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Main questions for a CFT

Find the spectrum of conformal weights
≡ eigenvalues of the dilatation operator
≡ (anomalous) dimensions of operators

〈O(0)O(x)〉 =
1

|x |2∆

Find the OPE coefficients Cijk defined through

〈Oi (x1)Oj(x2)Ok(x3)〉 =
Cijk

|x1 − x2|∆i+∆j−∆k |x1 − x3|∆i+∆k−∆j |x2 − x3|∆j+∆k−∆i

Once ∆i and Cijk are known, all higher point correlation functions are, in
principle, determined explicitly.
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Main classes of operators in N = 4 SYM

BPS operators correspond to supergravity modes

Their anomalous dimensions are protected as well as OPE coefficients

These states are (in this context) commonly called light states

Operators which have nontrivial anomalous dimensions correspond to massive
string states

The lightest of these, corresponding to ‘short strings’ (e.g. the Konishi
operator) can be called by analogy medium states

A subclass of operators with large R-charges/spins correspond, at strong
coupling, to classical string states

These states are (in this context) commonly called heavy states

We will be interested in a subset of the heavy states whose whole dynamics is
concentrated in the S5 part of AdS5 × S5
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Current status

Protected OPE coefficients are known (supergravity states)

At weak coupling (for unprotected operators) a lot is known at tree-level and
at 1-loop, as well as Frolov-Tseytlin limit Escobedo, Gromov, Sever, Vieira

For some specific operators the OPE coefficient is known up to three loops!
Eden, Heslop, Korchemsky, Sokhatchev

At strong coupling, the case of 3-point correlation functions/OPE coefficients
CHHL for two heavy and one light is well studied Zarembo; Costa et.al.

— use the known classical solution for a two-point function of the heavy
operators and integrate with the propagator of the light supergravity mode

see the talk by Ahn

Recently near BMN operators were also considered Klose, McLoughlin

Aim: Develop methods for the computation of CHHH — OPE coefficients of three
heavy (usually distinct) heavy operators
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The AdS/CFT dictionary

Anomalous dimensions
of operators

≡ Energies of corresponding
string states in AdS5 × S5

This approach is very well developed using integrability

Alternatively we might try to compute the anomalous dimensions directly by
computing a 2-point correlation function

〈O(0)O(x)〉 =
1

|x |2∆

For light states (supergravity modes) the prescription is known since the very
begining of AdS/CFT Witten; Gubser, Klebanov, Polyakov

For classical string states a prescription has been worked out in [RJ, Surówka,
Wereszczyński] see also [Tsuji] and [Buchbinder,Tseytlin]
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What is involved?

For two-point functions, we pass from a Green’s function of the light state
(supergravity field) to a classical string solution with the topology of a
cylinder, approaching two given points on the boundary (modulo caveats)

For a three-point function, we have to construct a classical solution with the
topology of a thrice punctured sphere
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2-point correlation functions

At the classical level one can consider an Euclidean worldsheet with the
topology of a sphere with 2 punctures satisfying Virasoro constraints
(saddle point of Minkowskian cylinder amplitude...)
The solution is complex (i.e. complexified)
The AdS part of the solution is a geodesic cut-off at z = E

The S5 part of the solution is just the Wick rotated spinning string solution
— here we have to include wavefunctions
— the contribution of the S5 part is the energy integral

Ψ∗ e−
√

λ
4π

∫
cylinder

dσdτ LS5 Ψ −→ e
√

λ
4π

∫
cylinder

dσdτ ES5

euclidean

Putting the two contributions together we get

e−
√

λ
4π

∫
cylinder

dσdτ LAdS︸ ︷︷ ︸
AdS action

· e
√

λ
4π

∫
cylinder

dσdτ ES5

euclidean︸ ︷︷ ︸
S5 energy integral

−→ 1(
|x|
E

)2∆
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The S5 part of the solution is just the Wick rotated spinning string solution
— here we have to include wavefunctions
— the contribution of the S5 part is the energy integral
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3-point correlation functions

We are interested in classical solutions with the topology of a thrice-punctured
sphere

Close to the punctures, the solutions should approach the known solutions for
2-point functions

For operators with nontrivial charges only on the S5, the problem separates
into two almost decoupled parts — the S5 part and the AdS part, resulting in

COPE = COPE
AdS︸ ︷︷ ︸

universal

· COPE
S5︸ ︷︷ ︸

operator−dependent
The problems are only tied through the Virasoro constraint

TAdS(w) + TS5 (w) = 0

Here we concentrate on the AdS part giving COPE
AdS
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3-point correlation functions

We have to find classical solutions following from the AdS2 action

∂z∂z + ∂x∂x

z2

subject to the constraint

(∂z)2 + (∂x)2

z2
= T (w)

At the punctures, the classical solution should approach three given points
x1, x2 and x3 in a way similar to two-point functions of appropriate operators

The punctures can be fixed e.g. to w = ±1 and w =∞
The r.h.s. of the Virasoro T (w) can be found explicitly
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3-point correlation functions

T (w) for a 2-point correlation function is

T2−point(w) =
∆2/4

w 2

where the anomalous dimension ∆ ≡
√
λ∆

Hence T (w) should have poles of order at most two at each puncture with
prescribed leading coefficients

Taking into account the transformation property

T (w)→ 1

u4
T

(
1

u

)
T (w) is fixed uniquely

T (w) =
∆2
∞

4

w 2 + a2

(1− w 2)2
where a2 =

4∆2

∆2
∞
− 1

Here the operators at w = ±1 have dimension ∆, and ∆∞ at w =∞
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Pohlmeyer reduction

Pohlmeyer reduction for the AdS2 σ-model with prescribed T (w) yields the
modified sinh-Gordon model

This is exactly the same modified sinh-Gordon model as for polygonal
minimal surfaces in AdS3!

However there are some key differences in the analytic structure and in the
target-space picture (AdS2 versus AdS3)
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Pohlmeyer reduction

The generalized sinh-Gordon model is integrable

There exists a family of flat connections

J =
1

ξ
Φw dw + A + ξΦw dw

Flatness is equivalent to the compatibility of the linear system

∂Ψ + JwΨ = 0 ∂Ψ + JwΨ = 0

Around each puncture we have two solutions (k and k) with monodromies

e±i∆k
π
2 (ξ− 1

ξ )
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Pohlmeyer reduction

AdS2 string action: ∫
Σ\{εi}

∂x∂x + ∂z∂z

z2

Σ \ {εi} : 3-punctured sphere with worldsheet cut-offs at the punctures
|w − wi | > εi

nontrivial: εi is fixed by a target-space cut-off z = E
The first term – regularized ‘Pohlmeyer’ action – depends on the solution of
modified sinh-Gordon, but not on the worldsheet cut-off

The second term has a known and explicit integrand but the domain of
integration depends on the target-space cut-off z = E — so we need to
have some information on reconstructing the target space solution from the
Pohlmeyer reduction...
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The second term has a known and explicit integrand but the domain of
integration depends on the target-space cut-off z = E — so we need to
have some information on reconstructing the target space solution from the
Pohlmeyer reduction...
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Regularized ‘Pohlmeyer’ contribution

We can use the techniques of Alday, Maldacena, Sever, Vieira to evaluate the
regularized ‘Pohlmeyer’ action (albeit with some twists...)

1 Go to a gauge where Φw is diagonal.

Φw −→

(
−
√
T

2 0

0
√
T

2

)
2 Pass to the double cover Σ̃ given by y 2 = T (w)
3 Then the regularized ‘Pohlmeyer’ contribution can be written as∫

Σ̃

ω ∧ η

where
dω = 0 dη = 0

Explicitly

ω =
√

T (w)dw︸ ︷︷ ︸
easy

η =
1

2

√
T (w) (cosh γ̃ − 1) dw +

1

4

1√
T (w)

(∂γ̃)2dw︸ ︷︷ ︸
hard
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Regularized ‘Pohlmeyer’ contribution

5 If Σ̃ had genus g , one would use Riemann bilinear identity (or reciprocity) to
reduce the integral to products of integrals over cycles∫

Σg

ω ∧ η =

g∑
i=1

∫
Ai

ω

∫
Bi

η −
∫
Ai

η

∫
Bi

ω

But here Σ̃ has genus 0 and punctures...
Moreover the forms have singularities at the punctures and at the branch
points of the double cover...

6 Generalize the Riemann formula to the present case...
Two ways to proceed:
— redo the proof directly for Σ̃ \ {singularities} quite messy...
— treat the punctures as infinitesimal cuts, use reciprocity for genus 3 and
deal only with the singularitites of η at the branch points... easier...
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Regularized ‘Pohlmeyer’ contribution

8 We use simplifying properties:
— integrals of ω around punctures are proportional to ∆i

— integrals of ω around branch points vanish
— integrals of η around punctures vanish
— the contribution of the branch point is just π/6

9 Finally we obtain∫
Σ

(
2 trΦwΦw −

√
T (w)T (w) d2w

)
=
π

6
−π

2

(
(∆∞ − 2∆)

∫
C−1 1

η − 2∆∞

∫
C1∞

η

)
10 The integrals of η between the punctures are related to the WKB

asymptotics of the products between local solutions of the linear system...
c.f. Alday, Maldacena, Sever, Vieira
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Overlaps between solutions of the linear system

Around each puncture wk we have two distinguished solutions (k and k) of
the linear system

(∗) ∂Ψ + JwΨ = 0 ∂Ψ + JwΨ = 0

characterized by the mondromies

e±i∆k
π
2 (ξ− 1

ξ ) ≡ e±i∆k π sinh θ ≡ e±ipk (θ) where ξ = eθ

Given two solutions of the linear system (∗), Ψa
1 and Ψa

2, one can form the
(skew) product

〈Ψ1Ψ2〉 ≡ εabΨa
1Ψb

1

which is a function of the spectral parameter ξ = eθ

The standard solutions k and k are normalized by〈
kk
〉

= 1
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Overlaps between solutions of the linear system

Alday, Maldacena, Sever, Vieira link the large |θ| WKB asymptotics of the
solution of the linear system to the integral of ω (leading asymptotics) and η
(subleading asymptotics).

In our context this becomes:

The integral of η along Ckl can be extracted from the θ → −∞ asymptotics the
overlap 〈kl〉 (θ):

〈kl〉 (θ) ∼ exp

{
e−θ

∫
Ckl

1

2
ω + const + eθ

∫
Ckl

(
η +

1

2

√
T dw

)
+ . . .

}
reg .

Question: How to find 〈kl〉 (θ) without solving any differential equations?
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Overlaps between solutions of the linear system

1 Collect all overlaps into a connection matrix between solutions at two
punctures

Mkl =

(
−
〈
k̄ l
〉
−
〈
k̄ l̄
〉

〈kl〉
〈
kl̄
〉 )

2 Write all obvious compatibility relations

Mkm = MklMlm MklMlk = id

and the condition of zero monodromy outside the punctures

Ω1M13Ω3M32Ω2M21 = id

3 Key point: One can show that〈
k̄ l̄
〉

(θ) = −〈kl〉 (θ + iπ)
〈
k̄ l
〉

(θ) = −
〈
kl̄
〉

(θ + iπ)

4 The resulting functional equations can be solved for 〈kl〉 (θ) !
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Overlaps between solutions of the linear system

6 We obtain in particular

〈32〉 〈32〉++ =
sin p1(θ)−p2(θ)−p3(θ)

2 sin p1(θ)+p2(θ)+p3(θ)
2

sin p2(θ) sin p3(θ)

which becomes

〈32〉+ 〈32〉− = −
sinh( ∆2+∆3−∆1

2 π cosh θ) sinh( ∆1+∆2+∆3

2 π cosh θ)

sinh(∆2π cosh θ) sinh(∆3π cosh θ)

7 The basic functional equation to solve is

f +f − = 1− e−aπ cosh θ

with the solution

f (θ) = eMeθ+M̄e−θ︸ ︷︷ ︸
zero mode part

· exp

∫ ∞
−∞

dθ′

2π

log
(

1− e−aπ cosh θ′
)

cosh(θ − θ′)

8 The zero-mode constants can be obtained from integrals of
√

T and
√

T̄
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Regularized ‘Pohlmeyer’ contribution

Recall:∫
Σ

(
2 trΦwΦw −

√
T (w)T (w) d2w

)
=
π

6
−π

2

(
(∆∞ − 2∆)

∫
C−1 1

η − 2∆∞

∫
C1∞

η

)

From the solution of the functional equations we get

∫
C−1 1

η = h(2∆−∆∞) + h(2∆ + ∆∞)− 2h(2∆)∫
C1∞

η = h(∆∞) + h(2∆ + ∆∞)− h(2∆)− h(2∆∞)

where

h(a) =
1

π

∫ ∞
−∞

eθ log
(
1− e−aπ cosh θ

)
dθ
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Numerical check

We have solved the modified sinh-Gordon equations numerically and evaluated the
resulting regularized ‘Pohlmeyer’ contribution in order to compare with our
analytical formula.

Regularized action density

∆ = ∆∞ = 4.0

∆ ∆∞ numerics our formula
0.2 0.3 0.04536 0.0450779
0.5 0.9 0.107649 0.107622
1. 1. 0.426311 0.426166
1. 1.05 0.429572 0.429503
2. 2. 0.517689 0.517688
2. 3. 0.488985 0.488985
4. 4. 0.523584 0.523584
4. 7.99 0.0152435 0.0152435

Numerics become more difficult
and less reliable for small ∆’s
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AdS2 action =

∫
Σ

(
2 trΦwΦw −

√
T (w)T (w) d2w

)
︸ ︷︷ ︸

Done!

+

∫
Σ\{εi}

√
T (w)T (w) d2w

To this we have to add the (unknown) S5 contribution

∫
Σ

(
S5 contribution−

√
T (w)T (w) d2w

)
︸ ︷︷ ︸

Unknown but finite!

+

∫
Σ\{εi}

√
T (w)T (w) d2w
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The cut-off integral

We have to calculate ∫
Σ\{εi}

√
T (w)T (w) d2w

This integral can be done analytically∫
Σ\{εi}

√
T (w)T (w) d2w = Finite + ∆2 log ε1 + ∆2 log ε−1 + ∆2

∞ log ε∞

where

Finite = π

(
−
(

∆ +
∆∞

2

)2

log(2∆ + ∆∞)− 2∆2 log ∆ + . . .

)

We have to link the worldsheet cut-off’s ε1, ε−1, ε∞ to the target space
cut-off z = E
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Reconstruction formula

The classical solution in AdS2 is uniquely specified by a choice of two specific
solutions ΨA, ΨB of the linear system at θ = 0

∂Ψ + JwΨ = 0 ∂Ψ + JwΨ = 0

normalized by 〈ΨAΨB〉 = 1

Then the coordinates of the punctures are encoded in the products at θ = 0

xk =
〈kΨB〉
〈kΨA〉

and the target-space (z = E) and worldsheet cut-offs are linked by

∆k log εk = log
(
E|〈kΨA〉|2

)
These expressions are enough to evaluate

∆2 log ε1 + ∆2 log ε−1 + ∆2
∞ log ε∞
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∆2 log ε1 + ∆2 log ε−1 + ∆2
∞ log ε∞ yields

1 The standard spacetime dependence (∆i ≡
√
λ∆i )

1(
x23

E
)∆2+∆3−∆1

(
x13

E
)∆1+∆3−∆2

(
x12

E
)∆1+∆2−∆3

2 An additional contribution to the OPE coefficients (all products at θ = 0)

−(∆2 +∆3−∆1) log 〈32〉−(∆1 +∆3−∆2) log 〈13〉−(∆1 +∆2−∆3) log 〈12〉

with the products given by the solution of the functional equations

3 The zero-mode part of 〈kl〉 exactly cancels the remaining Finite part of∫
Σ\{εi}

√
T (w)T (w)

4 We obtain, however, a nonzero contribution from the nontrivial part of 〈kl〉
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Final answer

The final answer for the OPE coefficient is a product of the currently unknown
regularized S5 contribution

exp
√

λ
2

∫
Σ

(
S5 contribution−

√
T (w)T (w) d2w

)
︸ ︷︷ ︸

Unknown but finite!

and the explicit AdS answer

exp

{
−
√
λ

6
−
√
λ
[
(2∆−∆∞)P̃−11 + 2∆∞P̃1∞

]}
︸ ︷︷ ︸

Our main result

where
P̃−11 = h̃(2∆−∆∞) + h̃(2∆ + ∆∞)− 2h̃(2∆)

P̃1∞ = h̃(∆∞) + h̃(2∆ + ∆∞)− h̃(2∆)− h̃(2∆∞)

with

h̃(a) =
1

π

∫ ∞
−∞

sinh2 θ

cosh θ
log
(
1− e−aπ cosh θ

)
dθ
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Final answer

exp

{
−
√
λ

6
−
√
λ
[
(2∆−∆∞)P̃−11 + 2∆∞P̃1∞

]}
Comments:

In the extremal limit ∆∞ = 2∆ we obtain 1 (the 1/6 is crucial here)

For large ∆, h̃(a) ∝ e−πa and the AdS contribution approaches a constant

e−
√

λ
6

For small ∆, h̃(a) ∼ − 1
6a −

1
2 log a. Then we get (∆ ≡

√
λ∆)

(
(2∆−∆∞)2∆−∆∞(2∆ + ∆∞)2∆+∆∞∆2∆∞

∞
(2∆)4∆(2∆∞)2∆∞

) 1
2

this limit (∼ CMMM) coincides with the expression in [Klose, McLoughlin]

Caution: The regularized S5 contributions have to be added to these expressions
to get the full OPE coefficients
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The large ∆ limit and the Painleve transcendent

It is possible to understand the universal exp(−
√
λ/6) large ∆ limit directly

The Pohlmeyer equation reads

∂∂γ̃ =
√

T T sinh γ̃

with
√

T T ∝ ∆2
∞|w 2 + a2| · . . .

The solution vanishes at the punctures, but has a logarithmic singularity at
w = ±ia

For large ∆, the solution is almost everywhere zero with logarithmic spikes
around w = ±ia

The Pohlmeyer equation reduces there to radially symmetric Euclidean
sinh-Gordon equation for the Painleve III transcendent Zamolodchikov ’94

U ′′ +
1

R
U ′ =

1

2
sinh 2U

with U ∼ ± 1
3 log R
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1

R
U ′ =

1

2
sinh 2U

with U ∼ ± 1
3 log R
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The large ∆ limit and the Painleve transcendent

The Pohlmeyer reduced contribution can be expressed in terms of the Fc(R)
function of [Zamolodchikov ’94]

−3π

2

∫ ∞
0

(
d

dR
RFc(R) +

R

2

)
dR

Using the asymptotics Zamolodchikov ’94

Fc(R) ∼ −R/4 for R →∞ R Fc(R)→ 1/18 for R → 0

the integral may be evaluated to

π

12

Summing two such contributions reproduces our result

e−
√

λ
π ( π

12 + π
12 ) = e−

√
λ

6
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Summary & outlook

We have considered operators dual to classical strings on S5

We have evaluated the (universal) AdS part of the OPE coefficients which
depends only on the dimensions of the operators

COPE = COPE
AdS︸ ︷︷ ︸

universal

· COPE
S5︸ ︷︷ ︸

operator−dependent

It would be interesting to compare with the CHHL computations with
∆light →∞. One should determine backreaction and vertex operator
contributions in the CHHL calculations...

Main open question: the S5 contribution
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