On universal parts of OPE coefficients in N=4 SYM

Romuald A. Janik

Jagiellonian University Kraków

8th Bologna Workshop on CFT AND INTEGRABLE MODELS

RJ, A. Wereszczyński: 1109.XXXX

Outline

- Introduction
- 2 2-point correlation functions
 - Brief review
- 3 3-point correlation functions
 - General features
 - Pohlmeyer reduction
 - Regularized 'Pohlmeyer' contribution
 - Overlaps between solutions of the linear system
 - Worldsheet cut-off versus target space cut-off
- Final answer
 - ullet The large Δ limit and the Painleve transcendent
- Summary & outlook

Find the spectrum of conformal weights
 ≡ eigenvalues of the dilatation operator
 ≡ (anomalous) dimensions of operators

$$\langle O(0)O(x)\rangle = \frac{1}{|x|^{2\Delta}}$$

• Find the OPE coefficients Cijk defined through

$$\langle O_i(x_1)O_j(x_2)O_k(x_3)\rangle = \frac{C_{ijk}}{|x_1 - x_2|^{\Delta_i + \Delta_j - \Delta_k}|x_1 - x_3|^{\Delta_i + \Delta_k - \Delta_j}|x_2 - x_3|^{\Delta_j + \Delta_k - \Delta_j}}$$

- Find the spectrum of conformal weights
 - = eigenvalues of the dilatation operators

$$\langle O(0)O(x)\rangle = \frac{1}{|x|^{2\Delta}}$$

• Find the OPE coefficients Cijk defined through

$$\langle O_i(x_1)O_j(x_2)O_k(x_3)\rangle = \frac{C_{ijk}}{|x_1 - x_2|^{\Delta_i + \Delta_j - \Delta_k}|x_1 - x_3|^{\Delta_i + \Delta_k - \Delta_j}|x_2 - x_3|^{\Delta_j + \Delta_k - \Delta_j}}$$

- Find the spectrum of conformal weights \equiv eigenvalues of the dilatation operator
 - \equiv (anomalous) dimensions of operators

$$\langle O(0)O(x)\rangle = \frac{1}{|x|^{2\Delta}}$$

• Find the OPE coefficients Cijk defined through

$$\langle O_i(x_1)O_j(x_2)O_k(x_3)\rangle = \frac{C_{ijk}}{|x_1 - x_2|^{\Delta_i + \Delta_j - \Delta_k}|x_1 - x_3|^{\Delta_i + \Delta_k - \Delta_j}|x_2 - x_3|^{\Delta_j + \Delta_k - \Delta_j}}$$

Find the spectrum of conformal weights
 ≡ eigenvalues of the dilatation operator
 ≡ (anomalous) dimensions of operators

$$\langle O(0)O(x)\rangle = \frac{1}{|x|^{2\Delta}}$$

• Find the OPE coefficients Ciik defined through

$$\langle O_i(x_1)O_j(x_2)O_k(x_3)\rangle = \frac{C_{ijk}}{|x_1 - x_2|^{\Delta_i + \Delta_j - \Delta_k}|x_1 - x_3|^{\Delta_i + \Delta_k - \Delta_j}|x_2 - x_3|^{\Delta_j + \Delta_k - \Delta_j}}$$

• Find the spectrum of conformal weights \equiv eigenvalues of the dilatation operator \equiv (anomalous) dimensions of operators

$$\langle O(0)O(x)\rangle = \frac{1}{|x|^{2\Delta}}$$

• Find the OPE coefficients Cijk defined through

$$\langle O_i(x_1)O_j(x_2)O_k(x_3)\rangle = \frac{C_{ijk}}{|x_1-x_2|^{\Delta_i+\Delta_j-\Delta_k}|x_1-x_3|^{\Delta_i+\Delta_k-\Delta_j}|x_2-x_3|^{\Delta_j+\Delta_k-\Delta_i}}$$

Find the spectrum of conformal weights
 ≡ eigenvalues of the dilatation operator
 ≡ (anomalous) dimensions of operators

$$\langle O(0)O(x)\rangle = \frac{1}{|x|^{2\Delta}}$$

• Find the OPE coefficients Ciik defined through

$$\langle O_i(x_1)O_j(x_2)O_k(x_3)\rangle = \frac{C_{ijk}}{|x_1-x_2|^{\Delta_i+\Delta_j-\Delta_k}|x_1-x_3|^{\Delta_i+\Delta_k-\Delta_j}|x_2-x_3|^{\Delta_j+\Delta_k-\Delta_i}}$$

- BPS operators correspond to supergravity modes
- Their anomalous dimensions are protected as well as OPE coefficients
- These states are (in this context) commonly called light states
- Operators which have nontrivial anomalous dimensions correspond to massive string states
- The lightest of these, corresponding to 'short strings' (e.g. the Konishi operator) can be called by analogy medium states
- A subclass of operators with large *R*-charges/spins correspond, at strong coupling, to classical string states
- These states are (in this context) commonly called heavy states

BPS operators correspond to supergravity modes

- Their anomalous dimensions are protected as well as OPE coefficients
- These states are (in this context) commonly called light states
- Operators which have nontrivial anomalous dimensions correspond to massive string states
- The lightest of these, corresponding to 'short strings' (e.g. the Konishi operator) can be called by analogy medium states
- A subclass of operators with large R-charges/spins correspond, at strong coupling, to classical string states
- These states are (in this context) commonly called heavy states

- BPS operators correspond to supergravity modes
- Their anomalous dimensions are protected as well as OPE coefficients
- These states are (in this context) commonly called light states
- Operators which have nontrivial anomalous dimensions correspond to massive string states
- The lightest of these, corresponding to 'short strings' (e.g. the Konishi operator) can be called by analogy medium states
- A subclass of operators with large *R*-charges/spins correspond, at strong coupling, to classical string states
- These states are (in this context) commonly called heavy states

- BPS operators correspond to supergravity modes
- Their anomalous dimensions are protected as well as OPE coefficients
- These states are (in this context) commonly called light states
- Operators which have nontrivial anomalous dimensions correspond to massive string states
- The lightest of these, corresponding to 'short strings' (e.g. the Konishi operator) can be called by analogy **medium states**
- A subclass of operators with large R-charges/spins correspond, at strong coupling, to classical string states
- These states are (in this context) commonly called heavy states

- BPS operators correspond to supergravity modes
- Their anomalous dimensions are protected as well as OPE coefficients
- These states are (in this context) commonly called light states
- Operators which have nontrivial anomalous dimensions correspond to massive string states
- The lightest of these, corresponding to 'short strings' (e.g. the Konishi operator) can be called by analogy medium states
- A subclass of operators with large *R*-charges/spins correspond, at strong coupling, to classical string states
- These states are (in this context) commonly called heavy states

- BPS operators correspond to supergravity modes
- Their anomalous dimensions are protected as well as OPE coefficients
- These states are (in this context) commonly called light states
- Operators which have nontrivial anomalous dimensions correspond to massive string states
- The lightest of these, corresponding to 'short strings' (e.g. the Konishi operator) can be called by analogy **medium states**
- A subclass of operators with large R-charges/spins correspond, at strong coupling, to classical string states
- These states are (in this context) commonly called heavy states

- BPS operators correspond to supergravity modes
- Their anomalous dimensions are protected as well as OPE coefficients
- These states are (in this context) commonly called light states
- Operators which have nontrivial anomalous dimensions correspond to massive string states
- The lightest of these, corresponding to 'short strings' (e.g. the Konishi operator) can be called by analogy **medium states**
- A subclass of operators with large R-charges/spins correspond, at strong coupling, to classical string states
- These states are (in this context) commonly called heavy states

- BPS operators correspond to supergravity modes
- Their anomalous dimensions are protected as well as OPE coefficients
- These states are (in this context) commonly called light states
- Operators which have nontrivial anomalous dimensions correspond to massive string states
- The lightest of these, corresponding to 'short strings' (e.g. the Konishi operator) can be called by analogy **medium states**
- A subclass of operators with large R-charges/spins correspond, at strong coupling, to classical string states
- These states are (in this context) commonly called heavy states

- BPS operators correspond to supergravity modes
- Their anomalous dimensions are protected as well as OPE coefficients
- These states are (in this context) commonly called light states
- Operators which have nontrivial anomalous dimensions correspond to massive string states
- The lightest of these, corresponding to 'short strings' (e.g. the Konishi operator) can be called by analogy medium states
- A subclass of operators with large R-charges/spins correspond, at strong coupling, to classical string states
- These states are (in this context) commonly called heavy states

- Protected OPE coefficients are known (supergravity states)
- At weak coupling (for *unprotected* operators) a lot is known at tree-level and at 1-loop, as well as Frolov-Tseytlin limit Escobedo, Gromov, Sever, Vieira
- For *some specific* operators the OPE coefficient is known up to three loops! Eden, Heslop, Korchemsky, Sokhatchev
- At strong coupling, the case of 3-point correlation functions/OPE coefficients
 C_{HHL} for two heavy and one light is well studied
 Zarembo; Costa et.al.
 use the known classical solution for a two-point function of the heavy operators and integrate with the propagator of the light supergravity mode
- Recently near BMN operators were also considered

Klose, McLoughlin

- Protected OPE coefficients are known (supergravity states)
- At weak coupling (for *unprotected* operators) a lot is known at tree-level and at 1-loop, as well as Frolov-Tseytlin limit Escobedo, Gromov, Sever, Vieira
- For *some specific* operators the OPE coefficient is known up to three loops! Eden, Heslop, Korchemsky, Sokhatchev
- At strong coupling, the case of 3-point correlation functions/OPE coefficients
 C_{HHL} for two heavy and one light is well studied
 Zarembo; Costa et.al.
 use the known classical solution for a two-point function of the heavy operators and integrate with the propagator of the light supergravity mode
- Recently near BMN operators were also considered

Klose, McLoughlin

- Protected OPE coefficients are known (supergravity states)
- At weak coupling (for *unprotected* operators) a lot is known at tree-level and at 1-loop, as well as Frolov-Tseytlin limit
 Escobedo, Gromov, Sever, Vieira
- For *some specific* operators the OPE coefficient is known up to three loops! Eden, Heslop, Korchemsky, Sokhatchev
- At strong coupling, the case of 3-point correlation functions/OPE coefficients
 C_{HHL} for two heavy and one light is well studied
 Zarembo; Costa et.al.
 use the known classical solution for a two-point function of the heavy operators and integrate with the propagator of the light supergravity mode
- Recently near BMN operators were also considered

Klose, McLoughlin

- Protected OPE coefficients are known (supergravity states)
- At weak coupling (for *unprotected* operators) a lot is known at tree-level and at 1-loop, as well as Frolov-Tseytlin limit
 Escobedo, Gromov, Sever, Vieira
- For *some specific* operators the OPE coefficient is known up to three loops! Eden, Heslop, Korchemsky, Sokhatchev
- At strong coupling, the case of 3-point correlation functions/OPE coefficients
 C_{HHL} for two heavy and one light is well studied
 use the known classical solution for a two-point function of the heavy operators and integrate with the propagator of the light supergravity mode see the talk by Ahn
- Recently near BMN operators were also considered

Klose, McLoughlin

- Protected OPE coefficients are known (supergravity states)
- At weak coupling (for *unprotected* operators) a lot is known at tree-level and at 1-loop, as well as Frolov-Tseytlin limit
 Escobedo, Gromov, Sever, Vieira
- For *some specific* operators the OPE coefficient is known up to three loops! Eden, Heslop, Korchemsky, Sokhatchev
- Recently near BMN operators were also considered

Klose, McLoughlin

- Protected OPE coefficients are known (supergravity states)
- At weak coupling (for *unprotected* operators) a lot is known at tree-level and at 1-loop, as well as Frolov-Tseytlin limit
 Escobedo, Gromov, Sever, Vieira
- For *some specific* operators the OPE coefficient is known up to three loops! Eden, Heslop, Korchemsky, Sokhatchev
- At strong coupling, the case of 3-point correlation functions/OPE coefficients
 C_{HHL} for two heavy and one light is well studied
 use the known classical solution for a two-point function of the heavy operators and integrate with the propagator of the light supergravity mode see the talk by Ahn
- Recently near BMN operators were also considered

Klose, McLoughlin

- Protected OPE coefficients are known (supergravity states)
- At weak coupling (for *unprotected* operators) a lot is known at tree-level and at 1-loop, as well as Frolov-Tseytlin limit
 Escobedo, Gromov, Sever, Vieira
- For *some specific* operators the OPE coefficient is known up to three loops! Eden, Heslop, Korchemsky, Sokhatchev
- Recently near BMN operators were also considered Klose,

Recently near BMN operators were also considered Klose, McLoughlin

Anomalous dimensions of operators

=

- This approach is very well developed using integrability
- Alternatively we might try to compute the anomalous dimensions directly by computing a 2-point correlation function

$$\langle O(0)O(x)\rangle = \frac{1}{|x|^{2\Delta}}$$

- For light states (supergravity modes) the prescription is known since the very beginning of AdS/CFT
 Witten; Gubser, Klebanov, Polyakov
- For classical string states a prescription has been worked out in [RJ, Surówka, Wereszczyński]
 see also [Tsuji] and [Buchbinder, Tseytlin]

Anomalous dimensions of operators

=

- This approach is very well developed using integrability
- Alternatively we might try to compute the anomalous dimensions directly by computing a 2-point correlation function

$$\langle O(0)O(x)\rangle = \frac{1}{|x|^{2\Delta}}$$

- For light states (supergravity modes) the prescription is known since the very beginning of AdS/CFT
 Witten; Gubser, Klebanov, Polyakov
- For classical string states a prescription has been worked out in [RJ, Surówka, Wereszczyński]
 see also [Tsuji] and [Buchbinder, Tseytlin]

Anomalous dimensions of operators

=

- This approach is very well developed using integrability
- Alternatively we might try to compute the anomalous dimensions directly by computing a 2-point correlation function

$$\langle O(0)O(x)\rangle = \frac{1}{|x|^{2\Delta}}$$

- For light states (supergravity modes) the prescription is known since the very beginning of AdS/CFT
 Witten; Gubser, Klebanov, Polyakov
- For classical string states a prescription has been worked out in [RJ, Surówka, Wereszczyński]
 see also [Tsuji] and [Buchbinder, Tseytlin]

Anomalous dimensions of operators

=

- This approach is very well developed using integrability
- Alternatively we might try to compute the anomalous dimensions directly by computing a 2-point correlation function

$$\langle O(0)O(x)\rangle = \frac{1}{|x|^{2\Delta}}$$

- For light states (supergravity modes) the prescription is known since the very begining of AdS/CFT
 Witten; Gubser, Klebanov, Polyakov
- For classical string states a prescription has been worked out in [RJ, Surówka, Wereszczyński]
 see also [Tsuji] and [Buchbinder, Tseytlin]

Anomalous dimensions of operators

=

- This approach is very well developed using integrability
- Alternatively we might try to compute the anomalous dimensions directly by computing a 2-point correlation function

$$\langle O(0)O(x)\rangle = \frac{1}{|x|^{2\Delta}}$$

- For light states (supergravity modes) the prescription is known since the very begining of AdS/CFT
 Witten; Gubser, Klebanov, Polyakov
- For classical string states a prescription has been worked out in [RJ, Surówka, Wereszczyński]
 see also [Tsuji] and [Buchbinder, Tseytlin]

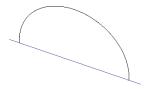
• For two-point functions, we pass from a Green's function of the **light** state (supergravity field) to a classical string solution with the topology of a **cylinder**, approaching two given points on the boundary (modulo caveats)

 For a three-point function, we have to construct a classical solution with the topology of a thrice punctured sphere

• For two-point functions, we pass from a Green's function of the light state (supergravity field) to a classical string solution with the topology of a cylinder, approaching two given points on the boundary (modulo caveats)

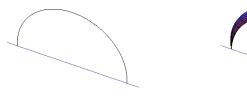
 For a three-point function, we have to construct a classical solution with the topology of a thrice punctured sphere

 For two-point functions, we pass from a Green's function of the light state (supergravity field) to a classical string solution with the topology of a cylinder, approaching two given points on the boundary (modulo caveats)



 For a three-point function, we have to construct a classical solution with the topology of a thrice punctured sphere

 For two-point functions, we pass from a Green's function of the light state (supergravity field) to a classical string solution with the topology of a cylinder, approaching two given points on the boundary (modulo caveats)



• For a three-point function, we have to construct a classical solution with the topology of a thrice punctured sphere

 For two-point functions, we pass from a Green's function of the light state (supergravity field) to a classical string solution with the topology of a cylinder, approaching two given points on the boundary (modulo caveats)

• For a three-point function, we have to construct a classical solution with the topology of a thrice punctured sphere

2-point correlation functions

- At the classical level one can consider an Euclidean worldsheet with the topology of a sphere with 2 punctures satisfying Virasoro constraints (saddle point of Minkowskian cylinder amplitude...)
- The solution is complex (i.e. *complexified*)
- ullet The AdS part of the solution is a geodesic cut-off at $z=\mathcal{E}$

- ullet The S^5 part of the solution is just the Wick rotated spinning string solution
 - here we have to include wavefunctions
 - the contribution of the S^5 part is the energy integral

$$\Psi^* \, \mathrm{e}^{-rac{\sqrt{\lambda}}{4\pi} \int_{cylinder} d\sigma d au} \, \mathcal{L}_{\mathit{S}^5} \psi \longrightarrow \mathrm{e}^{rac{\sqrt{\lambda}}{4\pi} \int_{cylinder} d\sigma d au} \, \mathcal{E}_{euclidean}^{\mathit{S}^5}$$

Putting the two contributions together we get

$$\underbrace{e^{-\frac{\sqrt{\lambda}}{4\pi}\int_{cylinder}d\sigma d\tau \, \mathcal{L}_{AdS}}}_{AdS \; action} \cdot \underbrace{e^{\frac{\sqrt{\lambda}}{4\pi}\int_{cylinder}d\sigma d\tau \, \mathcal{E}_{euclidean}^{S^5}}}_{S^5 \; energy \; integral} \longrightarrow \frac{1}{\left(\frac{|x|}{\mathcal{E}}\right)^{2\Delta}}$$

2-point correlation functions

- At the classical level one can consider an Euclidean worldsheet with the topology of a sphere with 2 punctures satisfying Virasoro constraints (saddle point of Minkowskian cylinder amplitude...)
- The solution is complex (i.e. *complexified*)
- The AdS part of the solution is a geodesic cut-off at $z=\mathcal{E}$

- \bullet The S^5 part of the solution is just the Wick rotated spinning string solution
 - here we have to include wavefunctions
 - the contribution of the S^5 part is the energy integral

$$\Psi^* \: e^{-\frac{\sqrt{\lambda}}{4\pi} \int_{\text{cylinder}} d\sigma d\tau \: \mathcal{L}_{S^5} \Psi \: \longrightarrow \: e^{\frac{\sqrt{\lambda}}{4\pi} \int_{\text{cylinder}} d\sigma d\tau \: \mathcal{E}_{\text{euclidean}}^{S^5}}$$

Putting the two contributions together we get

$$\underbrace{e^{-\frac{\sqrt{\lambda}}{4\pi}\int_{cylinder}d\sigma d\tau\,\mathcal{L}_{AdS}}}_{AdS \; action} \cdot \underbrace{e^{\frac{\sqrt{\lambda}}{4\pi}\int_{cylinder}d\sigma d\tau\,\mathcal{E}_{euclidean}^{S^5}}}_{S^5 \; energy \; integral} \longrightarrow \frac{1}{\left(\frac{|x|}{\mathcal{E}}\right)^{2\Delta}}$$

- At the classical level one can consider an Euclidean worldsheet with the topology of a sphere with 2 punctures satisfying Virasoro constraints (saddle point of Minkowskian cylinder amplitude...)
- The solution is complex (i.e. complexified)
- ullet The AdS part of the solution is a geodesic cut-off at $z=\mathcal{E}$

- ullet The S^5 part of the solution is just the Wick rotated spinning string solution
 - here we have to include wavefunctions
 - the contribution of the S^5 part is the energy integral

$$\Psi^* \, \mathrm{e}^{-rac{\sqrt{\lambda}}{4\pi} \int_{cylinder} d\sigma d au} \, \mathcal{L}_{\mathsf{S}^{\mathsf{S}}} \Psi \longrightarrow \mathrm{e}^{rac{\sqrt{\lambda}}{4\pi} \int_{cylinder} d\sigma d au} \, \mathcal{E}_{\mathsf{euclidean}}^{\mathsf{S}^{\mathsf{S}}}$$

$$\underbrace{e^{-\frac{\sqrt{\lambda}}{4\pi}\int_{\text{cylinder}}d\sigma d\tau \, \mathcal{L}_{AdS}}}_{\text{AdS action}} \cdot \underbrace{e^{\frac{\sqrt{\lambda}}{4\pi}\int_{\text{cylinder}}d\sigma d\tau \, \mathcal{E}_{\text{euclidean}}^{S^5}}}_{S^5 \text{ energy integral}} \longrightarrow \frac{1}{\left(\frac{|x|}{\mathcal{E}}\right)^{2\Delta}}$$

- At the classical level one can consider an Euclidean worldsheet with the topology of a sphere with 2 punctures satisfying Virasoro constraints (saddle point of Minkowskian cylinder amplitude...)
- The solution is complex (i.e. complexified)
- The AdS part of the solution is a geodesic cut-off at $z = \mathcal{E}$

- ullet The S^5 part of the solution is just the Wick rotated spinning string solution
 - here we have to include wavefunctions
 - the contribution of the S^5 part is the energy integral

$$\Psi^* \; e^{-\frac{\sqrt{\lambda}}{4\pi} \int_{\text{cylinder}} d\sigma d\tau \; \mathcal{L}_{S^5} \Psi \; \longrightarrow \; e^{\frac{\sqrt{\lambda}}{4\pi} \int_{\text{cylinder}} d\sigma d\tau \; E_{\text{euclidean}}^{S^5}}$$

- At the classical level one can consider an Euclidean worldsheet with the topology of a sphere with 2 punctures satisfying Virasoro constraints (saddle point of Minkowskian cylinder amplitude...)
- The solution is complex (i.e. complexified)
- The AdS part of the solution is a geodesic cut-off at $z = \mathcal{E}$

- ullet The S^5 part of the solution is just the Wick rotated spinning string solution
 - here we have to include wavefunctions
 - the contribution of the S^5 part is the energy integral

$$\Psi^* \; e^{-\frac{\sqrt{\lambda}}{4\pi} \int_{\text{cylinder}} d\sigma d\tau \; \mathcal{L}_{S^5} \psi \; \longrightarrow \; e^{\frac{\sqrt{\lambda}}{4\pi} \int_{\text{cylinder}} d\sigma d\tau \; E_{\text{euclideal}}^{S^5}}$$

$$\underbrace{e^{-\frac{\sqrt{\lambda}}{4\pi}\int_{\text{cylinder}}d\sigma d\tau \, \mathcal{L}_{AdS}}}_{\text{AdS action}} \cdot \underbrace{e^{\frac{\sqrt{\lambda}}{4\pi}\int_{\text{cylinder}}d\sigma d\tau \, \mathcal{E}_{\text{euclidean}}^{\S^5}}}_{S^5 \text{ energy integral}} \longrightarrow \frac{1}{\left(\frac{|x|}{\mathcal{E}}\right)^{2\Delta}}$$

- At the classical level one can consider an Euclidean worldsheet with the topology of a sphere with 2 punctures satisfying Virasoro constraints (saddle point of Minkowskian cylinder amplitude...)
- The solution is complex (i.e. complexified)
- ullet The AdS part of the solution is a geodesic cut-off at $z=\mathcal{E}$

- The S^5 part of the solution is just the Wick rotated spinning string solution here we have to include wavefunctions
 - nere we have to include wavefunctions
 - the contribution of the S^5 part is the energy integral

$$\Psi^* \; e^{-\frac{\sqrt{\lambda}}{4\pi} \int_{\text{cylinder}} d\sigma d\tau \; \mathcal{L}_{S^5} \psi \; \longrightarrow \; e^{\frac{\sqrt{\lambda}}{4\pi} \int_{\text{cylinder}} d\sigma d\tau \; E^{S^5}_{\text{euclidean}}}$$

$$\underbrace{e^{-\frac{\sqrt{\lambda}}{4\pi}\int_{\text{cylinder}}d\sigma d\tau \, \mathcal{L}_{AdS}}}_{\text{AdS action}} \cdot \underbrace{e^{\frac{\sqrt{\lambda}}{4\pi}\int_{\text{cylinder}}d\sigma d\tau \, \mathcal{E}_{\text{euclidean}}^{S^5}}}_{S^5 \text{ energy integral}} \longrightarrow \frac{1}{\left(\frac{|x|}{\mathcal{E}}\right)^{2\Delta}}$$

- At the classical level one can consider an Euclidean worldsheet with the topology of a sphere with 2 punctures satisfying Virasoro constraints (saddle point of Minkowskian cylinder amplitude...)
- The solution is complex (i.e. complexified)
- The AdS part of the solution is a geodesic cut-off at $z = \mathcal{E}$

- ullet The S^5 part of the solution is just the Wick rotated spinning string solution
 - here we have to include wavefunctions
 - the contribution of the S^5 part is the energy integral

$$\Psi^* \; e^{-\frac{\sqrt{\lambda}}{4\pi} \int_{\text{cylinder}} d\sigma d\tau \; \mathcal{L}_{\text{S}^5} \Psi \; \longrightarrow \; e^{\frac{\sqrt{\lambda}}{4\pi} \int_{\text{cylinder}} d\sigma d\tau \; E_{\text{euclidean}}^{\text{S}^5}}$$

- At the classical level one can consider an Euclidean worldsheet with the topology of a sphere with 2 punctures satisfying Virasoro constraints (saddle point of Minkowskian cylinder amplitude...)
- The solution is complex (i.e. *complexified*)
- The AdS part of the solution is a geodesic cut-off at $z = \mathcal{E}$

- \bullet The S^{5} part of the solution is just the Wick rotated spinning string solution
 - here we have to include wavefunctions
 - the contribution of the S^5 part is the energy integral

$$\Psi^* \; e^{-\frac{\sqrt{\lambda}}{4\pi} \int_{\text{cylinder}} d\sigma d\tau \; \mathcal{L}_{S^5} \psi \; \longrightarrow \; e^{\frac{\sqrt{\lambda}}{4\pi} \int_{\text{cylinder}} d\sigma d\tau \; \mathcal{E}_{\text{euclidean}}^{S^5}$$

$$\underbrace{e^{-\frac{\sqrt{\lambda}}{4\pi}\int_{\textit{cylinder}}\textit{d}\sigma\textit{d}\tau\;\mathcal{L}_{\textit{AdS}}}}_{\textit{AdS}\;\textit{action}}\cdot\underbrace{e^{\frac{\sqrt{\lambda}}{4\pi}\int_{\textit{cylinder}}\textit{d}\sigma\textit{d}\tau\;E^{S^5}_{\textit{euclidean}}}}_{S^5\;\textit{energy}\;\textit{integral}}\longrightarrow\frac{1}{\left(\frac{|x|}{\mathcal{E}}\right)^{2\Delta}}$$

We are interested in classical solutions with the topology of a thrice-punctured sphere

- Close to the punctures, the solutions should approach the *known* solutions for 2-point functions
- For operators with nontrivial charges only on the S^5 , the problem separates into two almost decoupled parts the S^5 part and the AdS part, resulting in

$$C^{OPE} = \underbrace{C_{AdS}^{OPE}}_{universal} \cdot \underbrace{C_{S^5}^{OPE}}_{S^5}$$

• The problems are only tied through the Virasoro constraint

$$T_{AdS}(w) + T_{S^5}(w) = 0$$

We are interested in classical solutions with the topology of a thrice-punctured sphere

- Close to the punctures, the solutions should approach the known solutions for 2-point functions
- For operators with nontrivial charges only on the S^5 , the problem separates into two almost decoupled parts the S^5 part and the AdS part, resulting in

$$C^{OPE} = \underbrace{C_{AdS}^{OPE}}_{C_{S^5}} \cdot \underbrace{C_{S^5}^{OPE}}_{C_{S^5}}$$

universal operator—dependent

• The problems are only tied through the Virasoro constraint

$$T_{AdS}(w) + T_{S^5}(w) = 0$$

We are interested in classical solutions with the topology of a thrice-punctured sphere

- Close to the punctures, the solutions should approach the *known* solutions for 2-point functions
- For operators with nontrivial charges only on the S^5 , the problem separates into two almost decoupled parts the S^5 part and the AdS part, resulting in

$$C^{OPE} = \underbrace{C_{AdS}^{OPE}}_{universal} \cdot \underbrace{C_{S^5}^{OPE}}_{S^5}$$

The problems are only tied through the Virasoro constraint

$$T_{AdS}(w) + T_{S^5}(w) = 0$$

We are interested in classical solutions with the topology of a thrice-punctured sphere

- Close to the punctures, the solutions should approach the *known* solutions for 2-point functions
- For operators with nontrivial charges only on the S^5 , the problem separates into two almost decoupled parts the S^5 part and the AdS part, resulting in

$$C^{OPE} = \underbrace{C_{AdS}^{OPE}}_{universal} \cdot \underbrace{C_{S^5}^{OPE}}_{operator-dependent}$$

• The problems are only tied through the Virasoro constraint

$$T_{AdS}(w) + T_{S^5}(w) = 0$$

We are interested in classical solutions with the topology of a thrice-punctured sphere

- Close to the punctures, the solutions should approach the *known* solutions for 2-point functions
- For operators with nontrivial charges only on the S^5 , the problem separates into two almost decoupled parts the S^5 part and the AdS part, resulting in

$$C^{OPE} = \underbrace{C_{AdS}^{OPE}}_{universal} \cdot \underbrace{C_{S^5}^{OPE}}_{operator-dependent}$$

• The problems are only tied through the Virasoro constraint

$$T_{AdS}(w)+T_{S^5}(w)=0$$

We are interested in classical solutions with the topology of a thrice-punctured sphere

- Close to the punctures, the solutions should approach the *known* solutions for 2-point functions
- For operators with nontrivial charges only on the S^5 , the problem separates into two almost decoupled parts the S^5 part and the AdS part, resulting in

$$C^{OPE} = \underbrace{C_{AdS}^{OPE}}_{universal} \cdot \underbrace{C_{S^5}^{OPE}}_{operator-dependent}$$

• The problems are only tied through the Virasoro constraint

$$T_{AdS}(w) + T_{S^5}(w) = 0$$

 \bullet We have to find classical solutions following from the AdS_2 action

$$\frac{\partial z \overline{\partial} z + \partial x \overline{\partial} x}{z^2}$$

$$\frac{(\partial z)^2 + (\partial x)^2}{z^2} = T(w)$$

- At the punctures, the classical solution should approach three given points x_1 , x_2 and x_3 in a way similar to two-point functions of appropriate operators
- The punctures can be fixed e.g. to $w=\pm 1$ and $w=\infty$
- The r.h.s. of the Virasoro T(w) can be found explicitly

• We have to find classical solutions following from the AdS_2 action

$$\frac{\partial z\overline{\partial}z+\partial x\overline{\partial}x}{z^2}$$

$$\frac{(\partial z)^2 + (\partial x)^2}{z^2} = T(w)$$

- At the punctures, the classical solution should approach three given points x_1 , x_2 and x_3 in a way similar to two-point functions of appropriate operators
- The punctures can be fixed e.g. to $w=\pm 1$ and $w=\infty$
- The r.h.s. of the Virasoro T(w) can be found explicitly

• We have to find classical solutions following from the AdS_2 action

$$\frac{\partial z \overline{\partial} z + \partial x \overline{\partial} x}{z^2}$$

$$\frac{(\partial z)^2 + (\partial x)^2}{z^2} = T(w)$$

- At the punctures, the classical solution should approach three given points x_1 , x_2 and x_3 in a way similar to two-point functions of appropriate operators
- The punctures can be fixed e.g. to $w=\pm 1$ and $w=\infty$
- The r.h.s. of the Virasoro T(w) can be found explicitly

• We have to find classical solutions following from the AdS_2 action

$$\frac{\partial z \overline{\partial} z + \partial x \overline{\partial} x}{z^2}$$

$$\frac{(\partial z)^2 + (\partial x)^2}{z^2} = T(w)$$

- At the punctures, the classical solution should approach three given points x_1 , x_2 and x_3 in a way similar to two-point functions of appropriate operators
- The punctures can be fixed e.g. to $w=\pm 1$ and $w=\infty$
- The r.h.s. of the Virasoro T(w) can be found explicitly

• We have to find classical solutions following from the AdS_2 action

$$\frac{\partial z \overline{\partial} z + \partial x \overline{\partial} x}{z^2}$$

$$\frac{(\partial z)^2 + (\partial x)^2}{z^2} = T(w)$$

- At the punctures, the classical solution should approach three given points x_1 , x_2 and x_3 in a way similar to two-point functions of appropriate operators
- The punctures can be fixed e.g. to $w=\pm 1$ and $w=\infty$
- The r.h.s. of the Virasoro T(w) can be found explicitly

• We have to find classical solutions following from the AdS_2 action

$$\frac{\partial z \overline{\partial} z + \partial x \overline{\partial} x}{z^2}$$

$$\frac{(\partial z)^2 + (\partial x)^2}{z^2} = T(w)$$

- At the punctures, the classical solution should approach three given points x_1 , x_2 and x_3 in a way similar to two-point functions of appropriate operators
- The punctures can be fixed e.g. to $w=\pm 1$ and $w=\infty$
- The r.h.s. of the Virasoro T(w) can be found explicitly

• T(w) for a 2-point correlation function is

$$T_{2-point}(w) = \frac{\Delta^2/4}{w^2}$$

where the anomalous dimension $\Delta \equiv \sqrt{\lambda} \Delta$

- Hence T(w) should have poles of order at most two at each puncture with prescribed leading coefficients
- Taking into account the transformation property

$$T(w) o rac{1}{u^4} T\left(rac{1}{u}
ight)$$

T(w) is fixed uniquely

$$T(w) = \frac{\Delta_{\infty}^2}{4} \frac{w^2 + a^2}{(1 - w^2)^2}$$
 where $a^2 = \frac{4\Delta^2}{\Delta_{\infty}^2} - 1$

• T(w) for a 2-point correlation function is

$$T_{2-point}(w) = \frac{\Delta^2/4}{w^2}$$

where the anomalous dimension $\Delta \equiv \sqrt{\lambda} \Delta$

- Hence T(w) should have poles of order at most two at each puncture with prescribed leading coefficients
- Taking into account the transformation property

$$T(w) o rac{1}{u^4} T\left(rac{1}{u}
ight)$$

T(w) is fixed uniquely

$$T(w) = \frac{\Delta_{\infty}^2}{4} \frac{w^2 + a^2}{(1 - w^2)^2}$$
 where $a^2 = \frac{4\Delta^2}{\Delta_{\infty}^2} - 1$

• T(w) for a 2-point correlation function is

$$T_{2-point}(w) = \frac{\Delta^2/4}{w^2}$$

where the anomalous dimension $\Delta \equiv \sqrt{\lambda} \Delta$

- Hence T(w) should have poles of order at most two at each puncture with prescribed leading coefficients
- Taking into account the transformation property

$$T(w) o rac{1}{u^4} T\left(rac{1}{u}
ight)$$

T(w) is fixed uniquely

$$T(w) = \frac{\Delta_{\infty}^2}{4} \frac{w^2 + a^2}{(1 - w^2)^2}$$
 where $a^2 = \frac{4\Delta^2}{\Delta_{\infty}^2} - 1$

• T(w) for a 2-point correlation function is

$$T_{2-point}(w) = \frac{\Delta^2/4}{w^2}$$

where the anomalous dimension $\Delta \equiv \sqrt{\lambda} \Delta$

- Hence T(w) should have poles of order at most two at each puncture with prescribed leading coefficients
- Taking into account the transformation property

$$T(w) o rac{1}{u^4} T\left(rac{1}{u}
ight)$$

T(w) is fixed uniquely

$$T(w) = \frac{\Delta_{\infty}^2}{4} \frac{w^2 + a^2}{(1 - w^2)^2}$$
 where $a^2 = \frac{4\Delta^2}{\Delta_{\infty}^2} - 1$

• T(w) for a 2-point correlation function is

$$T_{2-point}(w) = \frac{\Delta^2/4}{w^2}$$

where the anomalous dimension $\Delta \equiv \sqrt{\lambda} \Delta$

- Hence T(w) should have poles of order at most two at each puncture with prescribed leading coefficients
- Taking into account the transformation property

$$T(w) o rac{1}{u^4} T\left(rac{1}{u}
ight)$$

T(w) is fixed uniquely

$$T(w) = \frac{\Delta_{\infty}^2}{4} \frac{w^2 + a^2}{(1 - w^2)^2}$$
 where $a^2 = \frac{4\Delta^2}{\Delta_{\infty}^2} - 1$

• Pohlmeyer reduction for the AdS_2 σ -model with prescribed T(w) yields the modified sinh-Gordon model

- This is exactly the same modified sinh-Gordon model as for polygonal minimal surfaces in AdS₃!
- However there are some key differences in the analytic structure and in the target-space picture (AdS_2 versus AdS_3)

 Pohlmeyer reduction for the AdS₂ σ-model with prescribed T(w) yields the modified sinh-Gordon model

$$\frac{\partial x \overline{\partial} x + \partial z \overline{\partial} z}{z^2} = \sqrt{T(w)} \overline{T}(\overline{w}) \cosh \tilde{\gamma}$$
$$\partial \overline{\partial} \tilde{\gamma} = \sqrt{T} \overline{T} \sinh \tilde{\gamma}$$

- This is exactly the same modified sinh-Gordon model as for polygonal minimal surfaces in AdS₃!
- However there are some key differences in the analytic structure and in the target-space picture (AdS_2 versus AdS_3)

• Pohlmeyer reduction for the AdS_2 σ -model with prescribed T(w) yields the modified sinh-Gordon model

$$\frac{\partial x \overline{\partial} x + \partial z \overline{\partial} z}{z^2} = \frac{1}{2} \left(e^{2\gamma} + T \, \overline{T} e^{-2\gamma} \right)$$

$$\partial \overline{\partial} \gamma = \frac{1}{4} \left(e^{2\gamma} - T \overline{T} e^{-2\gamma} \right)$$

- This is exactly the same modified sinh-Gordon model as for polygonal minimal surfaces in AdS₃!
- However there are some key differences in the analytic structure and in the target-space picture (AdS_2 versus AdS_3)

 Pohlmeyer reduction for the AdS₂ σ-model with prescribed T(w) yields the modified sinh-Gordon model

$$\frac{\partial x \overline{\partial} x + \partial z \overline{\partial} z}{z^2} = \frac{1}{2} \left(e^{2\gamma} + T \overline{T} e^{-2\gamma} \right)$$

$$\partial \overline{\partial} \gamma = \frac{1}{4} \left(e^{2\gamma} - T \overline{T} e^{-2\gamma} \right)$$

- This is exactly the same modified sinh-Gordon model as for polygonal minimal surfaces in AdS₃!
- However there are some key differences in the analytic structure and in the target-space picture (AdS_2 versus AdS_3)

 Pohlmeyer reduction for the AdS₂ σ-model with prescribed T(w) yields the modified sinh-Gordon model

$$\frac{\partial x \overline{\partial} x + \partial z \overline{\partial} z}{z^2} = \frac{1}{2} \left(e^{2\gamma} + T \overline{T} e^{-2\gamma} \right)$$
$$\partial \overline{\partial} \gamma = \frac{1}{4} \left(e^{2\gamma} - T \overline{T} e^{-2\gamma} \right)$$

- This is **exactly** the same modified sinh-Gordon model as for *polygonal* minimal surfaces in AdS₃!
- However there are some key differences in the analytic structure and in the target-space picture (AdS_2 versus AdS_3)

- The generalized sinh-Gordon model is integrable
- There exists a family of flat connections

$$J = \frac{1}{\xi} \, \Phi_w \, dw + A + \xi \, \Phi_{\overline{w}} \, d\overline{w}$$

Flatness is equivalent to the compatibility of the linear system

$$\partial \Psi + J_w \Psi = 0 \qquad \qquad \overline{\partial} \Psi + J_{\overline{w}} \Psi = 0$$

$$e^{\pm i\Delta_k \frac{\pi}{2} \left(\xi - \frac{1}{\xi}\right)}$$

- The generalized sinh-Gordon model is integrable
- There exists a family of flat connections

$$J = \frac{1}{\xi} \, \Phi_w \, dw + A + \xi \, \Phi_{\overline{w}} \, d\overline{w}$$

• Flatness is equivalent to the compatibility of the linear system

$$\partial \Psi + J_w \Psi = 0$$
 $\overline{\partial} \Psi + J_{\overline{w}} \Psi = 0$

$$e^{\pm i\Delta_k \frac{\pi}{2} \left(\xi - \frac{1}{\xi}\right)}$$

- The generalized sinh-Gordon model is integrable
- There exists a family of flat connections

$$J = \frac{1}{\xi} \, \Phi_w \, dw + A + \xi \, \Phi_{\overline{w}} \, d\overline{w}$$

Flatness is equivalent to the compatibility of the linear system

$$\partial \Psi + J_w \Psi = 0$$
 $\overline{\partial} \Psi + J_{\overline{w}} \Psi = 0$

$$e^{\pm i\Delta_k \frac{\pi}{2} \left(\xi - \frac{1}{\xi}\right)}$$

- The generalized sinh-Gordon model is integrable
- There exists a family of flat connections

$$J = \frac{1}{\xi} \, \Phi_w \, dw + A + \xi \, \Phi_{\overline{w}} \, d\overline{w}$$

Flatness is equivalent to the compatibility of the linear system

$$\partial \Psi + J_w \Psi = 0$$
 $\overline{\partial} \Psi + J_{\overline{w}} \Psi = 0$

$$e^{\pm i\Delta_k \frac{\pi}{2} \left(\xi - \frac{1}{\xi}\right)}$$

- The generalized sinh-Gordon model is integrable
- There exists a family of flat connections

$$J = \frac{1}{\xi} \, \Phi_w \, dw + A + \xi \, \Phi_{\overline{w}} \, d\overline{w}$$

Flatness is equivalent to the compatibility of the linear system

$$\partial \Psi + J_{w}\Psi = 0$$
 $\overline{\partial} \Psi + J_{\overline{w}}\Psi = 0$

$$e^{\pm i\Delta_k \frac{\pi}{2}\left(\xi-\frac{1}{\xi}\right)}$$

AdS₂ string action:

$$\int_{\Sigma\setminus\{\varepsilon_i\}} \frac{\partial x \overline{\partial} x + \partial z \overline{\partial} z}{z^2}$$

- $\Sigma \setminus \{\varepsilon_i\}$: 3-punctured sphere with worldsheet cut-offs at the punctures $|w-w_i|>\varepsilon_i$
- nontrivial: ε_i is fixed by a **target-space** cut-off $z = \mathcal{E}$
- The first term regularized 'Pohlmeyer' action depends on the solution of modified sinh-Gordon, but not on the worldsheet cut-off
- The second term has a known and explicit integrand but the domain of integration depends on the **target-space** cut-off $z = \mathcal{E}$ so we need to have some information on reconstructing the target space solution from the Pohlmeyer reduction...

AdS₂ string action:

$$\int_{\Sigma\setminus\{\varepsilon_i\}} \frac{\partial x \overline{\partial} x + \partial z \overline{\partial} z}{z^2}$$

- $\Sigma \setminus \{\varepsilon_i\}$: 3-punctured sphere with worldsheet cut-offs at the punctures $|w-w_i|>\varepsilon_i$
- nontrivial: ε_i is fixed by a **target-space** cut-off $z = \mathcal{E}$
- The first term regularized 'Pohlmeyer' action depends on the solution of modified sinh-Gordon, but not on the worldsheet cut-off
- The second term has a known and explicit integrand but the domain of integration depends on the **target-space** cut-off $z = \mathcal{E}$ so we need to have some information on reconstructing the target space solution from the Pohlmeyer reduction...

AdS₂ string action:

$$\int_{\Sigma\setminus\{\varepsilon_i\}}\frac{\partial x\overline{\partial}x+\partial z\overline{\partial}z}{z^2}$$

- $\Sigma \setminus \{\varepsilon_i\}$: 3-punctured sphere with worldsheet cut-offs at the punctures $|w-w_i| > \varepsilon_i$
- nontrivial: ε_i is fixed by a target-space cut-off $z = \mathcal{E}$
- The first term regularized 'Pohlmeyer' action depends on the solution of modified sinh-Gordon, but not on the worldsheet cut-off
- The second term has a known and explicit integrand but the domain of integration depends on the **target-space** cut-off $z = \mathcal{E}$ so we need to have some information on reconstructing the target space solution from the Pohlmeyer reduction...

$$\int_{\Sigma\setminus\{\varepsilon_i\}}\frac{\partial x\overline{\partial}x+\partial z\overline{\partial}z}{z^2}$$

- $\Sigma \setminus \{\varepsilon_i\}$: 3-punctured sphere with worldsheet cut-offs at the punctures $|w-w_i| > \varepsilon_i$
- nontrivial: ε_i is fixed by a target-space cut-off $z = \mathcal{E}$
- The first term regularized 'Pohlmeyer' action depends on the solution of modified sinh-Gordon, but not on the worldsheet cut-off
- The second term has a known and explicit integrand but the domain of integration depends on the **target-space** cut-off $z = \mathcal{E}$ so we need to have some information on reconstructing the target space solution from the Pohlmeyer reduction...

$$\int_{\Sigma\setminus\{\varepsilon_i\}}\frac{1}{2}\left(e^{2\gamma(w,\overline{w})}+T(w)\overline{T}(\overline{w})e^{-2\gamma(w,\overline{w})}\right)$$

- $\Sigma \setminus \{\varepsilon_i\}$: 3-punctured sphere with worldsheet cut-offs at the punctures $|w-w_i| > \varepsilon_i$
- nontrivial: ε_i is fixed by a **target-space** cut-off $z = \mathcal{E}$
- The first term regularized 'Pohlmeyer' action depends on the solution of modified sinh-Gordon, but not on the worldsheet cut-off
- The second term has a known and explicit integrand but the domain of integration depends on the **target-space** cut-off $z = \mathcal{E}$ so we need to have some information on reconstructing the target space solution from the Pohlmeyer reduction...

$$\int_{\Sigma\setminus\{\varepsilon_i\}} 2\operatorname{tr} \Phi_w \Phi_{\overline{w}}$$

- $\Sigma \setminus \{\varepsilon_i\}$: 3-punctured sphere with worldsheet cut-offs at the punctures $|w-w_i| > \varepsilon_i$
- nontrivial: ε_i is fixed by a target-space cut-off $z = \mathcal{E}$
- The first term regularized 'Pohlmeyer' action depends on the solution of modified sinh-Gordon, but not on the worldsheet cut-off
- The second term has a known and explicit integrand but the domain of integration depends on the **target-space** cut-off $z = \mathcal{E}$ so we need to have some information on reconstructing the target space solution from the Pohlmeyer reduction...

$$\int_{\Sigma} \left(2\operatorname{tr} \Phi_w \Phi_{\overline{w}} - \sqrt{T(w)} \overline{T}(\overline{w}) \, d^2w \right) + \int_{\Sigma \setminus \{\varepsilon_i\}} \sqrt{T(w)} \overline{T}(\overline{w}) \, d^2w$$

- $\Sigma \setminus \{\varepsilon_i\}$: 3-punctured sphere with worldsheet cut-offs at the punctures $|w-w_i| > \varepsilon_i$
- nontrivial: ε_i is fixed by a target-space cut-off $z = \mathcal{E}$
- The first term regularized 'Pohlmeyer' action depends on the solution of modified sinh-Gordon, but not on the worldsheet cut-off
- The second term has a known and explicit integrand but the domain of integration depends on the **target-space** cut-off $z = \mathcal{E}$ so we need to have some information on reconstructing the target space solution from the Pohlmeyer reduction...

$$\int_{\Sigma} \left(2\operatorname{tr} \Phi_w \Phi_{\overline{w}} - \sqrt{T(w)} \overline{T}(\overline{w}) \, d^2w \right) + \int_{\Sigma \setminus \{\varepsilon_i\}} \sqrt{T(w)} \overline{T}(\overline{w}) \, d^2w$$

- $\Sigma \setminus \{\varepsilon_i\}$: 3-punctured sphere with worldsheet cut-offs at the punctures $|w-w_i| > \varepsilon_i$
- nontrivial: ε_i is fixed by a **target-space** cut-off $z = \mathcal{E}$
- The first term regularized 'Pohlmeyer' action depends on the solution of modified sinh-Gordon, but not on the worldsheet cut-off
- The second term has a known and explicit integrand but the domain of integration depends on the **target-space** cut-off $z = \mathcal{E}$ so we need to have some information on reconstructing the target space solution from the Pohlmeyer reduction...

$$\int_{\Sigma} \left(2\operatorname{tr} \Phi_w \Phi_{\overline{w}} - \sqrt{T(w)} \overline{T}(\overline{w}) \, d^2w \right) + \int_{\Sigma \setminus \{\varepsilon_i\}} \sqrt{T(w)} \overline{T}(\overline{w}) \, d^2w$$

- $\Sigma \setminus \{\varepsilon_i\}$: 3-punctured sphere with worldsheet cut-offs at the punctures $|w-w_i| > \varepsilon_i$
- nontrivial: ε_i is fixed by a **target-space** cut-off $z = \mathcal{E}$
- The first term regularized 'Pohlmeyer' action depends on the solution of modified sinh-Gordon, but not on the worldsheet cut-off
- The second term has a known and explicit integrand but the domain of integration depends on the **target-space** cut-off $z = \mathcal{E}$ so we need to have some information on reconstructing the target space solution from the Pohlmeyer reduction...

$$\int_{\Sigma} \left(2\operatorname{tr} \Phi_w \Phi_{\overline{w}} - \sqrt{T(w)} \overline{T}(\overline{w}) \, d^2w \right) + \int_{\Sigma \setminus \{\varepsilon_i\}} \sqrt{T(w)} \overline{T}(\overline{w}) \, d^2w$$

- $\Sigma \setminus \{\varepsilon_i\}$: 3-punctured sphere with worldsheet cut-offs at the punctures $|w-w_i| > \varepsilon_i$
- nontrivial: ε_i is fixed by a target-space cut-off $z = \mathcal{E}$
- The first term regularized 'Pohlmeyer' action depends on the solution of modified sinh-Gordon, but not on the worldsheet cut-off
- The second term has a known and explicit integrand but the domain of integration depends on the **target-space** cut-off $z = \mathcal{E}$ so we need to have some information on reconstructing the target space solution from the Pohlmeyer reduction...

We can use the techniques of Alday, Maldacena, Sever, Vieira to evaluate the regularized 'Pohlmeyer' action (albeit with some twists...)

① Go to a gauge where Φ_w is diagonal.

$$\Phi_{w} \longrightarrow \begin{pmatrix} -\frac{\sqrt{T}}{2} & 0\\ 0 & \frac{\sqrt{T}}{2} \end{pmatrix}$$

- ② Pass to the double cover Σ given by $y^2 = T(w)$
- Then the regularized 'Pohlmeyer' contribution can be written as

$$\int_{\widetilde{\Sigma}} \omega \wedge \eta$$

where

$$d\omega = 0$$
 $d\eta = 0$

Explicitly

$$\underbrace{\omega = \sqrt{T(w)}dw}_{\mathbf{easy}}$$

$$\eta = \frac{1}{2} \sqrt{\overline{T}(\overline{w})} \left(\cosh \widetilde{\gamma} - 1\right) d\overline{w} + \frac{1}{4} \frac{1}{\sqrt{T(w)}} (\partial \widetilde{\gamma})^2 dw$$

We can use the techniques of Alday, Maldacena, Sever, Vieira to evaluate the regularized 'Pohlmeyer' action (albeit with some twists...)

① Go to a gauge where Φ_w is diagonal.

$$\Phi_w \longrightarrow \begin{pmatrix} -\frac{\sqrt{T}}{2} & 0\\ 0 & \frac{\sqrt{T}}{2} \end{pmatrix}$$

- ② Pass to the double cover Σ given by $y^2 = T(w)$
- Then the regularized 'Pohlmeyer' contribution can be written as

$$\int_{\widetilde{\Sigma}} \omega \wedge \eta$$

where

$$d\omega = 0$$
 $d\eta = 0$

Explicitly

$$\underbrace{\omega = \sqrt{T(w)}dw}_{\mathbf{easy}}$$

$$\eta = \frac{1}{2} \sqrt{\overline{T}(\overline{w})} \left(\cosh \widetilde{\gamma} - 1\right) d\overline{w} + \frac{1}{4} \frac{1}{\sqrt{T(w)}} (\partial \widetilde{\gamma})^2 dw$$

We can use the techniques of Alday, Maldacena, Sever, Vieira to evaluate the regularized 'Pohlmeyer' action (albeit with some twists...)

① Go to a gauge where Φ_w is diagonal.

$$\Phi_w \longrightarrow \begin{pmatrix} -\frac{\sqrt{T}}{2} & 0\\ 0 & \frac{\sqrt{T}}{2} \end{pmatrix}$$

- ② Pass to the double cover Σ given by $y^2 = T(w)$
- Then the regularized 'Pohlmeyer' contribution can be written as

$$\int_{\widetilde{\Sigma}} \omega \wedge \eta$$

where

$$d\omega = 0$$
 $d\eta = 0$

Explicitly

$$\underbrace{\omega = \sqrt{T(w)}dw}_{\mathbf{easy}}$$

$$\eta = rac{1}{2}\sqrt{\overline{T}(\overline{w})}\left(\cosh ilde{\gamma}-1
ight)d\overline{w} + rac{1}{4}rac{1}{\sqrt{T(w)}}(\partial ilde{\gamma})^2dw$$

We can use the techniques of Alday, Maldacena, Sever, Vieira to evaluate the regularized 'Pohlmeyer' action (albeit with some twists...)

1 Go to a gauge where Φ_w is diagonal.

$$\Phi_w \longrightarrow \begin{pmatrix} -\frac{\sqrt{T}}{2} & 0\\ 0 & \frac{\sqrt{T}}{2} \end{pmatrix}$$

- ② Pass to the double cover $\widetilde{\Sigma}$ given by $y^2 = T(w)$
- 1 Then the regularized 'Pohlmeyer' contribution can be written as

$$\int_{\widetilde{\Sigma}} \omega \wedge \eta$$

where

$$d\omega = 0$$
 $d\eta = 0$

Explicitly

$$\underbrace{\omega = \sqrt{T(w)}dw}_{\mathbf{easy}}$$

$$\eta = \frac{1}{2} \sqrt{\overline{T}(\overline{w})} \left(\cosh \widetilde{\gamma} - 1\right) d\overline{w} + \frac{1}{4} \frac{1}{\sqrt{T(w)}} (\partial \widetilde{\gamma})^2 dw$$

We can use the techniques of Alday, Maldacena, Sever, Vieira to evaluate the regularized 'Pohlmeyer' action (albeit with some twists...)

1 Go to a gauge where Φ_w is diagonal.

$$\Phi_w \longrightarrow \begin{pmatrix} -\frac{\sqrt{T}}{2} & 0\\ 0 & \frac{\sqrt{T}}{2} \end{pmatrix}$$

- ② Pass to the double cover $\widetilde{\Sigma}$ given by $y^2 = T(w)$
- Then the regularized 'Pohlmeyer' contribution can be written as

$$\int_{\widetilde{\Sigma}} \omega \wedge \eta$$

where

$$d\omega = 0$$
 $d\eta = 0$

Explicitly

$$\underbrace{\omega = \sqrt{T(w)}dw}_{\text{easy}}$$

$$\eta = \frac{1}{2} \sqrt{\overline{T}(\overline{w})} \left(\cosh \widetilde{\gamma} - 1\right) d\overline{w} + \frac{1}{4} \frac{1}{\sqrt{T(w)}} (\partial \widetilde{\gamma})^2 dw$$

We can use the techniques of Alday, Maldacena, Sever, Vieira to evaluate the regularized 'Pohlmeyer' action (albeit with some twists...)

1 Go to a gauge where Φ_w is diagonal.

$$\Phi_w \longrightarrow \begin{pmatrix} -\frac{\sqrt{T}}{2} & 0\\ 0 & \frac{\sqrt{T}}{2} \end{pmatrix}$$

- ② Pass to the double cover $\widetilde{\Sigma}$ given by $y^2 = T(w)$
- Then the regularized 'Pohlmeyer' contribution can be written as

$$\int_{\widetilde{\Sigma}} \omega \wedge \eta$$

where

$$d\omega = 0$$
 $d\eta = 0$

Explicitly

$$\underbrace{\omega = \sqrt{T(w)}dw}_{\mathbf{easy}}$$

$$\eta = \frac{1}{2} \sqrt{\overline{T}(\overline{w})} \left(\cosh \widetilde{\gamma} - 1\right) d\overline{w} + \frac{1}{4} \frac{1}{\sqrt{T(w)}} (\partial \widetilde{\gamma})^2 dw$$

 \odot If $\widetilde{\Sigma}$ had genus g, one would use Riemann bilinear identity (or reciprocity) to reduce the integral to products of integrals over cycles

$$\int_{\Sigma_{\mathcal{B}}} \omega \wedge \eta = \sum_{i=1}^{\mathcal{B}} \int_{A_i} \omega \int_{\mathcal{B}_i} \eta - \int_{A_i} \eta \int_{\mathcal{B}_i} \omega$$

But here $\widetilde{\Sigma}$ has genus 0 and punctures...

Moreover the forms have singularities at the punctures *and* at the branch points of the double cover...

- Generalize the Riemann formula to the present case...
 - Two ways to proceed:
 - redo the proof directly for $\widetilde{\Sigma} \setminus \{singularities\}$ quite messy...
 - treat the punctures as infinitesimal cuts, use reciprocity for genus 3 and deal only with the singularitites of η at the branch points... easier..

 $\textbf{ If } \widetilde{\Sigma} \text{ had genus } g \text{, one would use Riemann bilinear identity (or reciprocity) to } reduce the integral to products of integrals over cycles$

$$\int_{\Sigma_{\mathcal{S}}} \omega \wedge \eta = \sum_{i=1}^{\mathcal{S}} \int_{A_{i}} \omega \int_{B_{i}} \eta - \int_{A_{i}} \eta \int_{B_{i}} \omega$$

But here $\widetilde{\Sigma}$ has genus 0 and punctures...

Moreover the forms have singularities at the punctures *and* at the branch points of the double cover...

- Generalize the Riemann formula to the present case...
 - redo the proof directly for $\widetilde{\Sigma} \setminus \{singularities\}$

quite messy.

— treat the punctures as infinitesimal cuts, use reciprocity for genus 3 and deal only with the singularitites of η at the branch points... easier.

 $\textbf{ 1} \textbf{ If } \widetilde{\Sigma} \textbf{ had genus } g \textbf{, one would use Riemann bilinear identity (or reciprocity) to reduce the integral to products of integrals over cycles$

$$\int_{\Sigma_{\mathcal{S}}} \omega \wedge \eta = \sum_{i=1}^{\mathcal{S}} \int_{A_i} \omega \int_{B_i} \eta - \int_{A_i} \eta \int_{B_i} \omega$$

But here $\widetilde{\Sigma}$ has genus 0 and punctures...

Moreover the forms have singularities at the punctures *and* at the branch points of the double cover...

- Generalize the Riemann formula to the present case... Two ways to proceed:
 - redo the proof directly for $\Sigma \setminus \{singularities\}$

quite messy.

— treat the punctures as infinitesimal cuts, use reciprocity for genus 3 and deal only with the singularitites of η at the branch points... easier

 $\textbf{ 1} \textbf{ If } \widetilde{\Sigma} \textbf{ had genus } g \textbf{, one would use Riemann bilinear identity (or reciprocity) to reduce the integral to products of integrals over cycles$

$$\int_{\Sigma_{\mathcal{S}}} \omega \wedge \eta = \sum_{i=1}^{\mathcal{S}} \int_{A_i} \omega \int_{B_i} \eta - \int_{A_i} \eta \int_{B_i} \omega$$

But here $\widetilde{\Sigma}$ has genus 0 and punctures...

Moreover the forms have singularities at the punctures *and* at the branch points of the double cover...

- Generalize the Riemann formula to the present case... Two ways to proceed:
 - redo the proof directly for $\widetilde{\Sigma} \setminus \{singularities\}$

quite messy...

— treat the punctures as infinitesimal cuts, use reciprocity for genus 3 and deal only with the singularitites of η at the branch points... easier.

 $\textbf{ 3} \ \ \text{If } \widetilde{\Sigma} \ \text{had genus } g \text{, one would use Riemann bilinear identity (or reciprocity) to } \\ \text{reduce the integral to products of integrals over cycles}$

$$\int_{\Sigma_{\mathcal{S}}} \omega \wedge \eta = \sum_{i=1}^{\mathcal{S}} \int_{A_i} \omega \int_{B_i} \eta - \int_{A_i} \eta \int_{B_i} \omega$$

But here $\widetilde{\Sigma}$ has genus 0 and punctures...

Moreover the forms have singularities at the punctures *and* at the branch points of the double cover...

- Generalize the Riemann formula to the present case... Two ways to proceed:
 - redo the proof directly for $\widetilde{\Sigma} \setminus \{\text{singularities}\}$

quite messy...

— treat the punctures as infinitesimal cuts, use reciprocity for genus 3 and deal only with the singularitites of η at the branch points... easier.

 $\textbf{ 3} \ \ \text{If } \widetilde{\Sigma} \ \text{had genus } g \text{, one would use Riemann bilinear identity (or reciprocity) to } \\ \text{reduce the integral to products of integrals over cycles}$

$$\int_{\Sigma_{\mathcal{S}}} \omega \wedge \eta = \sum_{i=1}^{\mathcal{S}} \int_{A_i} \omega \int_{B_i} \eta - \int_{A_i} \eta \int_{B_i} \omega$$

But here $\widetilde{\Sigma}$ has genus 0 and punctures...

Moreover the forms have singularities at the punctures *and* at the branch points of the double cover...

- Generalize the Riemann formula to the present case... Two ways to proceed:
 - redo the proof directly for $\widetilde{\Sigma} \setminus \{singularities\}$ quite messy...
 - treat the punctures as infinitesimal cuts, use reciprocity for genus 3 and deal only with the singularitites of η at the branch points... easier...

 $oldsymbol{\mathfrak{I}}$ If $\widetilde{\Sigma}$ had genus g, one would use Riemann bilinear identity (or reciprocity) to reduce the integral to products of integrals over cycles

$$\int_{\Sigma_{\mathcal{S}}} \omega \wedge \eta = \sum_{i=1}^{\mathcal{S}} \int_{A_i} \omega \int_{B_i} \eta - \int_{A_i} \eta \int_{B_i} \omega$$

But here $\widetilde{\Sigma}$ has genus 0 and punctures...

Moreover the forms have singularities at the punctures *and* at the branch points of the double cover...

- Generalize the Riemann formula to the present case... Two ways to proceed:
 - redo the proof directly for $\widetilde{\Sigma} \setminus \{singularities\}$ quite messy...
 - treat the punctures as infinitesimal cuts, use reciprocity for genus 3 and deal only with the singularitites of η at the branch points... easier...

- We use simplifying properties:
 - integrals of ω around punctures are proportional to Δ_i
 - integrals of ω around branch points vanish
 - integrals of η around punctures vanish
 - the contribution of the branch point is just $\pi/6$
- Finally we obtain

$$\int_{\Sigma} \left(2 \operatorname{tr} \Phi_{w} \Phi_{\overline{w}} - \sqrt{T(w)} \overline{T(\overline{w})} d^{2}w \right) = \frac{\pi}{6} - \frac{\pi}{2} \left((\Delta_{\infty} - 2\Delta) \int_{C_{-11}} \eta - 2\Delta_{\infty} \int_{C_{1\infty}} \eta d^{2}w \right)$$

① The integrals of η between the punctures are related to the WKB asymptotics of the products between local solutions of the linear system...

c.f. Alday, Maldacena, Sever, Vieira

- We use simplifying properties:

$$\int_{\Sigma} \left(2 \operatorname{tr} \Phi_{w} \Phi_{\overline{w}} - \sqrt{T(w)} \overline{T(\overline{w})} d^{2}w \right) = \frac{\pi}{6} - \frac{\pi}{2} \left((\Delta_{\infty} - 2\Delta) \int_{C_{-11}} \eta - 2\Delta_{\infty} \int_{C_{1\infty}} \eta d^{2}w \right)$$

- We use simplifying properties:
 - integrals of ω around punctures are proportional to Δ_i
 - integrals of ω around branch points vanish
 - integrals of η around punctures vanish
 - the contribution of the branch point is just $\pi/6$
- Finally we obtain

$$\int_{\Sigma} \left(2 \operatorname{tr} \Phi_{w} \Phi_{\overline{w}} - \sqrt{T(w)} \overline{T(\overline{w})} d^{2}w \right) = \frac{\pi}{6} - \frac{\pi}{2} \left((\Delta_{\infty} - 2\Delta) \int_{C_{-11}} \eta - 2\Delta_{\infty} \int_{C_{1\infty}} \eta d^{2}w \right)$$

① The integrals of η between the punctures are related to the WKB asymptotics of the products between local solutions of the linear system... c.f. Alday, Maldacena, Sever, Vieira

- We use simplifying properties:
 - integrals of ω around punctures are proportional to Δ_i
 - integrals of ω around branch points vanish
 - integrals of η around punctures vanish
 - the contribution of the branch point is just $\pi/6$
- Finally we obtain

$$\int_{\Sigma} \left(2 \operatorname{tr} \Phi_{w} \Phi_{\overline{w}} - \sqrt{T(w)} \overline{T(\overline{w})} d^{2}w \right) = \frac{\pi}{6} - \frac{\pi}{2} \left((\Delta_{\infty} - 2\Delta) \int_{C_{-11}} \eta - 2\Delta_{\infty} \int_{C_{1\infty}} \eta d^{2}w \right)$$

- We use simplifying properties:
 - integrals of ω around punctures are proportional to Δ_i
 - integrals of ω around branch points vanish
 - integrals of η around punctures vanish
 - the contribution of the branch point is just $\pi/6$
- Finally we obtain

$$\int_{\Sigma} \left(2\operatorname{tr} \Phi_w \Phi_{\overline{w}} - \sqrt{T(w)} \overline{T(\overline{w})} \, d^2w \right) = \frac{\pi}{6} - \frac{\pi}{2} \left((\Delta_{\infty} - 2\Delta) \int_{C_{-11}} \eta - 2\Delta_{\infty} \int_{C_{1\infty}} \eta \right)$$

- We use simplifying properties:
 - integrals of ω around punctures are proportional to Δ_i
 - integrals of ω around branch points vanish
 - integrals of η around punctures vanish
 - the contribution of the branch point is just $\pi/6$
- Finally we obtain

$$\int_{\Sigma} \left(2 \operatorname{tr} \Phi_{w} \Phi_{\overline{w}} - \sqrt{T(w)} \overline{T(\overline{w})} d^{2}w \right) = \frac{\pi}{6} - \frac{\pi}{2} \left((\Delta_{\infty} - 2\Delta) \int_{C_{-1,1}} \eta - 2\Delta_{\infty} \int_{C_{1,\infty}} \eta d^{2}w \right)$$

- We use simplifying properties:
 - integrals of ω around punctures are proportional to Δ_i
 - integrals of ω around branch points vanish
 - integrals of η around punctures vanish
 - the contribution of the branch point is just $\pi/6$
- Finally we obtain

$$\int_{\Sigma} \left(2\operatorname{tr} \Phi_w \Phi_{\overline{w}} - \sqrt{T(w)\overline{T}(\overline{w})} \, d^2w \right) = \frac{\pi}{6} - \frac{\pi}{2} \left((\Delta_{\infty} - 2\Delta) \int_{C_{-11}} \eta - 2\Delta_{\infty} \int_{C_{1\infty}} \eta \right)$$

- We use simplifying properties:
 - integrals of ω around punctures are proportional to Δ_i
 - integrals of ω around branch points vanish
 - integrals of η around punctures vanish
 - the contribution of the branch point is just $\pi/6$
- Finally we obtain

$$\int_{\Sigma} \left(2\operatorname{tr} \Phi_w \Phi_{\overline{w}} - \sqrt{T(w)\overline{T}(\overline{w})} \, d^2w \right) = \frac{\pi}{6} - \frac{\pi}{2} \left((\Delta_{\infty} - 2\Delta) \int_{C_{-11}} \eta - 2\Delta_{\infty} \int_{C_{1\infty}} \eta \right)$$

 ${\color{red} \bullet}$ The integrals of η between the punctures are related to the WKB asymptotics of the products between local solutions of the linear system...

c.f. Alday, Maldacena, Sever, Vieira

• Around each puncture w_k we have two distinguished solutions $(k \text{ and } \overline{k})$ of the linear system

$$(*) \qquad \partial \Psi + J_w \Psi = 0 \qquad \qquad \overline{\partial} \Psi + J_{\overline{w}} \Psi = 0$$

characterized by the mondromies

$$e^{\pm i\Delta_k \frac{\pi}{2}\left(\xi - \frac{1}{\xi}\right)} \equiv e^{\pm i\Delta_k \pi \sinh \theta} \equiv e^{\pm ip_k(\theta)}$$
 where $\xi = e^{\theta}$

• Given two solutions of the linear system (*), Ψ_1^a and Ψ_2^a , one can form the (skew) product

$$\langle \Psi_1 \Psi_2 \rangle \equiv \varepsilon_{ab} \Psi_1^a \Psi_1^b$$

which is a function of the spectral parameter $\xi=e^{ heta}$

$$\langle k\overline{k}\rangle = 1$$

• Around each puncture w_k we have two distinguished solutions $(k \text{ and } \overline{k})$ of the linear system

$$(*) \qquad \partial \Psi + J_w \Psi = 0 \qquad \qquad \overline{\partial} \Psi + J_{\overline{w}} \Psi = 0$$

characterized by the mondromies

$$e^{\pm i\Delta_{\mathbf{k}} \frac{\pi}{2} \left(\xi - \frac{1}{\xi}\right)} \equiv e^{\pm i\Delta_{\mathbf{k}} \pi \sinh \theta} \equiv e^{\pm i\mathbf{p}_{\mathbf{k}}(\theta)}$$
 where $\xi = e^{\theta}$

• Given two solutions of the linear system (*), Ψ_1^a and Ψ_2^a , one can form the (skew) product

$$\langle \Psi_1 \Psi_2 \rangle \equiv \varepsilon_{ab} \Psi_1^a \Psi_1^b$$

which is a function of the spectral parameter $\xi = e^{\theta}$

$$\langle k\overline{k}\rangle = 1$$

• Around each puncture w_k we have two distinguished solutions $(k \text{ and } \overline{k})$ of the linear system

$$(*) \qquad \partial \Psi + J_w \Psi = 0 \qquad \qquad \overline{\partial} \Psi + J_{\overline{w}} \Psi = 0$$

characterized by the mondromies

$$e^{\pm i\Delta_k \frac{\pi}{2} \left(\xi - \frac{1}{\xi}\right)} \equiv e^{\pm i\Delta_k \pi \sinh \theta} \equiv e^{\pm ip_k(\theta)}$$
 where $\xi = e^{\theta}$

• Given two solutions of the linear system (*), Ψ_1^a and Ψ_2^a , one can form the (skew) product

$$\langle \Psi_1 \Psi_2 \rangle \equiv \varepsilon_{ab} \Psi_1^a \Psi_1^b$$

which is a function of the spectral parameter $\xi = e^{\theta}$

$$\langle k\overline{k}\rangle = 1$$

• Around each puncture w_k we have two distinguished solutions $(k \text{ and } \overline{k})$ of the linear system

(*)
$$\partial \Psi + J_w \Psi = 0$$
 $\overline{\partial} \Psi + J_{\overline{w}} \Psi = 0$

characterized by the mondromies

$$e^{\pm i\Delta_k \frac{\pi}{2} \left(\xi - \frac{1}{\xi}\right)} \equiv e^{\pm i\Delta_k \pi \sinh \theta} \equiv e^{\pm ip_k(\theta)}$$
 where $\xi = e^{\theta}$

• Given two solutions of the linear system (*), Ψ_1^a and Ψ_2^a , one can form the (skew) product

$$\langle \Psi_1 \Psi_2 \rangle \equiv \varepsilon_{ab} \Psi_1^a \Psi_1^b$$

which is a function of the spectral parameter $\xi = e^{\theta}$

$$\langle k\overline{k}\rangle = 1$$

Alday, Maldacena, Sever, Vieira link the large $|\theta|$ WKB asymptotics of the solution of the linear system to the integral of ω (leading asymptotics) and η (subleading asymptotics).

In our context this becomes

The integral of η along C_{kl} can be extracted from the $\theta \to -\infty$ asymptotics the overlap $\langle kl \rangle (\theta)$:

$$\langle kl \rangle (\theta) \sim \exp \left\{ e^{-\theta} \int_{C_{kl}} \frac{1}{2} \omega + const + e^{\theta} \int_{C_{kl}} \left(\eta + \frac{1}{2} \sqrt{\overline{T}} d\overline{w} \right) + \ldots \right\}_{reg.}$$

Alday, Maldacena, Sever, Vieira link the large $|\theta|$ WKB asymptotics of the solution of the linear system to the integral of ω (leading asymptotics) and η (subleading asymptotics).

In our context this becomes:

The integral of η along C_{kl} can be extracted from the $\theta \to -\infty$ asymptotics the overlap $\langle kl \rangle (\theta)$:

$$\langle kl \rangle (\theta) \sim \exp \left\{ \mathbf{e}^{-\theta} \int_{C_{kl}} \frac{1}{2} \omega + const + \mathbf{e}^{\theta} \int_{C_{kl}} \left(\eta + \frac{1}{2} \sqrt{\overline{T}} d\overline{w} \right) + \ldots \right\}_{\text{reg.}}$$

Alday, Maldacena, Sever, Vieira link the large $|\theta|$ WKB asymptotics of the solution of the linear system to the integral of ω (leading asymptotics) and η (subleading asymptotics).

In our context this becomes:

The integral of η along C_{kl} can be extracted from the $\theta \to -\infty$ asymptotics the overlap $\langle kl \rangle$ (θ):

$$\left\langle kl\right\rangle \left(oldsymbol{ heta}
ight)\sim\exp\left\{oldsymbol{e}^{-oldsymbol{ heta}}\int_{C_{kl}}rac{1}{2}\omega+const+oldsymbol{e}^{oldsymbol{ heta}}\int_{C_{kl}}\left(\eta+rac{1}{2}\sqrt{\overline{T}}d\overline{w}
ight)+\ldots
ight\}_{reg.}$$

Alday, Maldacena, Sever, Vieira link the large $|\theta|$ WKB asymptotics of the solution of the linear system to the integral of ω (leading asymptotics) and η (subleading asymptotics).

In our context this becomes:

The integral of η along C_{kl} can be extracted from the $\theta \to -\infty$ asymptotics the overlap $\langle kl \rangle (\theta)$:

$$\left\langle \textit{kl} \right\rangle \left(\theta \right) \sim \exp \left\{ \mathbf{e}^{-\theta} \int_{C_{\textit{kl}}} \frac{1}{2} \omega + const + \mathbf{e}^{\theta} \int_{C_{\textit{kl}}} \left(\eta + \frac{1}{2} \sqrt{\overline{T}} d\overline{w} \right) + \ldots \right\}_{\textit{reg.}}$$

Alday, Maldacena, Sever, Vieira link the large $|\theta|$ WKB asymptotics of the solution of the linear system to the integral of ω (leading asymptotics) and η (subleading asymptotics).

In our context this becomes:

The integral of η along C_{kl} can be extracted from the $\theta \to -\infty$ asymptotics the overlap $\langle kl \rangle (\theta)$:

$$\left\langle \textit{kl} \right\rangle \left(\theta \right) \sim \exp \left\{ \mathbf{e}^{-\theta} \int_{C_{\textit{kl}}} \frac{1}{2} \omega + const + \mathbf{e}^{\theta} \int_{C_{\textit{kl}}} \left(\eta + \frac{1}{2} \sqrt{\overline{T}} d\overline{w} \right) + \ldots \right\}_{\textit{reg.}}$$

Question: How to find $\langle kl \rangle$ (θ) without solving any differential equations?

Collect all overlaps into a connection matrix between solutions at two punctures

$$M_{kl} = \begin{pmatrix} -\langle \bar{k}l \rangle & -\langle \bar{k}\bar{l} \rangle \\ \langle kl \rangle & \langle k\bar{l} \rangle \end{pmatrix}$$

Write all obvious compatibility relations

$$M_{km} = M_{kl} M_{lm}$$
 $M_{kl} M_{lk} = i\alpha$

and the condition of zero monodromy outside the punctures

$$\Omega_1 M_{13} \Omega_3 M_{32} \Omega_2 M_{21} = id$$

Wey point: One can show that

$$\langle \overline{k}\overline{l}\rangle(\theta) = -\langle k\overline{l}\rangle(\theta + i\pi)$$
 $\langle \overline{k}\overline{l}\rangle(\theta) = -\langle k\overline{l}\rangle(\theta + i\pi)$

 Collect all overlaps into a connection matrix between solutions at two punctures

$$M_{kl} = \begin{pmatrix} -\langle \bar{k}I \rangle & -\langle \bar{k}\bar{l} \rangle \\ \langle kl \rangle & \langle k\bar{l} \rangle \end{pmatrix}$$

Write all obvious compatibility relations

$$M_{km} = M_{kl} M_{lm} \qquad M_{kl} M_{lk} = id$$

and the condition of zero monodromy outside the punctures

$$\Omega_1 M_{13} \Omega_3 M_{32} \Omega_2 M_{21} = id$$

Wey point: One can show that

$$\left\langle \overline{k}\overline{l}\right\rangle (\theta) = -\left\langle k\overline{l}\right\rangle (\theta+i\pi)$$
 $\left\langle \overline{k}l\right\rangle (\theta) = -\left\langle k\overline{l}\right\rangle (\theta+i\pi)$

 Collect all overlaps into a connection matrix between solutions at two punctures

$$M_{kl} = \begin{pmatrix} -\left\langle \bar{k}I\right\rangle & -\left\langle \bar{k}\bar{l}\right\rangle \\ \left\langle kl\right\rangle & \left\langle k\bar{l}\right\rangle \end{pmatrix}$$

Write all obvious compatibility relations

$$M_{km} = M_{kl} M_{lm}$$
 $M_{kl} M_{lk} = id$

and the condition of zero monodromy outside the punctures

$$\Omega_1 M_{13} \Omega_3 M_{32} \Omega_2 M_{21} = id$$

Wey point: One can show that

$$\left\langle \overline{k}\overline{l}\right\rangle (\theta) = -\left\langle k\overline{l}\right\rangle (\theta+i\pi)$$
 $\left\langle \overline{k}l\right\rangle (\theta) = -\left\langle k\overline{l}\right\rangle (\theta+i\pi)$

 Collect all overlaps into a connection matrix between solutions at two punctures

$$M_{kl} = \begin{pmatrix} -\langle \bar{k}l \rangle & -\langle \bar{k}\bar{l} \rangle \\ \langle kl \rangle & \langle k\bar{l} \rangle \end{pmatrix}$$

Write all obvious compatibility relations

$$M_{km} = M_{kl} M_{lm}$$
 $M_{kl} M_{lk} = id$

and the condition of zero monodromy outside the punctures

$$\Omega_1 M_{13} \Omega_3 M_{32} \Omega_2 M_{21} = id$$

Wey point: One can show that

$$\left\langle \overline{k}\overline{l}\right\rangle (\theta)=-\left\langle k\overline{l}\right\rangle (\theta+i\pi)$$
 $\left\langle \overline{k}l\right\rangle (\theta)=-\left\langle k\overline{l}\right\rangle (\theta+i\pi)$

 Collect all overlaps into a connection matrix between solutions at two punctures

$$M_{kl} = \begin{pmatrix} -\langle \bar{k}l \rangle & -\langle \bar{k}\bar{l} \rangle \\ \langle kl \rangle & \langle k\bar{l} \rangle \end{pmatrix}$$

Write all obvious compatibility relations

$$M_{km} = M_{kl} M_{lm}$$
 $M_{kl} M_{lk} = id$

and the condition of zero monodromy outside the punctures

$$\Omega_1 M_{13} \Omega_3 M_{32} \Omega_2 M_{21} = id$$

6 Key point: One can show that

$$\left\langle \bar{k}\bar{l}\right\rangle (\theta) = -\left\langle kl\right\rangle (\theta+i\pi)$$
 $\left\langle \bar{k}l\right\rangle (\theta) = -\left\langle k\bar{l}\right\rangle (\theta+i\pi)$

 Collect all overlaps into a connection matrix between solutions at two punctures

$$M_{kl} = \begin{pmatrix} -\langle \bar{k}I \rangle & -\langle \bar{k}\bar{l} \rangle \\ \langle kI \rangle & \langle k\bar{l} \rangle \end{pmatrix}$$

Write all obvious compatibility relations

$$M_{km} = M_{kl} M_{lm}$$
 $M_{kl} M_{lk} = id$

and the condition of zero monodromy outside the punctures

$$\Omega_1 M_{13} \Omega_3 M_{32} \Omega_2 M_{21} = id$$

Wey point: One can show that

$$\langle \bar{k}\bar{l}\rangle(\theta) = -\langle k\bar{l}\rangle(\theta + i\pi)$$
 $\langle \bar{k}\bar{l}\rangle(\theta) = -\langle k\bar{l}\rangle(\theta + i\pi)$

We obtain in particular

$$\langle 32 \rangle \langle 32 \rangle^{++} = \frac{\sin \frac{p_1(\theta) - p_2(\theta) - p_3(\theta)}{2} \sin \frac{p_1(\theta) + p_2(\theta) + p_3(\theta)}{2}}{\sin p_2(\theta) \sin p_3(\theta)}$$

which becomes

$$\langle 32 \rangle^{+} \langle 32 \rangle^{-} = -\frac{\sinh(\frac{\Delta_{2} + \Delta_{3} - \Delta_{1}}{2} \pi \cosh \theta) \sinh(\frac{\Delta_{1} + \Delta_{2} + \Delta_{3}}{2} \pi \cosh \theta)}{\sinh(\Delta_{2} \pi \cosh \theta) \sinh(\Delta_{3} \pi \cosh \theta)}$$

The basic functional equation to solve is

$$f^+f^- = 1 - e^{-a\pi \cosh \theta}$$

with the solution

$$f(\theta) = \underbrace{\mathrm{e}^{M\mathrm{e}^{\theta} + \bar{M}\mathrm{e}^{-\theta}}}_{\text{Zero mode part}} \cdot \exp \int_{-\infty}^{\infty} \frac{d\theta'}{2\pi} \frac{\log \left(1 - \mathrm{e}^{-\mathrm{a}\pi \cosh \theta'}\right)}{\cosh(\theta - \theta')}$$

lacktriangle The zero-mode constants can be obtained from integrals of \sqrt{T} and $\sqrt{ ilde{T}}$

We obtain in particular

$$\langle 32 \rangle \langle 32 \rangle^{++} = \frac{\sin \frac{\rho_1(\theta) - \rho_2(\theta) - \rho_3(\theta)}{2} \sin \frac{\rho_1(\theta) + \rho_2(\theta) + \rho_3(\theta)}{2}}{\sin \rho_2(\theta) \sin \rho_3(\theta)}$$

which becomes

$$\langle 32 \rangle^+ \langle 32 \rangle^- = -rac{\sinh(rac{\Delta_2 + \Delta_3 - \Delta_1}{2}\pi\cosh\theta)\sinh(rac{\Delta_1 + \Delta_2 + \Delta_3}{2}\pi\cosh\theta)}{\sinh(\Delta_2\pi\cosh\theta)\sinh(\Delta_3\pi\cosh\theta)}$$

The basic functional equation to solve is

$$f^+f^- = 1 - e^{-a\pi \cosh \theta}$$

with the solution

$$f(\theta) = \underbrace{e^{Me^{\theta} + \bar{M}e^{-\theta}}}_{\text{zero mode part}} \cdot \exp \int_{-\infty}^{\infty} \frac{d\theta'}{2\pi} \frac{\log \left(1 - e^{-a\pi \cosh \theta'}\right)}{\cosh(\theta - \theta')}$$

① The zero-mode constants can be obtained from integrals of \sqrt{T} and $\sqrt{\bar{T}}$

We obtain in particular

$$\left\langle 32\right\rangle \left\langle 32\right\rangle ^{++}=\frac{\sin\frac{p_{1}(\theta)-p_{2}(\theta)-p_{3}(\theta)}{2}\sin\frac{p_{1}(\theta)+p_{2}(\theta)+p_{3}(\theta)}{2}}{\sin p_{2}(\theta)\sin p_{3}(\theta)}$$

which becomes

$$\left\langle 32\right\rangle ^{+}\left\langle 32\right\rangle ^{-}=-\frac{\sinh \left(\frac{\Delta_{2}+\Delta_{3}-\Delta_{1}}{2}\pi\cosh\theta\right)\sinh \left(\frac{\Delta_{1}+\Delta_{2}+\Delta_{3}}{2}\pi\cosh\theta\right)}{\sinh \left(\Delta_{2}\pi\cosh\theta\right)\sinh \left(\Delta_{3}\pi\cosh\theta\right)}$$

The basic functional equation to solve is

$$f^+f^- = 1 - e^{-a\pi \cosh \theta}$$

with the solution

$$f(\theta) = \underbrace{e^{Me^{\theta} + \bar{M}e^{-\theta}}}_{\text{zero mode part}} \cdot \exp \int_{-\infty}^{\infty} \frac{d\theta'}{2\pi} \frac{\log \left(1 - e^{-a\pi \cosh \theta'}\right)}{\cosh(\theta - \theta')}$$

ullet The zero-mode constants can be obtained from integrals of $\sqrt{\mathcal{T}}$ and $\sqrt{\mathcal{T}}$

We obtain in particular

$$\langle 32 \rangle \langle 32 \rangle^{++} = \frac{\sin \frac{\rho_1(\theta) - \rho_2(\theta) - \rho_3(\theta)}{2} \sin \frac{\rho_1(\theta) + \rho_2(\theta) + \rho_3(\theta)}{2}}{\sin \rho_2(\theta) \sin \rho_3(\theta)}$$

which becomes

$$\left\langle 32\right\rangle ^{+}\left\langle 32\right\rangle ^{-}=-\frac{\sinh \left(\frac{\Delta_{2}+\Delta_{3}-\Delta_{1}}{2}\pi\cosh\theta\right)\sinh \left(\frac{\Delta_{1}+\Delta_{2}+\Delta_{3}}{2}\pi\cosh\theta\right)}{\sinh \left(\Delta_{2}\pi\cosh\theta\right)\sinh \left(\Delta_{3}\pi\cosh\theta\right)}$$

The basic functional equation to solve is

$$f^+f^- = 1 - e^{-\mathbf{a}\pi\cosh\theta}$$

with the solution

$$f(\theta) = \underbrace{e^{Me^{\theta} + \bar{M}e^{-\theta}}}_{\text{zero mode part}} \cdot \exp \int_{-\infty}^{\infty} \frac{d\theta'}{2\pi} \frac{\log \left(1 - e^{-a\pi\cosh \theta'}\right)}{\cosh(\theta - \theta')}$$

ullet The zero-mode constants can be obtained from integrals of $\sqrt{\mathcal{T}}$ and $\sqrt{\mathcal{T}}$

We obtain in particular

$$\langle 32 \rangle \langle 32 \rangle^{++} = \frac{\sin \frac{\rho_1(\theta) - \rho_2(\theta) - \rho_3(\theta)}{2} \sin \frac{\rho_1(\theta) + \rho_2(\theta) + \rho_3(\theta)}{2}}{\sin \rho_2(\theta) \sin \rho_3(\theta)}$$

which becomes

$$\left\langle 32\right\rangle ^{+}\left\langle 32\right\rangle ^{-}=-\frac{\sinh \left(\frac{\Delta_{2}+\Delta_{3}-\Delta_{1}}{2}\pi\cosh\theta\right)\sinh \left(\frac{\Delta_{1}+\Delta_{2}+\Delta_{3}}{2}\pi\cosh\theta\right)}{\sinh \left(\Delta_{2}\pi\cosh\theta\right)\sinh \left(\Delta_{3}\pi\cosh\theta\right)}$$

The basic functional equation to solve is

$$f^+f^- = 1 - e^{-\mathbf{a}\pi\cosh\theta}$$

with the solution

$$f(\theta) = \underbrace{e^{Me^{\theta} + \bar{M}e^{-\theta}}}_{\text{zero mode part}} \cdot \exp \int_{-\infty}^{\infty} \frac{d\theta'}{2\pi} \frac{\log \left(1 - e^{-a\pi \cosh \theta'}\right)}{\cosh(\theta - \theta')}$$

to to The zero-mode constants can be obtained from integrals of $\sqrt{ au}$ and $\sqrt{ au}$

We obtain in particular

$$\langle 32 \rangle \langle 32 \rangle^{++} = \frac{\sin \frac{\rho_1(\theta) - \rho_2(\theta) - \rho_3(\theta)}{2} \sin \frac{\rho_1(\theta) + \rho_2(\theta) + \rho_3(\theta)}{2}}{\sin \rho_2(\theta) \sin \rho_3(\theta)}$$

which becomes

$$\left\langle 32\right\rangle ^{+}\left\langle 32\right\rangle ^{-}=-\frac{\sinh \left(\frac{\Delta_{2}+\Delta_{3}-\Delta_{1}}{2}\pi\cosh\theta\right)\sinh \left(\frac{\Delta_{1}+\Delta_{2}+\Delta_{3}}{2}\pi\cosh\theta\right)}{\sinh \left(\Delta_{2}\pi\cosh\theta\right)\sinh \left(\Delta_{3}\pi\cosh\theta\right)}$$

The basic functional equation to solve is

$$f^+f^- = 1 - e^{-\mathbf{a}\pi\cosh\theta}$$

with the solution

$$f(\theta) = \underbrace{e^{Me^{\theta} + \bar{M}e^{-\theta}}}_{\text{zero mode part}} \cdot \exp \int_{-\infty}^{\infty} \frac{d\theta'}{2\pi} \frac{\log \left(1 - e^{-a\pi \cosh \theta'}\right)}{\cosh(\theta - \theta')}$$

① The zero-mode constants can be obtained from integrals of \sqrt{T} and $\sqrt{\bar{T}}$

Regularized 'Pohlmeyer' contribution

Recall:

$$\int_{\Sigma} \left(2 \operatorname{tr} \Phi_{w} \Phi_{\overline{w}} - \sqrt{T(w)} \overline{T}(\overline{w}) d^{2}w \right) = \frac{\pi}{6} - \frac{\pi}{2} \left((\Delta_{\infty} - 2\Delta) \int_{C_{-11}} \eta - 2\Delta_{\infty} \int_{C_{1\infty}} \eta \right)$$

From the solution of the functional equations we get

$$\int_{C_{-11}} \eta = h(2\Delta - \Delta_{\infty}) + h(2\Delta + \Delta_{\infty}) - 2h(2\Delta)$$

$$\int_{C_{1\infty}} \eta = h(\Delta_{\infty}) + h(2\Delta + \Delta_{\infty}) - h(2\Delta) - h(2\Delta_{\infty})$$

where

$$h(\mathbf{a}) = \frac{1}{\pi} \int_{-\infty}^{\infty} e^{\theta} \log \left(1 - e^{-\mathbf{a}\pi \cosh \theta} \right) d\theta$$

Regularized 'Pohlmeyer' contribution

Recall:

$$\int_{\Sigma} \left(2\operatorname{tr} \Phi_{w} \Phi_{\overline{w}} - \sqrt{T(w)} \overline{T}(\overline{w}) d^{2}w \right) = \frac{\pi}{6} - \frac{\pi}{2} \left((\Delta_{\infty} - 2\Delta) \int_{C_{-11}} \eta - 2\Delta_{\infty} \int_{C_{1\infty}} \eta \right)$$

From the solution of the functional equations we get

$$\int_{C_{-11}} \eta = h(2\Delta - \Delta_{\infty}) + h(2\Delta + \Delta_{\infty}) - 2h(2\Delta)$$

$$\int_{C_{1\infty}} \eta = h(\Delta_{\infty}) + h(2\Delta + \Delta_{\infty}) - h(2\Delta) - h(2\Delta_{\infty})$$

where

$$h(\mathbf{a}) = \frac{1}{\pi} \int_{-\infty}^{\infty} e^{\theta} \log \left(1 - e^{-\mathbf{a}\pi \cosh \theta}\right) d\theta$$

Regularized 'Pohlmeyer' contribution

Recall:

$$\int_{\Sigma} \left(2 \operatorname{tr} \Phi_{w} \Phi_{\overline{w}} - \sqrt{T(w)} \overline{T}(\overline{w}) d^{2}w \right) = \frac{\pi}{6} - \frac{\pi}{2} \left((\Delta_{\infty} - 2\Delta) \int_{C_{-11}} \eta - 2\Delta_{\infty} \int_{C_{1\infty}} \eta \right)$$

From the solution of the functional equations we get

$$\int_{C_{-11}} \eta = h(2\Delta - \Delta_{\infty}) + h(2\Delta + \Delta_{\infty}) - 2h(2\Delta)$$

$$\int_{C_{1\infty}} \eta = h(\Delta_{\infty}) + h(2\Delta + \Delta_{\infty}) - h(2\Delta) - h(2\Delta_{\infty})$$

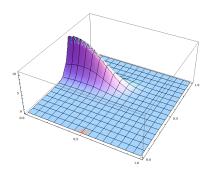
where

$$h(a) = \frac{1}{\pi} \int_{-\infty}^{\infty} e^{\theta} \log \left(1 - e^{-a\pi \cosh \theta}\right) d\theta$$

Numerical check

We have solved the modified sinh-Gordon equations numerically and evaluated the resulting regularized 'Pohlmeyer' contribution in order to compare with our analytical formula.

Regularized action density



$$\Delta=\Delta_{\infty}=4.0$$

Δ	Δ_{∞}	numerics	our formula
0.2	0.3	0.04536	0.0450779
0.5	0.9	0.107649	0.107622
1.	1.	0.426311	0.426166
1.	1.05	0.429572	0.429503
2.	2.	0.517689	0.517688
2.	3.	0.488985	0.488985
4.	4.	0.523584	0.523584
4.	7.99	0.0152435	0.0152435

Numerics become more difficult and less reliable for small Δ 's

$$AdS_2 \text{ action} = \underbrace{\int_{\Sigma} \left(2 \operatorname{tr} \Phi_w \Phi_{\overline{w}} - \sqrt{T(w) \overline{T}(\overline{w})} \, d^2 w \right)}_{\text{Done!}} + \int_{\Sigma \setminus \{\varepsilon_i\}} \sqrt{T(w) \overline{T}(\overline{w})} \, d^2 w$$

$$\underbrace{\int_{\Sigma} \left(S^{5} \text{ contribution} - \sqrt{T(w)} \overline{T(\overline{w})} d^{2}w \right)}_{\text{Ex} \setminus \{\varepsilon_{i}\}} + \int_{\Sigma \setminus \{\varepsilon_{i}\}} \sqrt{T(w)} \overline{T(\overline{w})} d^{2}w$$

$$AdS_2 \text{ action} = \underbrace{\int_{\Sigma} \left(2 \operatorname{tr} \Phi_w \Phi_{\overline{w}} - \sqrt{T(w)} \overline{T(\overline{w})} \, d^2 w \right)}_{\text{Done!}} + \int_{\Sigma \setminus \{\varepsilon_i\}} \sqrt{T(w)} \overline{T(\overline{w})} \, d^2 w$$

To this we have to add the (unknown) S^5 contribution

$$\underbrace{\int_{\Sigma} \left(S^{5} \text{ contribution} - \sqrt{T(w)} \overline{T(\overline{w})} d^{2}w \right)}_{\text{Ex} \setminus \{\varepsilon_{i}\}} + \int_{\Sigma \setminus \{\varepsilon_{i}\}} \sqrt{T(w)} \overline{T(\overline{w})} d^{2}w$$

$$AdS_2 \text{ action} = \underbrace{\int_{\Sigma} \left(2 \operatorname{tr} \Phi_w \Phi_{\overline{w}} - \sqrt{T(w)} \overline{T(\overline{w})} d^2 w \right)}_{\text{Done!}} + \int_{\Sigma \setminus \{\varepsilon_i\}} \sqrt{T(w)} \overline{T(\overline{w})} d^2 w$$

To this we have to add the (unknown) S^5 contribution

$$\underbrace{\int_{\Sigma} \left(S^{5} \text{ contribution} - \sqrt{T(w)} \overline{T}(\overline{w}) d^{2}w \right)}_{\text{Unknown but finite!}} + \int_{\Sigma \setminus \{\varepsilon_{i}\}} \sqrt{T(w)} \overline{T}(\overline{w}) d^{2}w$$

We have to calculate

$$\int_{\Sigma\setminus\{\varepsilon_i\}}\sqrt{T(w)\overline{T}(\overline{w})}\,d^2w$$

This integral can be done analytically

$$\int_{\Sigma\setminus\{\varepsilon_i\}} \sqrt{T(w)\overline{T}(\overline{w})} \, d^2w = Finite + \Delta^2\log\varepsilon_1 + \Delta^2\log\varepsilon_{-1} + \Delta^2_{\infty}\log\varepsilon_{\infty}$$

where

$$\textit{Finite} = \pi \left(- \left(\Delta + \frac{\Delta_{\infty}}{2} \right)^2 \log(2\Delta + \Delta_{\infty}) - 2\Delta^2 \log \Delta + \ldots \right)$$

We have to calculate

$$\int_{\Sigma\setminus\{\varepsilon_i\}}\sqrt{T(w)\overline{T}(\overline{w})}\,d^2w$$

• This integral can be done analytically

$$\int_{\Sigma\setminus\{\varepsilon_i\}} \sqrt{T(w)\overline{T}(\overline{w})} \, d^2w = Finite + \Delta^2\log\varepsilon_1 + \Delta^2\log\varepsilon_{-1} + \Delta^2_{\infty}\log\varepsilon_{\infty}$$

where

$$\textit{Finite} = \pi \left(- \left(\Delta + \frac{\Delta_{\infty}}{2} \right)^2 \log(2\Delta + \Delta_{\infty}) - 2\Delta^2 \log \Delta + \ldots \right)$$

We have to calculate

$$\int_{\Sigma\setminus\{\varepsilon_i\}}\sqrt{T(w)\overline{T}(\overline{w})}\,d^2w$$

• This integral can be done analytically

$$\int_{\Sigma\setminus\{\varepsilon_i\}} \sqrt{T(w)\overline{T}(\overline{w})} \, d^2w = \mathit{Finite} + \Delta^2\log\varepsilon_1 + \Delta^2\log\varepsilon_{-1} + \Delta^2_{\infty}\log\varepsilon_{\infty}$$

where

$$extit{Finite} = \pi \left(- \left(\Delta + rac{\Delta_{\infty}}{2}
ight)^2 \log(2\Delta + \Delta_{\infty}) - 2\Delta^2 \log \Delta + \ldots
ight)$$

We have to calculate

$$\int_{\Sigma\setminus\{\varepsilon_i\}}\sqrt{T(w)\overline{T}(\overline{w})}\,d^2w$$

This integral can be done analytically

$$\int_{\Sigma\setminus\{\varepsilon_i\}} \sqrt{T(w)\overline{T}(\overline{w})} \, d^2w = Finite + \Delta^2\log\varepsilon_1 + \Delta^2\log\varepsilon_{-1} + \Delta^2_{\infty}\log\varepsilon_{\infty}$$

where

$$extit{Finite} = \pi \left(- \left(\Delta + rac{\Delta_{\infty}}{2}
ight)^2 \log(2\Delta + \Delta_{\infty}) - 2\Delta^2 \log \Delta + \ldots
ight)$$

The classical solution in AdS_2 is uniquely specified by a choice of **two** specific solutions Ψ_A , Ψ_B of the linear system at $\theta=0$

$$\partial \Psi + J_w \Psi = 0 \qquad \qquad \overline{\partial} \Psi + J_{\overline{w}} \Psi = 0$$

normalized by $\langle \Psi_A \Psi_B \rangle = 1$

Then the coordinates of the punctures are encoded in the products at heta=0

$$\mathbf{x}_{k} = \frac{\langle k \Psi_{B} \rangle}{\langle k \Psi_{A} \rangle}$$

and the target-space $(z = \mathcal{E})$ and worldsheet cut-offs are linked by

$$\Delta_k \log \varepsilon_k = \log \left(\mathcal{E} |\langle k \Psi_A \rangle|^2 \right)$$

These expressions are enough to evaluate

$$\Delta^2 \log \varepsilon_1 + \Delta^2 \log \varepsilon_{-1} + \Delta^2_{\infty} \log \varepsilon_{\infty}$$

The classical solution in AdS_2 is uniquely specified by a choice of **two** specific solutions Ψ_A , Ψ_B of the linear system at $\theta=0$

$$\partial \Psi + J_w \Psi = 0 \qquad \qquad \overline{\partial} \Psi + J_{\overline{w}} \Psi = 0$$

normalized by $\langle \Psi_A \Psi_B \rangle = 1$

Then the coordinates of the punctures are encoded in the products at heta=0

$$\mathbf{x_k} = \frac{\langle k \Psi_B \rangle}{\langle k \Psi_A \rangle}$$

and the target-space $(z = \mathcal{E})$ and worldsheet cut-offs are linked by

$$\Delta_k \log \varepsilon_k = \log \left(\mathcal{E} |\langle k \Psi_A \rangle|^2 \right)$$

These expressions are enough to evaluate

$$\Delta^2 \log \varepsilon_1 + \Delta^2 \log \varepsilon_{-1} + \Delta^2_{\infty} \log \varepsilon_{\infty}$$

The classical solution in AdS_2 is uniquely specified by a choice of **two** specific solutions Ψ_A , Ψ_B of the linear system at $\theta=0$

$$\partial \Psi + J_w \Psi = 0$$
 $\overline{\partial} \Psi + J_{\overline{w}} \Psi = 0$

normalized by $\langle \Psi_A \Psi_B \rangle = 1$

Then the coordinates of the punctures are encoded in the products at heta=0

$$\mathbf{x_k} = \frac{\langle k \Psi_B \rangle}{\langle k \Psi_A \rangle}$$

and the target-space $(z = \mathcal{E})$ and worldsheet cut-offs are linked by

$$\Delta_k \log \varepsilon_k = \log \left(\mathcal{E} |\langle k \Psi_A \rangle|^2 \right)$$

These expressions are enough to evaluate

$$\Delta^2 \log \varepsilon_1 + \Delta^2 \log \varepsilon_{-1} + \Delta_{\infty}^2 \log \varepsilon_{\infty}$$

The classical solution in AdS_2 is uniquely specified by a choice of **two** specific solutions Ψ_A , Ψ_B of the linear system at $\theta = 0$

$$\partial \Psi + J_w \Psi = 0 \qquad \qquad \overline{\partial} \Psi + J_{\overline{w}} \Psi = 0$$

normalized by $\langle \Psi_A \Psi_B \rangle = 1$

Then the coordinates of the punctures are encoded in the products at heta=0

$$\mathbf{x_k} = \frac{\langle k \Psi_B \rangle}{\langle k \Psi_A \rangle}$$

and the target-space $(z = \mathcal{E})$ and worldsheet cut-offs are linked by

$$\Delta_k \log \varepsilon_k = \log \left(\frac{\mathcal{E}}{|\langle k \Psi_A \rangle|^2} \right)$$

These expressions are enough to evaluate

$$\Delta^2 \log \varepsilon_1 + \Delta^2 \log \varepsilon_{-1} + \Delta_{\infty}^2 \log \varepsilon_{\infty}$$

The classical solution in AdS_2 is uniquely specified by a choice of **two** specific solutions Ψ_A , Ψ_B of the linear system at $\theta=0$

$$\partial \Psi + J_w \Psi = 0 \qquad \qquad \overline{\partial} \Psi + J_{\overline{w}} \Psi = 0$$

normalized by $\langle \Psi_A \Psi_B \rangle = 1$

Then the coordinates of the punctures are encoded in the products at heta=0

$$\mathbf{x_k} = \frac{\langle k \Psi_B \rangle}{\langle k \Psi_A \rangle}$$

and the target-space $(z = \mathcal{E})$ and worldsheet cut-offs are linked by

$$\Delta_k \log \varepsilon_k = \log \left(\frac{\mathcal{E}}{|\langle k \Psi_A \rangle|^2} \right)$$

These expressions are enough to evaluate

$$\Delta^2 \log \varepsilon_1 + \Delta^2 \log \varepsilon_{-1} + \Delta^2_{\infty} \log \varepsilon_{\infty}$$

The classical solution in AdS_2 is uniquely specified by a choice of **two** specific solutions Ψ_A , Ψ_B of the linear system at $\theta=0$

$$\partial \Psi + J_w \Psi = 0 \qquad \qquad \overline{\partial} \Psi + J_{\overline{w}} \Psi = 0$$

normalized by $\langle \Psi_A \Psi_B \rangle = 1$

Then the coordinates of the punctures are encoded in the products at $\theta=0$

$$\mathbf{x_k} = \frac{\langle k \Psi_B \rangle}{\langle k \Psi_A \rangle}$$

and the target-space $(z = \mathcal{E})$ and worldsheet cut-offs are linked by

$$\Delta_k \log \varepsilon_k = \log \left(\frac{\mathcal{E}}{|\langle k \Psi_A \rangle|^2} \right)$$

These expressions are enough to evaluate

$$\Delta^2 \log \varepsilon_1 + \Delta^2 \log \varepsilon_{-1} + \Delta^2_{\infty} \log \varepsilon_{\infty}$$

$$\Delta^2 \log \varepsilon_1 + \Delta^2 \log \varepsilon_{-1} + \Delta_\infty^2 \log \varepsilon_\infty \qquad \qquad \text{yields}$$

$$\frac{1}{\left(\frac{x_{23}}{\mathcal{E}}\right)^{\Delta_2+\Delta_3-\Delta_1}\left(\frac{x_{13}}{\mathcal{E}}\right)^{\Delta_1+\Delta_3-\Delta_2}\left(\frac{x_{12}}{\mathcal{E}}\right)^{\Delta_1+\Delta_2-\Delta_3}}$$

② An additional contribution to the OPE coefficients (all products at $\theta = 0$)

$$-(\Delta_2 + \Delta_3 - \Delta_1)\log\langle 32\rangle - (\Delta_1 + \Delta_3 - \Delta_2)\log\langle 13\rangle - (\Delta_1 + \Delta_2 - \Delta_3)\log\langle 12\rangle$$

- **3** The zero-mode part of $\langle kl \rangle$ exactly cancels the remaining *Finite* part of $\int_{\Sigma \setminus \{\varepsilon_i\}} \sqrt{T(w)} \overline{T}(\overline{w})$
- \bigcirc We obtain, however, a nonzero contribution from the nontrivial part of $\langle kl \rangle$

$$\Delta^2 \log \varepsilon_1 + \Delta^2 \log \varepsilon_{-1} + \Delta^2_{\infty} \log \varepsilon_{\infty}$$
 yields

$$\frac{1}{\left(\frac{x_{23}}{\mathcal{E}}\right)^{\boldsymbol{\Delta}_2+\boldsymbol{\Delta}_3-\boldsymbol{\Delta}_1}\left(\frac{x_{13}}{\mathcal{E}}\right)^{\boldsymbol{\Delta}_1+\boldsymbol{\Delta}_3-\boldsymbol{\Delta}_2}\left(\frac{x_{12}}{\mathcal{E}}\right)^{\boldsymbol{\Delta}_1+\boldsymbol{\Delta}_2-\boldsymbol{\Delta}_3}}$$

② An additional contribution to the OPE coefficients (all products at $\theta = 0$)

$$-(\Delta_2 + \Delta_3 - \Delta_1)\log\langle 32\rangle - (\Delta_1 + \Delta_3 - \Delta_2)\log\langle 13\rangle - (\Delta_1 + \Delta_2 - \Delta_3)\log\langle 12\rangle$$

- ① The zero-mode part of $\langle kl \rangle$ exactly cancels the remaining *Finite* part of $\int_{\Sigma \setminus \{\varepsilon_i\}} \sqrt{T(w)} \overline{T(\overline{w})}$
- We obtain, however, a nonzero contribution from the nontrivial part of $\langle kl \rangle$

$$\Delta^2 \log \varepsilon_1 + \Delta^2 \log \varepsilon_{-1} + \Delta^2_{\infty} \log \varepsilon_{\infty}$$
 yields

$$\frac{1}{\left(\frac{x_{23}}{\mathcal{E}}\right)^{\boldsymbol{\Delta}_2+\boldsymbol{\Delta}_3-\boldsymbol{\Delta}_1}\left(\frac{x_{13}}{\mathcal{E}}\right)^{\boldsymbol{\Delta}_1+\boldsymbol{\Delta}_3-\boldsymbol{\Delta}_2}\left(\frac{x_{12}}{\mathcal{E}}\right)^{\boldsymbol{\Delta}_1+\boldsymbol{\Delta}_2-\boldsymbol{\Delta}_3}}$$

② An additional contribution to the OPE coefficients (all products at $\theta = 0$)

$$-\big(\Delta_2+\Delta_3-\Delta_1\big)\log \left\langle 32\right\rangle - \big(\Delta_1+\Delta_3-\Delta_2\big)\log \left\langle 13\right\rangle - \big(\Delta_1+\Delta_2-\Delta_3\big)\log \left\langle 12\right\rangle$$

- ① The zero-mode part of $\langle kl \rangle$ exactly cancels the remaining Finite part of $\int_{\Sigma \setminus \{\varepsilon_i\}} \sqrt{T(w)\overline{T}(\overline{w})}$
- lacktriangle We obtain, however, a nonzero contribution from the nontrivial part of $\langle kl \rangle$

$$\Delta^2 \log \varepsilon_1 + \Delta^2 \log \varepsilon_{-1} + \Delta_{\infty}^2 \log \varepsilon_{\infty}$$
 yields

$$\frac{1}{\left(\frac{x_{23}}{\mathcal{E}}\right)^{\boldsymbol{\Delta}_2+\boldsymbol{\Delta}_3-\boldsymbol{\Delta}_1}\left(\frac{x_{13}}{\mathcal{E}}\right)^{\boldsymbol{\Delta}_1+\boldsymbol{\Delta}_3-\boldsymbol{\Delta}_2}\left(\frac{x_{12}}{\mathcal{E}}\right)^{\boldsymbol{\Delta}_1+\boldsymbol{\Delta}_2-\boldsymbol{\Delta}_3}}$$

② An additional contribution to the OPE coefficients (all products at $\theta = 0$)

$$-(\Delta_2+\Delta_3-\Delta_1)\log \left\langle 32\right\rangle -(\Delta_1+\Delta_3-\Delta_2)\log \left\langle 13\right\rangle -(\Delta_1+\Delta_2-\Delta_3)\log \left\langle 12\right\rangle -(\Delta_1+\Delta_2-\Delta_3)\log \left\langle 12\right\rangle -(\Delta_1+\Delta_3-\Delta_3)\log \left\langle 12\right\rangle -(\Delta_$$

- The zero-mode part of $\langle kl \rangle$ exactly cancels the remaining *Finite* part of $\int_{\Sigma \setminus \{\varepsilon_i\}} \sqrt{T(w)} \overline{T(\overline{w})}$
- We obtain, however, a nonzero contribution from the nontrivial part of $\langle kl \rangle$

$$\Delta^2 \log \varepsilon_1 + \Delta^2 \log \varepsilon_{-1} + \Delta_{\infty}^2 \log \varepsilon_{\infty}$$
 yields

$$\frac{1}{\left(\frac{x_{23}}{\mathcal{E}}\right)^{\boldsymbol{\Delta}_2+\boldsymbol{\Delta}_3-\boldsymbol{\Delta}_1}\left(\frac{x_{13}}{\mathcal{E}}\right)^{\boldsymbol{\Delta}_1+\boldsymbol{\Delta}_3-\boldsymbol{\Delta}_2}\left(\frac{x_{12}}{\mathcal{E}}\right)^{\boldsymbol{\Delta}_1+\boldsymbol{\Delta}_2-\boldsymbol{\Delta}_3}}$$

② An additional contribution to the OPE coefficients (all products at $\theta = 0$)

- The zero-mode part of $\langle kl \rangle$ exactly cancels the remaining *Finite* part of $\int_{\Sigma \setminus \{\varepsilon_i\}} \sqrt{T(w)} \overline{T}(\overline{w})$
- We obtain, however, a nonzero contribution from the nontrivial part of $\langle kl \rangle$

Final answer

The final answer for the OPE coefficient is a product of the currently unknown regularized S^5 contribution

$$\underbrace{\exp^{\frac{\sqrt{\lambda}}{2}}\int_{\Sigma}\left(S^{5} \text{ contribution}-\sqrt{T(w)}\overline{T(\overline{w})}\,d^{2}w\right)}_{\text{Unknown by 6 Girls C.}}$$

and the explicit AdS answer

$$\exp\left\{-\frac{\sqrt{\lambda}}{6} - \sqrt{\lambda}\left[(2\Delta - \Delta_{\infty})\tilde{P}_{-11} + 2\Delta_{\infty}\tilde{P}_{1\infty}\right]\right\}$$

Our main result

where

$$\begin{array}{lcl} \tilde{P}_{-11} & = & \tilde{h}(2\Delta - \Delta_{\infty}) + \tilde{h}(2\Delta + \Delta_{\infty}) - 2\tilde{h}(2\Delta) \\ \tilde{P}_{1\infty} & = & \tilde{h}(\Delta_{\infty}) + \tilde{h}(2\Delta + \Delta_{\infty}) - \tilde{h}(2\Delta) - \tilde{h}(2\Delta_{\infty}) \end{array}$$

with

$$\tilde{h}(a) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sinh^2 \theta}{\cosh \theta} \log \left(1 - e^{-a\pi \cosh \theta}\right) d\theta$$

The final answer for the OPE coefficient is a product of the currently unknown regularized S^5 contribution

$$\underbrace{\exp^{\frac{\sqrt{\lambda}}{2}\int_{\Sigma}\left(S^{5} \text{ contribution} - \sqrt{T(w)}\overline{T}(\overline{w}) \ d^{2}w\right)}}_{}$$

Unknown but finite!

and the explicit AdS answer

$$\underbrace{\exp\left\{-\frac{\sqrt{\lambda}}{6}-\sqrt{\lambda}\left[(2\Delta-\Delta_{\infty})\tilde{\textit{P}}_{-11}+2\Delta_{\infty}\tilde{\textit{P}}_{1\infty}\right]\right\}}$$

Our main result

where

$$\begin{array}{lcl} \tilde{P}_{-11} & = & \tilde{h}(2\Delta - \Delta_{\infty}) + \tilde{h}(2\Delta + \Delta_{\infty}) - 2\tilde{h}(2\Delta) \\ \tilde{P}_{1\infty} & = & \tilde{h}(\Delta_{\infty}) + \tilde{h}(2\Delta + \Delta_{\infty}) - \tilde{h}(2\Delta) - \tilde{h}(2\Delta_{\infty}) \end{array}$$

with

$$\tilde{h}(\mathbf{a}) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sinh^2 \theta}{\cosh \theta} \log \left(1 - e^{-\mathbf{a}\pi \cosh \theta}\right) d\theta$$

The final answer for the OPE coefficient is a product of the currently unknown regularized S^5 contribution

$$\underbrace{\exp^{\frac{\sqrt{\lambda}}{2}} \int_{\Sigma} \left(S^{5} \text{ contribution} - \sqrt{T(w)} \overline{T}(\overline{w}) d^{2}w \right)}_{\text{Unknown but finite!}}$$

and the explicit AdS answer

$$\underbrace{\exp\left\{-\frac{\sqrt{\lambda}}{6}-\sqrt{\lambda}\left[(2\Delta-\Delta_{\infty})\tilde{\textit{P}}_{-11}+2\Delta_{\infty}\tilde{\textit{P}}_{1\infty}\right]\right\}}$$

Our main result

where

$$\begin{array}{lcl} \tilde{P}_{-11} & = & \tilde{h}(2\Delta - \Delta_{\infty}) + \tilde{h}(2\Delta + \Delta_{\infty}) - 2\tilde{h}(2\Delta) \\ \tilde{P}_{1\infty} & = & \tilde{h}(\Delta_{\infty}) + \tilde{h}(2\Delta + \Delta_{\infty}) - \tilde{h}(2\Delta) - \tilde{h}(2\Delta_{\infty}) \end{array}$$

with

$$\tilde{h}(\mathbf{a}) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sinh^2 \theta}{\cosh \theta} \log \left(1 - e^{-\mathbf{a}\pi \cosh \theta} \right) d\theta$$

$$\exp\left\{-\frac{\sqrt{\lambda}}{6}-\sqrt{\lambda}\left[(2\Delta-\Delta_{\infty})\tilde{P}_{-11}+2\Delta_{\infty}\tilde{P}_{1\infty}\right]\right\}$$

Comments

- In the extremal limit $\Delta_{\infty}=2\Delta$ we obtain 1 (the 1/6 is crucial here)
- ullet For large Δ , $ilde{h}(a) \propto e^{-\pi a}$ and the AdS contribution approaches a constant

$$e^{-\frac{\sqrt{\lambda}}{6}}$$

ullet For small Δ , $\tilde{\it h}(\it a)\sim -{1\over 6\it a}-{1\over 2}\log\it a$. Then we get $(\Delta\equiv\sqrt{\lambda}\Delta)$

$$\left(\frac{(2\Delta-\Delta_{\infty})^{2\Delta-\Delta_{\infty}}(2\Delta+\Delta_{\infty})^{2\Delta+\Delta_{\infty}}\Delta_{\infty}^{2\Delta_{\infty}}}{(2\Delta)^{4\Delta}(2\Delta_{\infty})^{2\Delta_{\infty}}}\right)^{\frac{1}{2}}$$

$$\exp\left\{-\frac{\sqrt{\lambda}}{6}-\sqrt{\lambda}\left[(2\Delta-\Delta_{\infty})\tilde{P}_{-11}+2\Delta_{\infty}\tilde{P}_{1\infty}\right]\right\}$$

Comments:

- In the extremal limit $\Delta_{\infty}=2\Delta$ we obtain 1 (the 1/6 is crucial here)
- ullet For large Δ , $ilde{h}(a) \propto e^{-\pi a}$ and the AdS contribution approaches a constant

$$e^{-\frac{\sqrt{\lambda}}{6}}$$

• For small Δ , $\tilde{\it h}(a)\sim -\frac{1}{6a}-\frac{1}{2}\log a$. Then we get $(\Delta\equiv\sqrt{\lambda}\Delta)$

$$\left(\frac{(2\Delta-\Delta_{\infty})^{2\Delta-\Delta_{\infty}}(2\Delta+\Delta_{\infty})^{2\Delta+\Delta_{\infty}}\Delta_{\infty}^{2\Delta_{\infty}}}{(2\Delta)^{4\Delta}(2\Delta_{\infty})^{2\Delta_{\infty}}}\right)^{\frac{1}{2}}$$

$$\exp\left\{-\frac{\sqrt{\lambda}}{6}-\sqrt{\lambda}\left[(2\Delta-\Delta_{\infty})\tilde{P}_{-11}+2\Delta_{\infty}\tilde{P}_{1\infty}\right]\right\}$$

Comments:

- In the extremal limit $\Delta_{\infty}=2\Delta$ we obtain 1 (the 1/6 is crucial here)
- ullet For large Δ , $ilde{h}(a) \propto e^{-\pi a}$ and the AdS contribution approaches a constant

$$e^{-\frac{\sqrt{\lambda}}{6}}$$

 \bullet For small $\Delta,~\tilde{\textit{h}}(\textit{a}) \sim -\frac{1}{6\textit{a}} - \frac{1}{2}\log \textit{a}.$ Then we get ($\Delta \equiv \sqrt{\lambda}\Delta)$

$$\left(\frac{(2\Delta-\Delta_{\infty})^{2\Delta-\Delta_{\infty}}(2\Delta+\Delta_{\infty})^{2\Delta+\Delta_{\infty}}\Delta_{\infty}^{2\Delta_{\infty}}}{(2\Delta)^{4\Delta}(2\Delta_{\infty})^{2\Delta_{\infty}}}\right)^{\frac{1}{2}}$$

$$\exp\left\{-\frac{\sqrt{\lambda}}{6}-\sqrt{\lambda}\left[(2\Delta-\Delta_{\infty})\tilde{P}_{-11}+2\Delta_{\infty}\tilde{P}_{1\infty}\right]\right\}$$

Comments:

- In the extremal limit $\Delta_{\infty}=2\Delta$ we obtain 1 (the 1/6 is crucial here)
- ullet For large Δ , $ilde{h}(a) \propto e^{-\pi a}$ and the AdS contribution approaches a constant

$$e^{-\frac{\sqrt{\lambda}}{6}}$$

• For small Δ , $\tilde{\it h}(a)\sim -\frac{1}{6a}-\frac{1}{2}\log a$. Then we get $(\Delta\equiv\sqrt{\lambda}\Delta)$

$$\left(\frac{(2\Delta-\Delta_{\infty})^{2\Delta-\Delta_{\infty}}(2\Delta+\Delta_{\infty})^{2\Delta+\Delta_{\infty}}\Delta_{\infty}^{2\Delta_{\infty}}}{(2\Delta)^{4\Delta}(2\Delta_{\infty})^{2\Delta_{\infty}}}\right)^{\frac{1}{2}}$$

$$\exp\left\{-\frac{\sqrt{\lambda}}{6}-\sqrt{\lambda}\left[(2\Delta-\Delta_{\infty})\tilde{P}_{-11}+2\Delta_{\infty}\tilde{P}_{1\infty}\right]\right\}$$

Comments:

- In the extremal limit $\Delta_{\infty}=2\Delta$ we obtain 1 (the 1/6 is crucial here)
- ullet For large Δ , $ilde{h}(a) \propto e^{-\pi a}$ and the AdS contribution approaches a constant

$$e^{-\frac{\sqrt{\lambda}}{6}}$$

• For small Δ , $\tilde{\it h}(a)\sim -\frac{1}{6a}-\frac{1}{2}\log a.$ Then we get $({f \Delta}\equiv \sqrt{\lambda}\Delta)$

$$\left(\frac{(2\Delta-\Delta_{\infty})^{2\boldsymbol{\Delta}-\boldsymbol{\Delta}_{\infty}}(2\Delta+\Delta_{\infty})^{2\boldsymbol{\Delta}+\boldsymbol{\Delta}_{\infty}}\Delta_{\infty}^{2\boldsymbol{\Delta}_{\infty}}}{(2\Delta)^{4\boldsymbol{\Delta}}(2\Delta_{\infty})^{2\boldsymbol{\Delta}_{\infty}}}\right)^{\frac{1}{2}}$$

$$\exp\left\{-\frac{\sqrt{\lambda}}{6}-\sqrt{\lambda}\left[(2\Delta-\Delta_{\infty})\tilde{P}_{-11}+2\Delta_{\infty}\tilde{P}_{1\infty}\right]\right\}$$

Comments:

- In the extremal limit $\Delta_{\infty}=2\Delta$ we obtain 1 (the 1/6 is crucial here)
- ullet For large Δ , $ilde{\it h}(a) \propto e^{-\pi a}$ and the AdS contribution approaches a constant

$$e^{-\frac{\sqrt{\lambda}}{6}}$$

• For small Δ , $\tilde{\it h}(\it a)\sim -\frac{1}{6\it a}-\frac{1}{2}\log\it a$. Then we get $(\Delta\equiv\sqrt{\lambda}\Delta)$

$$\left(\frac{(2\Delta-\Delta_{\infty})^{2\boldsymbol{\Delta}-\boldsymbol{\Delta}_{\infty}}(2\Delta+\Delta_{\infty})^{2\boldsymbol{\Delta}+\boldsymbol{\Delta}_{\infty}}\Delta_{\infty}^{2\boldsymbol{\Delta}_{\infty}}}{(2\Delta)^{4\boldsymbol{\Delta}}(2\Delta_{\infty})^{2\boldsymbol{\Delta}_{\infty}}}\right)^{\frac{1}{2}}$$

this limit ($\sim C_{MMM}$) coincides with the expression in [Klose, McLoughlin]

Caution: The regularized S^5 contributions have to be added to these expressions to get the full OPE coefficients

$$\exp\left\{-\frac{\sqrt{\lambda}}{6}-\sqrt{\lambda}\left[(2\Delta-\Delta_{\infty})\tilde{P}_{-11}+2\Delta_{\infty}\tilde{P}_{1\infty}\right]\right\}$$

Comments:

- In the extremal limit $\Delta_{\infty}=2\Delta$ we obtain 1 (the 1/6 is crucial here)
- ullet For large Δ , $ilde{h}(a) \propto e^{-\pi a}$ and the AdS contribution approaches a constant

$$e^{-\frac{\sqrt{\lambda}}{6}}$$

• For small Δ , $\tilde{\it h}(a)\sim -\frac{1}{6a}-\frac{1}{2}\log a.$ Then we get $({f \Delta}\equiv \sqrt{\lambda}\Delta)$

$$\left(\frac{(2\Delta-\Delta_{\infty})^{2\boldsymbol{\Delta}-\boldsymbol{\Delta}_{\infty}}(2\Delta+\Delta_{\infty})^{2\boldsymbol{\Delta}+\boldsymbol{\Delta}_{\infty}}\Delta_{\infty}^{2\boldsymbol{\Delta}_{\infty}}}{(2\Delta)^{4\boldsymbol{\Delta}}(2\Delta_{\infty})^{2\boldsymbol{\Delta}_{\infty}}}\right)^{\frac{1}{2}}$$

this limit ($\sim C_{MMM}$) coincides with the expression in [Klose, McLoughlin]

Caution: The regularized S^5 contributions have to be added to these expressions to get the full OPE coefficients

- It is possible to understand the universal $\exp(-\sqrt{\lambda}/6)$ large Δ limit directly
- The Pohlmeyer equation reads

$$\partial\overline{\partial}\tilde{\gamma}=\sqrt{T\overline{T}}\sinh\tilde{\gamma}$$

with $\sqrt{T\overline{T}} \propto \Delta_{\infty}^2 |w^2 + a^2| \cdot \dots$

- The solution vanishes at the punctures, but has a logarithmic singularity at $w = \pm ia$
- For large Δ , the solution is almost everywhere zero with logarithmic spikes around $w=\pm ia$
- The Pohlmeyer equation reduces there to radially symmetric Euclidean sinh-Gordon equation for the Painleve III transcendent
 Zamolodchikov '94

$$U'' + \frac{1}{R}U' = \frac{1}{2}\sinh 2U$$

- It is possible to understand the universal $\exp(-\sqrt{\lambda}/6)$ large Δ limit directly
- The Pohlmeyer equation reads

$$\partial\overline{\partial}\tilde{\gamma}=\sqrt{T\overline{T}}\sinh\tilde{\gamma}$$

with $\sqrt{TT} \propto \Delta_{\infty}^2 |w^2 + a^2| \cdot \dots$

- The solution vanishes at the punctures, but has a logarithmic singularity at $w = \pm ia$
- For large Δ , the solution is almost everywhere zero with logarithmic spikes around $w=\pm ia$
- The Pohlmeyer equation reduces there to radially symmetric Euclidean sinh-Gordon equation for the Painleve III transcendent
 Zamolodchikov '94

$$U'' + \frac{1}{R}U' = \frac{1}{2}\sinh 2U$$

- ullet It is possible to understand the universal $\exp(-\sqrt{\lambda}/6)$ large Δ limit directly
- The Pohlmeyer equation reads

$$\partial\overline{\partial}\tilde{\gamma}=\sqrt{T\overline{T}}\sinh\tilde{\gamma}$$

with
$$\sqrt{T\overline{T}} \propto \Delta_{\infty}^2 |w^2 + a^2| \cdot \dots$$

- The solution vanishes at the punctures, but has a logarithmic singularity at $w=\pm ia$
- For large Δ , the solution is almost everywhere zero with logarithmic spikes around $w=\pm ia$
- The Pohlmeyer equation reduces there to radially symmetric Euclidean sinh-Gordon equation for the Painleve III transcendent
 Zamolodchikov '94

$$U'' + \frac{1}{R}U' = \frac{1}{2}\sinh 2U$$

- ullet It is possible to understand the universal $\exp(-\sqrt{\lambda}/6)$ large Δ limit directly
- The Pohlmeyer equation reads

$$\partial\overline{\partial}\tilde{\gamma}=\sqrt{T\overline{T}}\sinh\tilde{\gamma}$$

with $\sqrt{T\overline{T}} \propto \Delta_{\infty}^2 |w^2 + a^2| \cdot \dots$

- The solution vanishes at the punctures, but has a logarithmic singularity at $w = \pm ia$
- For large Δ , the solution is almost everywhere zero with logarithmic spikes around $w=\pm ia$
- The Pohlmeyer equation reduces there to radially symmetric Euclidean sinh-Gordon equation for the Painleve III transcendent
 Zamolodchikov '94

$$U'' + \frac{1}{R}U' = \frac{1}{2}\sinh 2U$$

- ullet It is possible to understand the universal $\exp(-\sqrt{\lambda}/6)$ large Δ limit directly
- The Pohlmeyer equation reads

$$\partial\overline{\partial}\tilde{\gamma}=\sqrt{T\overline{T}}\sinh\tilde{\gamma}$$

with $\sqrt{T\overline{T}} \propto \Delta_{\infty}^2 |w^2 + a^2| \cdot \dots$

- The solution vanishes at the punctures, but has a logarithmic singularity at $w = \pm ia$
- For large Δ , the solution is almost everywhere zero with logarithmic spikes around $w=\pm ia$
- The Pohlmeyer equation reduces there to radially symmetric Euclidean sinh-Gordon equation for the Painleve III transcendent
 Zamolodchikov '94

$$U'' + \frac{1}{R}U' = \frac{1}{2}\sinh 2U$$

- ullet It is possible to understand the universal $\exp(-\sqrt{\lambda}/6)$ large Δ limit directly
- The Pohlmeyer equation reads

$$\partial\overline{\partial}\tilde{\gamma}=\sqrt{T\overline{T}}\sinh\tilde{\gamma}$$

with $\sqrt{T\overline{T}} \propto \Delta_{\infty}^2 |w^2 + a^2| \cdot \dots$

- The solution vanishes at the punctures, but has a logarithmic singularity at $w = \pm ia$
- For large Δ , the solution is almost everywhere zero with logarithmic spikes around $w=\pm ia$
- The Pohlmeyer equation reduces there to radially symmetric Euclidean sinh-Gordon equation for the Painleve III transcendent
 Zamolodchikov '9-

$$U'' + \frac{1}{R}U' = \frac{1}{2}\sinh 2U$$

- ullet It is possible to understand the universal $\exp(-\sqrt{\lambda}/6)$ large Δ limit directly
- The Pohlmeyer equation reads

$$\partial\overline{\partial}\tilde{\gamma}=\sqrt{T\overline{T}}\sinh\tilde{\gamma}$$

with $\sqrt{T\overline{T}} \propto \Delta_{\infty}^2 |w^2 + a^2| \cdot \dots$

- The solution vanishes at the punctures, but has a logarithmic singularity at $w = \pm ia$
- For large Δ , the solution is almost everywhere zero with logarithmic spikes around $w=\pm ia$
- The Pohlmeyer equation reduces there to radially symmetric Euclidean sinh-Gordon equation for the Painleve III transcendent Zamolodchikov '94

$$U'' + \frac{1}{R}U' = \frac{1}{2}\sinh 2U$$

• The Pohlmeyer reduced contribution can be expressed in terms of the $F_c(R)$ function of [Zamolodchikov '94]

$$-\frac{3\pi}{2}\int_0^\infty \left(\frac{d}{dR}RF_c(R) + \frac{R}{2}\right)dR$$

Using the asymptotics

Zamolodchikov '94

$$F_c(R) \sim -R/4$$
 for $R
ightarrow \infty$ $R \, F_c(R)
ightarrow 1/18$ for $R
ightarrow 0$

the integral may be evaluated to

$$\frac{\pi}{12}$$

$$e^{-\frac{\sqrt{\lambda}}{\pi}\left(\frac{\pi}{12}+\frac{\pi}{12}\right)}=e^{-\frac{\sqrt{\lambda}}{6}}$$

• The Pohlmeyer reduced contribution can be expressed in terms of the $F_c(R)$ function of [Zamolodchikov '94]

$$-\frac{3\pi}{2}\int_0^\infty \left(\frac{d}{dR}RF_c(R) + \frac{R}{2}\right)dR$$

Using the asymptotics

Zamolodchikov '94

$$F_c(R) \sim -R/4$$
 for $R \to \infty$

$$RF_c(R) \rightarrow 1/18$$
 for $R \rightarrow 0$

the integral may be evaluated to

$$\frac{\pi}{12}$$

$$e^{-\frac{\sqrt{\lambda}}{\pi}\left(\frac{\pi}{12}+\frac{\pi}{12}\right)}=e^{-\frac{\sqrt{\lambda}}{6}}$$

• The Pohlmeyer reduced contribution can be expressed in terms of the $F_c(R)$ function of [Zamolodchikov '94]

$$-\frac{3\pi}{2}\int_0^\infty \left(\frac{d}{dR}RF_c(R) + \frac{R}{2}\right)dR$$

Using the asymptotics

Zamolodchikov '94

$$F_c(R) \sim -R/4$$
 for $R \to \infty$ $R F_c(R) \to 1/18$ for $R \to 0$

$$R F_c(R) \rightarrow 1/18$$
 for $R \rightarrow 0$

the integral may be evaluated to

$$\frac{\pi}{12}$$

$$e^{-\frac{\sqrt{\lambda}}{\pi}\left(\frac{\pi}{12} + \frac{\pi}{12}\right)} = e^{-\frac{\sqrt{\lambda}}{6}}$$

• The Pohlmeyer reduced contribution can be expressed in terms of the $F_c(R)$ function of [Zamolodchikov '94]

$$-\frac{3\pi}{2}\int_0^\infty \left(\frac{d}{dR}RF_c(R) + \frac{R}{2}\right)dR$$

Using the asymptotics

Zamolodchikov '94

$$F_c(R) \sim -R/4$$
 for $R \to \infty$ $RF_c(R) \to 1/18$ for $R \to 0$

$$R F_c(R) \rightarrow 1/18$$
 for $R \rightarrow 0$

the integral may be evaluated to

$$\frac{\pi}{12}$$

$$e^{-\frac{\sqrt{\lambda}}{\pi}\left(\frac{\pi}{12}+\frac{\pi}{12}\right)}=e^{-\frac{\sqrt{\lambda}}{6}}$$

- ullet We have considered operators dual to classical strings on S^5
- We have evaluated the (universal) AdS part of the OPE coefficients which depends only on the dimensions of the operators

$$C^{OPE} = \underbrace{C_{AdS}^{OPE}}_{universal} \cdot \underbrace{C_{S^5}^{OPE}}_{operator-dependent}$$

- It would be interesting to compare with the C_{HHL} computations with $\Delta_{light} \rightarrow \infty$. One should determine backreaction and vertex operator contributions in the C_{HHL} calculations...
- Main open question: the S^5 contribution

- ullet We have considered operators dual to classical strings on S^5
- We have evaluated the (universal) AdS part of the OPE coefficients which
 depends only on the dimensions of the operators

$$C^{OPE} = \underbrace{C_{AdS}^{OPE}}_{universal} \cdot \underbrace{C_{S^5}^{OPE}}_{operator-dependent}$$

- It would be interesting to compare with the C_{HHL} computations with $\Delta_{light} \rightarrow \infty$. One should determine backreaction and vertex operator contributions in the C_{HHL} calculations...
- Main open question: the S^5 contribution

- ullet We have considered operators dual to classical strings on S^5
- We have evaluated the (universal) AdS part of the OPE coefficients which depends only on the dimensions of the operators

$$C^{OPE} = \underbrace{C_{AdS}^{OPE}}_{universal} \cdot \underbrace{C_{S^5}^{OPE}}_{operator-dependent}$$

- It would be interesting to compare with the C_{HHL} computations with $\Delta_{light} \rightarrow \infty$. One should determine backreaction and vertex operator contributions in the C_{HHL} calculations...
- Main open question: the S^5 contribution

- ullet We have considered operators dual to classical strings on S^5
- We have evaluated the (universal) AdS part of the OPE coefficients which depends only on the dimensions of the operators

$$C^{OPE} = \underbrace{C_{AdS}^{OPE}}_{universal} \cdot \underbrace{C_{S^5}^{OPE}}_{operator-dependent}$$

- It would be interesting to compare with the C_{HHL} computations with $\Delta_{light} \rightarrow \infty$. One should determine backreaction and vertex operator contributions in the C_{HHL} calculations...
- Main open question: the S^5 contribution

- ullet We have considered operators dual to classical strings on S^5
- We have evaluated the (universal) AdS part of the OPE coefficients which depends only on the dimensions of the operators

$$C^{OPE} = \underbrace{C_{AdS}^{OPE}}_{universal} \cdot \underbrace{C_{S^5}^{OPE}}_{s}$$

- It would be interesting to compare with the C_{HHL} computations with $\Delta_{light} \rightarrow \infty$. One should determine backreaction and vertex operator contributions in the C_{HHL} calculations...
- Main open question: the S^5 contribution

- ullet We have considered operators dual to classical strings on S^5
- We have evaluated the (universal) AdS part of the OPE coefficients which depends only on the dimensions of the operators

$$C^{OPE} = \underbrace{C_{AdS}^{OPE}}_{universal} \cdot \underbrace{C_{S^5}^{OPE}}_{operator-dependent}$$

- It would be interesting to compare with the C_{HHL} computations with $\Delta_{light} \rightarrow \infty$. One should determine backreaction and vertex operator contributions in the C_{HHL} calculations...
- Main open question: the S^5 contribution