_{x} + 4uvDv + v^{2}Du + 2uv^{3} + \frac{3}{2}v_{x}Dv_{x} + 3vv_{x}^{2} + 2v(Dv)^{2} + \frac{4}{3}v^{3}Dv + \frac{1}{2}v^{2}Dv^{2} + \frac{1}{5}v^{5},$$

• It is convenient to represent $u = w^2 - w_x$ and define $\psi = v + iw$

$$\psi_t + \frac{i}{2}\psi_{xx}^* + \psi\psi_x + H \operatorname{Re}\psi_{xx} = 0,$$

Nekrasov Part. Funct. and Zamolodchikov's Rec. Rel.

One-point conformal block $\mathcal{F}_{\alpha}^{(\Delta)}(q)$ is defined as the contribution to the trace of the conformal family with conformal dimension $\Delta = \frac{Q^2}{4} + P^2$

$$\mathcal{F}_{\alpha}^{(\Delta)}(q) \stackrel{\text{def}}{=} \operatorname{Tr}_{\Delta} \left(q^{L_0 - \frac{c}{24}} V_{\alpha}(0) \right) = 1 + \frac{2\Delta + \Delta^2(\alpha) - \Delta(\alpha)}{2\Delta} q + \dots$$

It was proposed by Alday, Gaiotto and Tachikawa that

$$\mathcal{F}_{\alpha}^{(\Delta)}(q) = \left(\frac{q^{\frac{1}{24}}}{\eta(\tau)}\right)^{2\Delta(\alpha)-1} Z(\varepsilon_1, \varepsilon_2, m, a),$$

where $Z(\varepsilon_1, \varepsilon_2, m, a)$ is the instanton part of the Nekrasov partition function in $\mathcal{N}=2^*~U(2)$ SYM with

$$P = \frac{a}{\hbar}, \qquad \alpha = \frac{m}{\hbar}, \qquad \varepsilon_1 = \hbar b, \qquad \varepsilon_2 = \frac{\hbar}{b},$$

where a is VEV of scalar field, m is the mass of the adjoint hypermultiplet and ε_k are the parameters of the Ω background. Parameter q is given by

$$q = e^{2i\pi\tau}$$
, where $\tau = \frac{4i\pi}{q^2} + \frac{\theta}{2\pi}$.

Nekrasov partition function

$$Z(\varepsilon_1, \varepsilon_2, m, a) = 1 + \sum_{k=1}^{\infty} q^k \mathfrak{Z}_k,$$

can be represented as a sum over partitions. Let $\vec{\nu} = (\nu_1, \nu_2)$ be the pair of Young diagrams with the total numbers of cells equal to N. Then

$$\mathfrak{Z}_{N} = \sum_{\vec{\nu}} \prod_{i,j=1}^{2} \prod_{s \in \nu_{i}} \frac{(E_{ij}(s) - \alpha)(Q - E_{ij}(s) - \alpha)}{E_{ij}(s)(Q - E_{ij}(s))},$$

where

$$E_{ij}(s) = 2P\epsilon_{ij} - bl_{\nu_j}(s) + b^{-1}(a_{\nu_i}(s) + 1),$$

 $a_{\nu}(s)$ and $l_{\nu}(s)$ are respectively the horizontal and vertical distance from the square s to the edge of the diagram ν .

• AGT relation for $N=2^*$ theory can proved using Al. Zamolodchikov's recursive formula

ullet The coefficient \mathfrak{Z}_N can be represented as the contour integral

$$3_{N} = \frac{1}{N!} \left(\frac{Q(b-\alpha)(b^{-1}-\alpha)}{2\pi i\alpha(Q-\alpha)} \right)^{N} \oint \dots \oint \prod_{k=1}^{N} \frac{\mathcal{P}(x_{k}+\alpha)\mathcal{P}(x_{k}+Q-\alpha)}{\mathcal{P}(x_{k})\mathcal{P}(x_{k}+Q)} \times \prod_{i < j} \frac{x_{ij}^{2}(x_{ij}^{2}-Q^{2})(x_{ij}^{2}-(b-\alpha)^{2})(x_{ij}^{2}-(b^{-1}-\alpha)^{2})}{(x_{ij}^{2}-b^{2})(x_{ij}^{2}-b^{-2})(x_{ij}^{2}-\alpha^{2})(x_{ij}^{2}-(Q-\alpha)^{2})} dx_{1} \dots dx_{N},$$

where $\mathcal{P}(x)=(x-P_1)(x-P_2)$ with $P=(P_1-P_2)/2$. The contour \mathcal{C}_k surrounds poles $x_k=P_1$, $x_k=P_2$, $x_k=x_j+b$ and $x_k=x_j+b^{-1}$.

• A singularity in $\mathfrak{Z}_N=\mathfrak{Z}_N(\alpha,\Delta)$ ($\Delta=Q^2/4+P^2$) can happen when two poles of the integrand pinch the contour. One can show that

Res
$$\mathfrak{Z}_N(\alpha, \Delta) \bigg|_{\Delta = \Delta_{m,n}} = R_{m,n}(\alpha) \, \mathfrak{Z}_{N-mn}(\alpha, \Delta_{m,-n}),$$

where $R_{m,n}(\alpha)$ is exactly the same as prescribed by Alyosha Zamolod-chikov's recursion formula.

- So, the singular part of the Nekrasov partition function coincides with the singular part of the one-point conformal block.
- The non-singular part which can be obtained in the limit $\Delta \to \infty$. It can be found using well known "hook-length" formula

$$\left(\frac{q^{\frac{1}{24}}}{\eta(\tau)}\right)^{1-\lambda} = 1 + \sum_{k=1}^{\infty} \xi_k(\lambda) q^k,$$

with

$$\xi_N(\lambda) = \sum_{\nu} \prod_{s \in \nu} \left(1 - \frac{\lambda}{\left(1 + l_{\nu}(s) + a_{\nu}(s) \right)^2} \right).$$

the sum goes over all ν 's with the total number of cells equal to N.

• Comparing asymptotics of the conformal block and Nekrasov partition function one finds the coefficient of proportionality in AGT formula.

 \bullet Seiberg-Witten prepotential can be obtained in the semiclassical limit $\hbar \to 0$

$$Z(\varepsilon_1, \varepsilon_2, m, \vec{a}) \to \exp\left(\frac{1}{\hbar^2} \mathcal{F}(m, \vec{a}|q) + O(1)\right).$$

 To derive this limit from the Liouville point of view we consider twopoint function with one degenerate field

$$\Psi(z) \sim \langle V_{-\frac{b}{2}}(z) V_{\alpha}(0) \rangle$$

This function satisfies Scrödinger equation

$$\left(-\partial_z^2 + \frac{b^2 m^2}{\hbar^2} \wp(z)\right) \Psi(z) = \frac{2ib^2}{\pi} \partial_\tau \Psi(z).$$

We look for the solution in the form

$$\Psi(z) = \exp\left(\frac{1}{\hbar^2}\mathcal{F}(q) + \frac{b}{\hbar}\mathcal{W}(z|q) + \dots\right)$$

with prescribed monodromy $e^{2i\pi a}$ around A-cycle.

WKB approximation gives

$$\mathcal{W}(z|q) = \int \sqrt{E(q) + m^2 \wp(z)} dz, \qquad E(q) = 4q \partial_q \mathcal{F}(q).$$

• With E(q) given in parametric form

$$\oint\limits_A \sqrt{E(q) + m^2 \wp(z)} dz = 2i\pi a,$$

the prepotential $\mathbb{F}(m,\vec{a}|q)$ can be calculated as follows

$$\mathbb{F}(m, \vec{a}|q) = \left(a^2 + \frac{m^2}{12}\right) \log(q) - 4m^2 \log(\eta(\tau)) + \mathcal{F}(q),$$

ullet The integral over B-cycle defines a_D

$$\oint\limits_{B} \sqrt{E(q) + m^2 \wp(z)} \, dz = 2i\pi a_D,$$

which is the derivative of the total prepotential (including classical and perturbative part) with respect to a.