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Main questions for a CFT

@ Find the spectrum of conformal weights
= eigenvalues of the dilatation operator
= (anomalous) dimensions of operators

(0(0)0(x)) = ﬁ
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Main questions for a CFT

@ Find the spectrum of conformal weights
= eigenvalues of the dilatation operator
= (anomalous) dimensions of operators

1
(0(0)0(x)) = 51
x|
o Find the OPE coefficients Cjj defined through

G
(0i(x1) 0j(x2) Ok(x3)) = X1 — 3o A BBk xy — x| BB |y — x| A TA A
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Main questions for a CFT

@ Find the spectrum of conformal weights
= eigenvalues of the dilatation operator
= (anomalous) dimensions of operators

1
(0(0)0(x)) = 51
x|
o Find the OPE coefficients Cjj defined through

G
(0i(x1) 0j(x2) Ok(x3)) = X1 — 3o A BBk xy — x| BB |y — x| A TA A

@ Once A; and Cjj are known, all higher point correlation functions are, in
principle, determined explicitly.
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Main classes of operators in A’ = 4 SYM

@ BPS operators correspond to supergravity modes
@ Their anomalous dimensions are protected as well as OPE coefficients
@ These states are (in this context) commonly called light states

@ Operators which have nontrivial anomalous dimensions correspond to massive
string states

The lightest of these, corresponding to ‘short strings’ (e.g. the Konishi
operator) can be called by analogy medium states
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@ BPS operators correspond to supergravity modes
@ Their anomalous dimensions are protected as well as OPE coefficients
@ These states are (in this context) commonly called light states

@ Operators which have nontrivial anomalous dimensions correspond to massive
string states

The lightest of these, corresponding to ‘short strings’ (e.g. the Konishi
operator) can be called by analogy medium states

A subclass of operators with large R-charges/spins correspond, at strong
coupling, to classical string states

Romuald A. Janik (Krakéw) On universal parts of OPE coefficients in N=4 SYM 8th Bologna Workshop



Main classes of operators in A’ = 4 SYM

@ BPS operators correspond to supergravity modes
@ Their anomalous dimensions are protected as well as OPE coefficients
@ These states are (in this context) commonly called light states

@ Operators which have nontrivial anomalous dimensions correspond to massive
string states

The lightest of these, corresponding to ‘short strings’ (e.g. the Konishi
operator) can be called by analogy medium states

A subclass of operators with large R-charges/spins correspond, at strong
coupling, to classical string states

@ These states are (in this context) commonly called heavy states
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Main classes of operators in A’ = 4 SYM

@ BPS operators correspond to supergravity modes
@ Their anomalous dimensions are protected as well as OPE coefficients

@ These states are (in this context) commonly called light states

@ Operators which have nontrivial anomalous dimensions correspond to massive
string states

@ The lightest of these, corresponding to ‘short strings’ (e.g. the Konishi
operator) can be called by analogy medium states

@ A subclass of operators with large R-charges/spins correspond, at strong
coupling, to classical string states

@ These states are (in this context) commonly called heavy states

We will be interested in a subset of the heavy states whose whole dynamics is
concentrated in the S° part of AdSs x S5
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Current status

o Protected OPE coefficients are known (supergravity states)
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o Protected OPE coefficients are known (supergravity states)

o At weak coupling (for unprotected operators) a lot is known at tree-level and
at 1-loop, as well as Frolov-Tseytlin limit Escobedo, Gromov, Sever, Vieira
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o At weak coupling (for unprotected operators) a lot is known at tree-level and
at 1-loop, as well as Frolov-Tseytlin limit Escobedo, Gromov, Sever, Vieira

o For some specific operators the OPE coefficient is known up to three loops!
Eden, Heslop, Korchemsky, Sokhatchev
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At strong coupling, the case of 3-point correlation functions/OPE coefficients

Cypy for two heavy and one light is well studied Zarembo; Costa et.al.
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o Protected OPE coefficients are known (supergravity states)

o At weak coupling (for unprotected operators) a lot is known at tree-level and
at 1-loop, as well as Frolov-Tseytlin limit Escobedo, Gromov, Sever, Vieira

o For some specific operators the OPE coefficient is known up to three loops!
Eden, Heslop, Korchemsky, Sokhatchev

@ At strong coupling, the case of 3-point correlation functions/OPE coefficients
Cypy for two heavy and one light is well studied Zarembo; Costa et.al.
— use the known classical solution for a two-point function of the heavy
operators and integrate with the propagator of the light supergravity mode

see the talk by Ahn

Romuald A. Janik (Krakéw) On universal parts of OPE coefficients in N=4 SYM 8th Bologna Workshop 5/32



Current status

Protected OPE coefficients are known (supergravity states)

o At weak coupling (for unprotected operators) a lot is known at tree-level and
at 1-loop, as well as Frolov-Tseytlin limit Escobedo, Gromov, Sever, Vieira

o For some specific operators the OPE coefficient is known up to three loops!
Eden, Heslop, Korchemsky, Sokhatchev

@ At strong coupling, the case of 3-point correlation functions/OPE coefficients
Cypy for two heavy and one light is well studied Zarembo; Costa et.al.
— use the known classical solution for a two-point function of the heavy
operators and integrate with the propagator of the light supergravity mode

see the talk by Ahn

@ Recently near BMN operators were also considered Klose, McLoughlin

Romuald A. Janik (Krakéw) On universal parts of OPE coefficients in N=4 SYM 8th Bologna Workshop 5/32



Current status

o Protected OPE coefficients are known (supergravity states)

o At weak coupling (for unprotected operators) a lot is known at tree-level and
at 1-loop, as well as Frolov-Tseytlin limit Escobedo, Gromov, Sever, Vieira

o For some specific operators the OPE coefficient is known up to three loops!
Eden, Heslop, Korchemsky, Sokhatchev

@ At strong coupling, the case of 3-point correlation functions/OPE coefficients
Cypy for two heavy and one light is well studied Zarembo; Costa et.al.
— use the known classical solution for a two-point function of the heavy
operators and integrate with the propagator of the light supergravity mode

see the talk by Ahn

@ Recently near BMN operators were also considered Klose, McLoughlin

Aim: Develop methods for the computation of Cpyy — OPE coefficients of three
heavy (usually distinct) heavy operators
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The AdS/CFT dictionary

Anomalous dimensions Energies of corresponding
of operators string states in AdSs x S°
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of operators string states in AdSs x S°
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The AdS/CFT dictionary

Anomalous dimensions Energies of corresponding
of operators string states in AdSs x S°

@ This approach is very well developed using integrability
@ Alternatively we might try to compute the anomalous dimensions directly by
computing a 2-point correlation function

(0(0)0(x)) = ﬁ
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The AdS/CFT dictionary

Anomalous dimensions Energies of corresponding
of operators string states in AdSs x S°

@ This approach is very well developed using integrability
@ Alternatively we might try to compute the anomalous dimensions directly by
computing a 2-point correlation function

(0(0)0(x)) = ﬁ

@ For light states (supergravity modes) the prescription is known since the very
begining of AdS/CFT Witten; Gubser, Klebanov, Polyakov
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The AdS/CFT dictionary

Anomalous dimensions Energies of corresponding
of operators string states in AdSs x S°

@ This approach is very well developed using integrability

@ Alternatively we might try to compute the anomalous dimensions directly by
computing a 2-point correlation function

(0(0)0(x)) = ﬁ

@ For light states (supergravity modes) the prescription is known since the very

begining of AdS/CFT Witten; Gubser, Klebanov, Polyakov
@ For classical string states a prescription has been worked out in [RJ, Suréwka,
Wereszczyriski] see also [Tsuji] and [Buchbinder, Tseytlin]
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What is involved?

@ For two-point functions, we pass from a Green’s function of the light state
(supergravity field)
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What is involved?

@ For two-point functions, we pass from a Green’s function of the light state
(supergravity field) to a classical string solution with the topology of a
cylinder, approaching two given points on the boundary (modulo caveats)
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What is involved?

@ For two-point functions, we pass from a Green’s function of the light state
(supergravity field) to a classical string solution with the topology of a
cylinder, approaching two given points on the boundary (modulo caveats)

@ For a three-point function, we have to construct a classical solution with the
topology of a thrice punctured sphere
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2-point correlation functions
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2-point correlation functions

@ At the classical level one can consider an Euclidean worldsheet with the
topology of a sphere with 2 punctures satisfying Virasoro constraints
(saddle point of Minkowskian cylinder amplitude...)
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(saddle point of Minkowskian cylinder amplitude...)
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@ The AdS part of the solution is a geodesic cut-off at z =&
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2-point correlation functions

@ At the classical level one can consider an Euclidean worldsheet with the
topology of a sphere with 2 punctures satisfying Virasoro constraints
(saddle point of Minkowskian cylinder amplitude...)

@ The solution is complex (i.e. complexified)

@ The AdS part of the solution is a geodesic cut-off at z =&

@ The S5 part of the solution is just the Wick rotated spinning string solution
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2-point correlation functions

@ At the classical level one can consider an Euclidean worldsheet with the
topology of a sphere with 2 punctures satisfying Virasoro constraints
(saddle point of Minkowskian cylinder amplitude...)

@ The solution is complex (i.e. complexified)

@ The AdS part of the solution is a geodesic cut-off at z =&

@ The S5 part of the solution is just the Wick rotated spinning string solution
— here we have to include wavefunctions
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2-point correlation functions

@ At the classical level one can consider an Euclidean worldsheet with the
topology of a sphere with 2 punctures satisfying Virasoro constraints
(saddle point of Minkowskian cylinder amplitude...)

@ The solution is complex (i.e. complexified)

@ The AdS part of the solution is a geodesic cut-off at z =&

@ The S5 part of the solution is just the Wick rotated spinning string solution
— here we have to include wavefunctions
— the contribution of the S part is the energy integral

VX VAN :
U* e fcyﬁnder dodt Lgs v e fcy,,-nde, dodT B cjidean
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2-point correlation functions

@ At the classical level one can consider an Euclidean worldsheet with the
topology of a sphere with 2 punctures satisfying Virasoro constraints
(saddle point of Minkowskian cylinder amplitude...)

@ The solution is complex (i.e. complexified)

@ The AdS part of the solution is a geodesic cut-off at z =&

@ The S5 part of the solution is just the Wick rotated spinning string solution
— here we have to include wavefunctions
— the contribution of the S part is the energy integral

Ny oy s5
W* e ¥ Joyinaer 9997 L5y o oyiinder 4797 Ecuciidean
@ Putting the two contributions together we get
VX N S5 1
e fcy,,.nde, dodt Lads | e fcy/fnder dodT Eg i
. 1\ 22
AdS action S° energy integral £
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3-point correlation functions

We are interested in classical solutions with the topology of a thrice-punctured
sphere
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3-point correlation functions

We are interested in classical solutions with the topology of a thrice-punctured
sphere

@ Close to the punctures, the solutions should approach the known solutions for
2-point functions
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3-point correlation functions

We are interested in classical solutions with the topology of a thrice-punctured
sphere

@ Close to the punctures, the solutions should approach the known solutions for
2-point functions

o For operators with nontrivial charges only on the S°, the problem separates
into two almost decoupled parts — the S® part and the AdS part, resulting in
COPE — CAOdF;E A CSOSPE
S~~~ ~—~—

universal operator—dependent
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3-point correlation functions

We are interested in classical solutions with the topology of a thrice-punctured
sphere

@ Close to the punctures, the solutions should approach the known solutions for
2-point functions
o For operators with nontrivial charges only on the S°, the problem separates
into two almost decoupled parts — the S® part and the AdS part, resulting in
COPE _ COPE . C505PE
——

universal operator—dependent
@ The problems are only tied through the Virasoro constraint

TAdS(W) + TSS(W) =0
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3-point correlation functions

We are interested in classical solutions with the topology of a thrice-punctured
sphere

Close to the punctures, the solutions should approach the known solutions for
2-point functions
o For operators with nontrivial charges only on the S°, the problem separates
into two almost decoupled parts — the S® part and the AdS part, resulting in
COPE _ COPE . C505PE
——

universal operator—dependent
The problems are only tied through the Virasoro constraint

TAdS(W) + TSS(W) =0

o Here we concentrate on the AdS part giving CO1F
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3-point correlation functions
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3-point correlation functions

@ We have to find classical solutions following from the AdS, action

020z + OxOx

z2
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3-point correlation functions

@ We have to find classical solutions following from the AdS, action

020z + Ox0x
72
subject to the constraint
0z)? + (0x)?
O 0 _
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3-point correlation functions

@ We have to find classical solutions following from the AdS, action

020z + Ox0x
72
subject to the constraint
0z)? + (0x)?
O 0 _

@ At the punctures, the classical solution should approach three given points
X1, X2 and x3 in a way similar to two-point functions of appropriate operators
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3-point correlation functions

@ We have to find classical solutions following from the AdS, action

020z + Ox0x
72
subject to the constraint
0z)? + (0x)?
O 0 _

@ At the punctures, the classical solution should approach three given points
X1, X2 and x3 in a way similar to two-point functions of appropriate operators

@ The punctures can be fixed e.g. to w = +1 and w =
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3-point correlation functions

@ We have to find classical solutions following from the AdS, action

020z + Ox0x
72
subject to the constraint
0z)? + (0x)?
O 0 _

@ At the punctures, the classical solution should approach three given points
X1, X2 and x3 in a way similar to two-point functions of appropriate operators

@ The punctures can be fixed e.g. to w = +1 and w =
@ The r.h.s. of the Virasoro T(w) can be found explicitly
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3-point correlation functions
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3-point correlation functions

e T(w) for a 2-point correlation function is

N2 /4
2

T2fpoint(W) = W

where the anomalous dimension A = V) A
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3-point correlation functions

e T(w) for a 2-point correlation function is

N2 /4
2

T2fpoint(W) = W

where the anomalous dimension A = V) A

@ Hence T(w) should have poles of order at most two at each puncture with
prescribed leading coefficients
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3-point correlation functions

e T(w) for a 2-point correlation function is

N2 /4

T2fpoint(W) = >

w
where the anomalous dimension A = V) A

@ Hence T(w) should have poles of order at most two at each puncture with
prescribed leading coefficients

@ Taking into account the transformation property

T(w) > %T (1>

u

T(w) is fixed uniquely
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3-point correlation functions

e T(w) for a 2-point correlation function is

N2 /4

T2fpoint(W) = >

w
where the anomalous dimension A = V) A

@ Hence T(w) should have poles of order at most two at each puncture with
prescribed leading coefficients

@ Taking into account the transformation property

T(w) > %T (1>

u
T(w) is fixed uniquely
A2 w2+ 22 , 4AA?
T(W):Tm Where a :E—l
Here the operators at w = +1 have dimension A, and A, at w = c©

Romuald A. Janik (Krakéw)

On universal parts of OPE coefficients in N=4 SYM

8th Bologna Workshop 11 /32



Pohlmeyer reduction
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Pohlmeyer reduction

@ Pohlmeyer reduction for the AdS, o-model with prescribed T(w) yields the
modified sinh-Gordon model

OxOx + 0z0z

= =1/ T(w) T (W) cosh ¥

007 = V T T sinh¥
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Pohlmeyer reduction

@ Pohlmeyer reduction for the AdS, o-model with prescribed T(w) yields the
modified sinh-Gordon model

8X8x;8282 _ % (ezﬂ{ . TTeJV)
00y = E (7 —TTe ™)
4
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Pohlmeyer reduction

@ Pohlmeyer reduction for the AdS, o-model with prescribed T(w) yields the
modified sinh-Gordon model

8X8x;8282 _ % (ezﬂ{ . TTeJV)
5 _ 1,0 - 2
90y = (e —=TTe ™)

4

@ This is exactly the same modified sinh-Gordon model as for polygonal
minimal surfaces in AdS3!
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Pohlmeyer reduction

@ Pohlmeyer reduction for the AdS, o-model with prescribed T(w) yields the
modified sinh-Gordon model

Ox0x + 0z0z B

= (e + TTe ™)

N =

00y = 1 (7 —TTe ™)

4

@ This is exactly the same modified sinh-Gordon model as for polygonal
minimal surfaces in AdS3!

@ However there are some key differences in the analytic structure and in the
target-space picture (AdS; versus AdS3)
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Pohlmeyer reduction
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Pohlmeyer reduction

@ The generalized sinh-Gordon model is integrable
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Pohlmeyer reduction

@ The generalized sinh-Gordon model is integrable

@ There exists a family of flat connections

_!

J
£

&, dw + A+ € by dw

Romuald A. Janik (Krakéw) On universal parts of OPE coefficients in N=4 SYM 8th Bologna Workshop 13 /32



Pohlmeyer reduction

@ The generalized sinh-Gordon model is integrable

@ There exists a family of flat connections

J= %¢WdW+A+§¢WdW

o Flatness is equivalent to the compatibility of the linear system

ov+J, V=0 OV + Jz¥ =0
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Pohlmeyer reduction

The generalized sinh-Gordon model is integrable

@ There exists a family of flat connections

J= %¢WdW+A+€¢WdW

o Flatness is equivalent to the compatibility of the linear system
ov+J,V=0 OV + SV =0
@ Around each puncture we have two solutions (k and k) with monodromies

e Tk z2(¢-3)
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Pohlmeyer reduction
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Pohlmeyer reduction

AdS, string action:

/ OxOx + 0z0z
T\ (e} z
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Pohlmeyer reduction

AdS, string action:

/ OxOx + 0z0z
T\ (e} z

e X\ {&;} : 3-punctured sphere with worldsheet cut-offs at the punctures
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Pohlmeyer reduction

AdS, string action:

/ OxOx + 0z0z
T\ (e} z

e X\ {&;} : 3-punctured sphere with worldsheet cut-offs at the punctures
w —w;| > ¢;

@ nontrivial: €; is fixed by a target-space cut-off z =&
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Pohlmeyer reduction
AdS, string action:

/Z\{Ei}

e X\ {&;} : 3-punctured sphere with worldsheet cut-offs at the punctures
w —w;| > ¢;

(20 4 T(w) T(w)e210)

N —

@ nontrivial: €; is fixed by a target-space cut-off z =&
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Pohlmeyer reduction

AdS, string action:

/ 2tr ¢, oy
T\ {ei}

e X\ {&;} : 3-punctured sphere with worldsheet cut-offs at the punctures
w —w;| > ¢;

@ nontrivial: €; is fixed by a target-space cut-off z =&
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Pohlmeyer reduction

AdS, string action:
/ <2 tr @, & —\/ T(w) T (W) d2w) +/ \/ T(w)T(w) d*w
px Y\{ei}

e X\ {&;} : 3-punctured sphere with worldsheet cut-offs at the punctures
w —w;| > ¢;

@ nontrivial: €; is fixed by a target-space cut-off z =&
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/ <2 tr @, & —\/ T(w) T (W) d2w) +/ \/ T(w)T(w) d*w
px Y\{ei}

e X\ {&;} : 3-punctured sphere with worldsheet cut-offs at the punctures
w —w;| > ¢;

@ nontrivial: €; is fixed by a target-space cut-off z =&

@ The first term — regularized ‘Pohlmeyer’ action — depends on the solution of
modified sinh-Gordon, but not on the worldsheet cut-off
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Pohlmeyer reduction

AdS, string action:
/ (2 tr @, & —\/ T(w) T (W) d2w) +/ \/ T(w)T(w) d*w
px Y\{ei}

Y \ {&;} : 3-punctured sphere with worldsheet cut-offs at the punctures
w —w;| > ¢;

nontrivial: €; is fixed by a target-space cut-off z = &

The first term — regularized ‘Pohlmeyer’ action — depends on the solution of
modified sinh-Gordon, but not on the worldsheet cut-off

The second term has a known and explicit integrand but the domain of
integration depends on the target-space cut-off z =&
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Pohlmeyer reduction

AdS, string action:

J (arosemfreammdn) | se

e X\ {&;} : 3-punctured sphere with worldsheet cut-offs at the punctures
w —w;| > ¢;

@ nontrivial: €; is fixed by a target-space cut-off z =&

@ The first term — regularized ‘Pohlmeyer’ action — depends on the solution of
modified sinh-Gordon, but not on the worldsheet cut-off

@ The second term has a known and explicit integrand but the domain of

integration depends on the target-space cut-off z = & — so we need to
have some information on reconstructing the target space solution from the
Pohlmeyer reduction...

Romuald A. Janik (Krakéw) On universal parts of OPE coefficients in N=4 SYM 8th Bologna Workshop 14 / 32



Regularized ‘Pohlmeyer’ contribution

We can use the techniques of Alday, Maldacena, Sever, Vieira to evaluate the
regularized ‘Pohlmeyer’ action (albeit with some twists...)
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Regularized ‘Pohlmeyer’ contribution

We can use the techniques of Alday, Maldacena, Sever, Vieira to evaluate the
regularized ‘Pohlmeyer’ action (albeit with some twists...)

@ Go to a gauge where ®,, is diagonal.
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Regularized ‘Pohlmeyer’ contribution

We can use the techniques of Alday, Maldacena, Sever, Vieira to evaluate the
regularized ‘Pohlmeyer’ action (albeit with some twists...)

@ Go to a gauge where ®,, is diagonal.

_ VT
o, — 2

N‘ﬁ o
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Regularized ‘Pohlmeyer’ contribution

We can use the techniques of Alday, Maldacena, Sever, Vieira to evaluate the
regularized ‘Pohlmeyer’ action (albeit with some twists...)

@ Go to a gauge where ®,, is diagonal.

_ VT
o, — 2

Te

@ Pass to the double cover ¥ given by y2 = T
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Regularized ‘Pohlmeyer’ contribution

We can use the techniques of Alday, Maldacena, Sever, Vieira to evaluate the
regularized ‘Pohlmeyer’ action (albeit with some twists...)

@ Go to a gauge where ®,, is diagonal.

_g 0
b, — 0 JT
2

@ Pass to the double cover ¥ given by y2 = T(w)
© Then the regularized ‘Pohlmeyer’ contribution can be written as

/w/\n
b3

dw=0 dn=20

where
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Regularized ‘Pohlmeyer’ contribution

We can use the techniques of Alday, Maldacena, Sever, Vieira to evaluate the
regularized ‘Pohlmeyer’ action (albeit with some twists...)

@ Go to a gauge where ®,, is diagonal.
_VYT
(7 3
2
@ Pass to the double cover ¥ given by y? = T(w)
© Then the regularized ‘Pohlmeyer’ contribution can be written as

/w/\n
b3

where
dw=0 dn=20
Explicitly
1 /= 1 1
w=+/T(w)dw = =4/ T(W)(cosh¥ — 1) dw + = ————(97)*dw
(w) =3y (W) (cosh5 — 1) 2 T(W)(v)
easy
hard
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Regularized ‘Pohlmeyer’ contribution
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Regularized ‘Pohlmeyer’ contribution

Q If T had genus g, one would use Riemann bilinear identity (or reciprocity) to
reduce the integral to products of integrals over cycles

g
=3 [ f =),
/zg ;A; B; A B
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Regularized ‘Pohlmeyer’ contribution

Q If T had genus g, one would use Riemann bilinear identity (or reciprocity) to
reduce the integral to products of integrals over cycles

g
=3 [ f =),
/zg ;A; B; A B

But here & has genus 0 and punctures...
Moreover the forms have singularities at the punctures and at the branch
points of the double cover...
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Regularized ‘Pohlmeyer’ contribution

Q If T had genus g, one would use Riemann bilinear identity (or reciprocity) to
reduce the integral to products of integrals over cycles

g
on=$fofor o]
/Zg lz:; Ai Bi Ai Bi

But here & has genus 0 and punctures...
Moreover the forms have singularities at the punctures and at the branch
points of the double cover...

@ Generalize the Riemann formula to the present case...
Two ways to proceed:

Romuald A. Janik (Krakéw) On universal parts of OPE coefficients in N=4 SYM 8th Bologna Workshop 16 /



Regularized ‘Pohlmeyer’ contribution

Q If T had genus g, one would use Riemann bilinear identity (or reciprocity) to
reduce the integral to products of integrals over cycles

g
on=$fofor o]
/Zg lz:; Ai Bi Ai Bi

But here & has genus 0 and punctures...
Moreover the forms have singularities at the punctures and at the branch
points of the double cover...

@ Generalize the Riemann formula to the present case...

Two ways to proceed: _
— redo the proof directly for © \ {singularities}
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Regularized ‘Pohlmeyer’ contribution

Q If T had genus g, one would use Riemann bilinear identity (or reciprocity) to
reduce the integral to products of integrals over cycles

g
on=$fofor o]
/Zg lz:; Ai Bi Ai Bi

But here & has genus 0 and punctures...
Moreover the forms have singularities at the punctures and at the branch
points of the double cover...

@ Generalize the Riemann formula to the present case...

Two ways to proceed: _
— redo the proof directly for © \ {singularities} quite messy...
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Regularized ‘Pohlmeyer’ contribution

Q If T had genus g, one would use Riemann bilinear identity (or reciprocity) to
reduce the integral to products of integrals over cycles

g
on=$fofor o]
/Zg lz:; Ai Bi Ai Bi

But here & has genus 0 and punctures...
Moreover the forms have singularities at the punctures and at the branch
points of the double cover...

@ Generalize the Riemann formula to the present case...
Two ways to proceed:

— redo the proof directly for = \ {singularities} quite messy...
— treat the punctures as infinitesimal cuts, use reciprocity for genus 3 and
deal only with the singularitites of 1 at the branch points... easier...
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Regularized ‘Pohlmeyer’ contribution
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Regularized ‘Pohlmeyer’ contribution

Q We use simplifying properties:
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Regularized ‘Pohlmeyer’ contribution

Q We use simplifying properties:
— integrals of w around punctures are proportional to A;
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Regularized ‘Pohlmeyer’ contribution

Q We use simplifying properties:
— integrals of w around punctures are proportional to A;
— integrals of w around branch points vanish
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Regularized ‘Pohlmeyer’ contribution

Q We use simplifying properties:
— integrals of w around punctures are proportional to A;
— integrals of w around branch points vanish
— integrals of 1 around punctures vanish
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Regularized ‘Pohlmeyer’ contribution

Q We use simplifying properties:
— integrals of w around punctures are proportional to A;
— integrals of w around branch points vanish
— integrals of 1 around punctures vanish
— the contribution of the branch point is just 7/6
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Regularized ‘Pohlmeyer’ contribution

Q We use simplifying properties:
— integrals of w around punctures are proportional to A;
— integrals of w around branch points vanish
— integrals of 1 around punctures vanish
— the contribution of the branch point is just 7/6

@ Finally we obtain

/Z <2 tr d,, b — \/ T(w) T (W) d2W> = %,g <(Aoo - 2A)/;:71 2o Cn>

S

Romuald A. Janik (Krakéw) On universal parts of OPE coefficients in N=4 SYM 8th Bologna Workshop 17 / 32



Regularized ‘Pohlmeyer’ contribution

Q We use simplifying properties:
— integrals of w around punctures are proportional to A;
— integrals of w around branch points vanish
— integrals of 1 around punctures vanish
— the contribution of the branch point is just 7/6

<(Aoo - 2A)/C7171 2Aoc. C177>

@ Finally we obtain

™

/Z<2tr¢w¢w T(w)T(w) d2W> =5

N

S

@ The integrals of 7 between the punctures are related to the WKB
asymptotics of the products between local solutions of the linear system...
c.f. Alday, Maldacena, Sever, Vieira
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Overlaps between solutions of the linear system

Romuald A. Janik (Krakéw) On universal parts of OPE coefficients in N=4 SYM 8th Bologna Workshop



Overlaps between solutions of the linear system

@ Around each puncture wj we have two distinguished solutions (k and k) of
the linear system

(x)  OV+LVU=0 OV + JgW =0

characterized by the mondromies

o wfe 1 . ) .
oLk 3(6-¢) = etibimsinh 0 —  Eipi(6) 0

where {=¢e
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Overlaps between solutions of the linear system

@ Around each puncture wj we have two distinguished solutions (k and k) of
the linear system

(x)  OV+LVU=0 OV + JgW =0

characterized by the mondromies

o wfe 1 . ) .
oLk 3(6-¢) = etibimsinh 0 —  Eipi(6) 0

where {=¢e

@ Given two solutions of the linear system (x), W2 and W3, one can form the
(skew) product
(W1W5) = e,pWiv?

which is a function of the spectral parameter ¢ = e’
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Overlaps between solutions of the linear system

@ Around each puncture wj we have two distinguished solutions (k and k) of
the linear system

(x)  OV+LVU=0 OV + JgW =0

characterized by the mondromies

N mfe 1 . . .
e:l:IAk 2(§ 5) = e:I:IA;< msinh 6 e:i:lpk(()) where £: eO

@ Given two solutions of the linear system (x), W2 and W3, one can form the
(skew) product
(W1W5) = e,pWiv?

which is a function of the spectral parameter ¢ = e’
@ The standard solutions k and k are normalized by

(KK) =1
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Overlaps between solutions of the linear system
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Overlaps between solutions of the linear system

Alday, Maldacena, Sever, Vieira link the large |#] WKB asymptotics of the

solution of the linear system to the integral of w (leading asymptotics) and 7
(subleading asymptotics).
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Overlaps between solutions of the linear system

Alday, Maldacena, Sever, Vieira link the large |#] WKB asymptotics of the
solution of the linear system to the integral of w (leading asymptotics) and 7
(subleading asymptotics).

In our context this becomes:

The integral of 1 along Cy can be extracted from the # — —oo asymptotics the
overlap (k/) (0):
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Overlaps between solutions of the linear system

Alday, Maldacena, Sever, Vieira link the large |#] WKB asymptotics of the
solution of the linear system to the integral of w (leading asymptotics) and 7
(subleading asymptotics).

In our context this becomes:

The integral of 1 along Cy can be extracted from the # — —oo asymptotics the
overlap (k/) (0):

1 1 =
(k/>(0)~exp{e0/ —w+const+e0/ <n+—\/?dw>—|—...}
Cui 2 Cui 2 re,

g .
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Overlaps between solutions of the linear system

Alday, Maldacena, Sever, Vieira link the large |#] WKB asymptotics of the
solution of the linear system to the integral of w (leading asymptotics) and 7
(subleading asymptotics).

In our context this becomes:

The integral of 1 along Cy can be extracted from the # — —oo asymptotics the
overlap (ki) (0):

(kI (G)Nexp{eo/ 1w—l—const+e0/ <n+1ﬁdw> —1—}
Ckl2 Cui 2

reg.

Question: How to find (k/) (¢) without solving any differential equations?
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Overlaps between solutions of the linear system
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Overlaps between solutions of the linear system

@ Collect all overlaps into a connection matrix between solutions at two

punctures
(= (kDY —(RT)
o= ("o ) )
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Overlaps between solutions of the linear system

@ Collect all overlaps into a connection matrix between solutions at two

punctures
(= (kDY —(RT)
o= ("o ) )

@ Write all obvious compatibility relations

Mim = MM, MMy = id
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Overlaps between solutions of the linear system

@ Collect all overlaps into a connection matrix between solutions at two

punctures _ .
_ (kD) = (k)
o= ("o ) )
@ Write all obvious compatibility relations
Mim = My Mim MMy = id

and the condition of zero monodromy outside the punctures

Q1 M13Q3 M3 Moy = id
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Overlaps between solutions of the linear system

@ Collect all overlaps into a connection matrix between solutions at two

punctures
(= (kDY —(RT)
o= ("o ) )

@ Write all obvious compatibility relations
Mim = My Mim, MMy = id
and the condition of zero monodromy outside the punctures

Q1 M13Q3 M3 Moy = id

© Key point: One can show that

(k1) (0) = — (k) (0 + i) (k1) (0) = — (k) (0 + iT)
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Overlaps between solutions of the linear system

@ Collect all overlaps into a connection matrix between solutions at two

punctures _ .
o= ("o ) )
@ Write all obvious compatibility relations
Mim = Mg Mim, MMy = id
and the condition of zero monodromy outside the punctures

Q1 M13Q3 M3 Moy = id

© Key point: One can show that

(k1) (0) = — (k) (0 + i) (k1) (0) = — (k) (0 + iT)

@ The resulting functional equations can be solved for (k/) (6) !
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Overlaps between solutions of the linear system
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Overlaps between solutions of the linear system

@ We obtain in particular

sin pl(g),ng)),m(@)

sin p2(#) sin p3(0)

. 0)+p2(6)+p3(6
sin pi(6) P2§) p3(0)

(32) (32)"" =
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Overlaps between solutions of the linear system

@ We obtain in particular

sin pl(g),ng)),m(@)

sin p2(#) sin p3(0)

sin

P1(0)+p2(0)+p3(0)
(32) (32)"F = 2

which becomes

sinh(225:=21 7 cosh 0) sinh (252522 7 cosh §)
sinh(Ay7 cosh 6) sinh(As7 cosh 0)

(32)7(32)” =
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Overlaps between solutions of the linear system

@ We obtain in particular

sin pl(g),ng)),m(@)

sin p2(#) sin p3(0)

sin

P1(9)+P2§9)+P3(9)

(32) (32)* =
which becomes

sinh(225:=21 7 cosh 0) sinh (252522 7 cosh §)
sinh(Ay7 cosh 6) sinh(As7 cosh 0)

(32)7(32)” =

@ The basic functional equation to solve is

f+f_ —1— e—aﬂ'coshG
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Overlaps between solutions of the linear system

@ We obtain in particular

sin P1(9)fpz£9)fp3(0)

sin p2(#) sin p3(0)

sin

P1(0)+p2(0)+p3(0)
(32) (32)"F = 2

which becomes

sinh(225:=21 7 cosh 0) sinh (252522 7 cosh §)
sinh(Ay7 cosh 6) sinh(As7 cosh 0)

(32)7(32)” =

@ The basic functional equation to solve is

f+f_ —1— e—aﬂ'cosh()

with the solution

> Jo' log (1 _ g—amcosh 0’)
T — _o 21 cosh(6 —6)

zero mode part
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Overlaps between solutions of the linear system

@ We obtain in particular

sin P1(9)fpz£9)fp3(0)

sin p2(#) sin p3(0)

sin

P1(0)+p2(0)+p3(0)
(32) (32)"F = 2

which becomes

sinh(225:=21 7 cosh 0) sinh (252522 7 cosh §)
sinh(Ay7 cosh 6) sinh(As7 cosh 0)

(32)7(32)” =

@ The basic functional equation to solve is

f+f_ —1— e—aﬂ'cosh()

with the solution

> Jo' log (1 _ g—amcosh 0’)
T — _o 21 cosh(6 —6)

zero mode part

@ The zero-mode constants can be obtained from integrals of v/ T and VT
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Regularized ‘Pohlmeyer’ contribution

Recall:

/Z (2tr¢w¢w— T(w)T(w) d2w> - %_g <(Aoo — QA)/cl? YN C3>
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Regularized ‘Pohlmeyer’ contribution

Recall:

/Z (2tr ¢, Sw — 1/ T(w)T(W) d2w> - %_g ((AOO _QA)/cl?_ 2N | 77)

Coo

From the solution of the functional equations we get

/ n = h(2A — Ayx)+ h(QA + Ay) — 2h(24)
C 11

/ 0 = h(Bs)+ h(2A + As) — h(2A) — h(2A.)
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Regularized ‘Pohlmeyer’ contribution

Recall:
— 2 T T '
2tr 0, i — 4/ T(W)T(W)dw | = ——= | (Axc —2A) | n =20 7
> 6 2 C_11 Cloo
From the solution of the functional equations we get
/ n = h(2A — Ayx)+ h(QA + Ay) — 2h(24)
C 11
G
where 1
h(a) = —/ e’ log (1 — e ™) g
™ — 00
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Numerical check

We have solved the modified sinh-Gordon equations numerically and evaluated the
resulting regularized ‘Pohlmeyer' contribution in order to compare with our
analytical formula.

Regularized action density

A | A, | numerics | our formula
021 03 0.04536 0.0450779
0.5 | 0.9 | 0.107649 0.107622
1. 1. 0.426311 0.426166
1. | 1.05 | 0.429572 0.429503
2. 2. 0.517689 0.517688
2. 3. 0.488985 0.488985
4. 4, 0.523584 0.523584
4. 1 7.99 | 0.0152435 | 0.0152435

Numerics become more difficult
A=A, =40 and less reliable for small A's
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AdS, action :/

g <2trd>wd>w— T(w)T (W) d2w> +/z\{g,} T(w)T(w) d*w

Done!
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AdS, action :/

g <2trd>wd>w— T(w)T (W) d2w> +/z\{g,} T(w)T(w) d*w

Done!

To this we have to add the (unknown) S° contribution
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AdS, action :/

g <2tr¢w¢w— T(w)T (W) d2w> +/z\{g,} T(w)T(w) d*w

Done!

To this we have to add the (unknown) S° contribution

/): (55 contribution — \/mdz‘N) +/z\{8i} \/WdQW

Unknown but finite!
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The cut-off integral

@ We have to calculate
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The cut-off integral

@ We have to calculate

/Z\{E'} \/ T(wW)T(W) d°w

@ This integral can be done analytically
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The cut-off integral

@ We have to calculate

/Z\{E'} \/ T(wW)T(W) d°w

@ This integral can be done analytically

/ \/ T(w)T (W) d?w = Finite + A%loge; + A%loge 1 + A% logeo,
T\ {ei}

where

A2
Finite =7 (— (A + 2°°> log(2A + Au.) — 2A%log A + .. )
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The cut-off integral

@ We have to calculate

/Z\{E'} \/ T(wW)T(W) d°w

@ This integral can be done analytically

/ \/ T(w)T (W) d?w = Finite + A%loge; + A%loge 1 + A% logeo,
T\ {ei}

where
A 2
Finite =7 (— (A + 2°°> log(2A + Au) — 2A% log A + .. )

@ We have to link the worldsheet cut-off's 1, _1, e, to the target space
cut-off z =&
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Reconstruction formula

The classical solution in AdS; is uniquely specified by a choice of two specific
solutions W4, W of the linear system at 6 =0

oV + J, U =0 OV + JzU =0

normalized by (WaWg) =1
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Reconstruction formula

The classical solution in AdS; is uniquely specified by a choice of two specific
solutions W4, W of the linear system at 6 =0

oV + J,¥=0 OV + SV =0
normalized by (WaWg) =1

Then the coordinates of the punctures are encoded in the products at § =0
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Reconstruction formula

The classical solution in AdS; is uniquely specified by a choice of two specific
solutions W4, W of the linear system at 6 =0

oV + J,¥=0 OV + SV =0
normalized by (WaWg) =1

Then the coordinates of the punctures are encoded in the products at § =0

(kWg)
(kWa)
and the target-space (z = £) and worldsheet cut-offs are linked by

X =

Ay log ey = log (E|(kWa)[?)
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Reconstruction formula

The classical solution in AdS; is uniquely specified by a choice of two specific
solutions W4, W of the linear system at 6 =0

oV + J,¥=0 OV + SV =0
normalized by (WaWg) =1

Then the coordinates of the punctures are encoded in the products at § =0

(kWg)
(kWa)
and the target-space (z = £) and worldsheet cut-offs are linked by

X =

Ay log ey = log (E|(kWa)[?)

These expressions are enough to evaluate
A2loge; + A?loge 1 + A2 loges

Romuald A. Janik (Krakéw) On universal parts of OPE coefficients in N=4 SYM 8th Bologna Workshop



Reconstruction formula

The classical solution in AdS; is uniquely specified by a choice of two specific
solutions W4, W of the linear system at 6 =0

oV + J,¥=0 OV + SV =0
normalized by (WaWg) =1

Then the coordinates of the punctures are encoded in the products at § =0

(kWg)
(kWa)
and the target-space (z = £) and worldsheet cut-offs are linked by

X =

Ay log ey = log (E|(kWa)[?)

These expressions are enough to evaluate
A2loge; + A?loge 1 + A2 loges

in terms of i) the target-space data xi, &
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Reconstruction formula

The classical solution in AdS; is uniquely specified by a choice of two specific
solutions W4, W of the linear system at 6 =0

oV + J,¥=0 OV + SV =0
normalized by (WaWg) =1

Then the coordinates of the punctures are encoded in the products at § =0

(kWg)
(kWa)
and the target-space (z = £) and worldsheet cut-offs are linked by

X =

Ay log ey = log (E|(kWa)[?)

These expressions are enough to evaluate
A2loge; + A?loge 1 + A2 loges

in terms of i) the target-space data xx, £ and ii) overlaps (k/) (6 = 0)
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A?loge; 4+ A?loge 1 + A2 logea, yields
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A?loge; 4+ A?loge 1 + A2 logea, yields

@ The standard spacetime dependence (A; = ﬁA,-)

1

(%)A2+A3—A1 (%)AH-As—Az (%

)A1+A2—A3
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A?loge; 4+ A?loge 1 + A2 logea, yields

@ The standard spacetime dependence (A; = ﬁA,-)

1
303\ B2t B3—Ay (50 \B1+A3—Dy (5 \Ar1+02— A3
(’#) (&) (%)

@ An additional contribution to the OPE coefficients (all products at § = 0)

—(Az +A3 —Al) |Og <32> — (Al +A3 —Ag) |Og <13> - (Al +A2 —A3) |Og <12>

with the products given by the solution of the functional equations
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A?loge; 4+ A?loge 1 + A2 logea, yields

@ The standard spacetime dependence (A; = ﬁA,-)

1
303\ B2t B3—Ay (50 \B1+A3—Dy (5 \Ar1+02— A3
(’#) (&) (%)

@ An additional contribution to the OPE coefficients (all products at § = 0)

—(Ag +A3 —Al) |Og <32> — (Al +A3 —Ag) |Og <13> - (Al +A2 —A3) |Og <12>

with the products given by the solution of the functional equations

@ The zero-mode part of (kl) exactly cancels the remaining Finite part of
fz\{gi} T(W)?(W)
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A?loge; 4+ A?loge 1 + A2 logea, yields

@ The standard spacetime dependence (A; = ﬁA,-)

1
(X23)A2+A3—A1 (X13)A1+A3 A, (xlz)A1+A2—A3
& & &

@ An additional contribution to the OPE coefficients (all products at § = 0)

—(Az +A3 —Al) |Og <32> — (Al +A3 —Ag) |Og <13> - (Al +A2 —A3) |Og <12>

with the products given by the solution of the functional equations
@ The zero-mode part of (kl) exactly cancels the remaining Finite part of

fz\{gi} T(W)?(W)
@ We obtain, however, a nonzero contribution from the nontrivial part of (k/)
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Final answer
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Final answer

The final answer for the OPE coefficient is a product of the currently unknown
regularized S contribution

exp@ Jz (55 contribution—+/ T (w) T(w) d2W>

Unknown but finite!
and the explicit AdS answer

exp f% VY [(2A - AOO),E’,H + 2Aool5100}

Our main result
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Final answer

The final answer for the OPE coefficient is a product of the currently unknown
regularized S contribution

oy (55 contribution—+/ T (w) T(w) dzw)

Unknown but finite!

exp

and the explicit AdS answer

exp {\? Y [(2A — AOO):ELH + 2Aool~3100} }

Our main result

where - ~ ~ "

Pioe = h(A)+h2A+ AL) — h(2A) — h(2AL)

with

00 i 2
h(a) = l/ sinh” 0 log (1 — ef"’”msw) do

T J_o cosh@
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Final answer

exp —% VX [(2A — AP+ 2Aool5100}
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Final answer

exp —% VX [(2A — AP+ 2Aool5100}

Comments:

@ In the extremal limit Ao = 2A we obtain 1 (the 1/6 is crucial here)
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Final answer

exp {_\gx — \/X |:(2A — AOO)IB711 + 2Aoo,5100:| }

Comments:
@ In the extremal limit Ao = 2A we obtain 1 (the 1/6 is crucial here)

e For large A, h(a) o< e=™ and the AdS contribution approaches a constant

JEVAN
e 6
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Final answer

exp {_\gx — \/X |:(2A — AOO)IB711 + 2Aoo,5100:| }

Comments:
@ In the extremal limit Ao = 2A we obtain 1 (the 1/6 is crucial here)

e For large A, h(a) o< e=™ and the AdS contribution approaches a constant

JEVAN
e 6

o For small A, h(a) ~ —& — Lloga.
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Final answer

exp {—\F VY [(2A — AOO),‘B,H + 2Aool~3100} }

Comments:
@ In the extremal limit Ao = 2A we obtain 1 (the 1/6 is crucial here)

e For large A, h(a) o< e=™ and the AdS contribution approaches a constant

JEVAN
e 6

e For small A, h(a) ~ —& — Lloga. Then we get (A = VAA)

(20 — AL )PA~Bx (2N + AL, )2AHB= AZB 2
(20)B (24 )P
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Final answer

exp {—\F VY [(2A — AOO),‘B,H + 2Aool~3100} }

Comments:

@ In the extremal limit Ao = 2A we obtain 1 (the 1/6 is crucial here)
e For large A, h(a) o< e=™ and the AdS contribution approaches a constant

JEVAN
e 6

e For small A, h(a) ~ —& — Lloga. Then we get (A = VAA)

(20 — AL )PA~Bx (2N + AL, )2AHB= AZB 2
(20)B (24 )P

this limit (~ Cpmm) coincides with the expression in [Klose, McLoughlin]
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Final answer

exp {—\F VY [(2A — AOO),‘B,H + 2Aool~3100} }

Comments:
@ In the extremal limit Ao = 2A we obtain 1 (the 1/6 is crucial here)

e For large A, h(a) o< e=™ and the AdS contribution approaches a constant

JEVAN
e 6

e For small A, h(a) ~ —& — Lloga. Then we get (A = VAA)

(20 — AL )PA~Bx (2N + AL, )2AHB= AZB 2
(20)B (24 )P

this limit (~ Cpmm) coincides with the expression in [Klose, McLoughlin]

Caution: The regularized S° contributions have to be added to these expressions
to get the full OPE coefficients
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The large A limit and the Painleve transcendent
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The large A limit and the Painleve transcendent

e It is possible to understand the universal exp(—+v/\/6) large A limit directly
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The large A limit and the Painleve transcendent

e It is possible to understand the universal exp(—+v/\/6) large A limit directly
@ The Pohlmeyer equation reads

007 = V T T sinh#
with VTT A2 |w? + 2% ...
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The large A limit and the Painleve transcendent

e It is possible to understand the universal exp(—+v/\/6) large A limit directly

@ The Pohlmeyer equation reads
007 = \/ﬁsinh o

with VTT A?>0|W2 + a2| N
@ The solution vanishes at the punctures,
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The large A limit and the Painleve transcendent

e It is possible to understand the universal exp(—+v/\/6) large A limit directly

@ The Pohlmeyer equation reads
007 = \/ﬁsinh o

with VTT oc A2 |w? + 22| ...
@ The solution vanishes at the punctures, but has a logarithmic singularity at
w = tia
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The large A limit and the Painleve transcendent

e It is possible to understand the universal exp(—+v/\/6) large A limit directly
@ The Pohlmeyer equation reads

007 = V T T sinh#
with VTT oc A2 |w? + 22| ...
@ The solution vanishes at the punctures, but has a logarithmic singularity at
w = tia
@ For large A, the solution is almost everywhere zero with logarithmic spikes
around w = +ia
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The large A limit and the Painleve transcendent

e It is possible to understand the universal exp(—+v/\/6) large A limit directly
@ The Pohlmeyer equation reads
007 = V T T sinh#
with VTT oc A2 |w? + 22| ...
@ The solution vanishes at the punctures, but has a logarithmic singularity at
w = *+ia
@ For large A, the solution is almost everywhere zero with logarithmic spikes

around w = +ia

@ The Pohlmeyer equation reduces there to radially symmetric Euclidean
sinh-Gordon equation for the Painleve Il transcendent Zamolodchikov '94

1 1
7 il A
U +RU 2S|nh2U

with U ~ :i:% log R
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The large A limit and the Painleve transcendent
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The large A limit and the Painleve transcendent

@ The Pohlmeyer reduced contribution can be expressed in terms of the F.(R)
function of [Zamolodchikov '94]

3r [ d R
= (CIRRFC(R)+2> dR
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The large A limit and the Painleve transcendent

@ The Pohlmeyer reduced contribution can be expressed in terms of the F.(R)
function of [Zamolodchikov '94]

3r [ d R
= (CIRRFC(R)+2> dR

@ Using the asymptotics Zamolodchikov '94
Fo(R) ~—R/4 for R — o0 RF.(R)—1/18 for R —0

the integral may be evaluated to
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The large A limit and the Painleve transcendent

@ The Pohlmeyer reduced contribution can be expressed in terms of the F.(R)
function of [Zamolodchikov '94]

3r [ /[ d R
- —RF.(R)+ = | dR
2 Jo (dR o(R)+ 2)

@ Using the asymptotics Zamolodchikov '94

Fo(R) ~—R/4 for R — o0 RF.(R)—1/18 for R —0

the integral may be evaluated to
K
12

@ Summing two such contributions reproduces our result
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Summary & outlook

@ We have considered operators dual to classical strings on S°
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Summary & outlook

@ We have considered operators dual to classical strings on S°

@ We have evaluated the (universal) AdS part of the OPE coefficients which
depends only on the dimensions of the operators

OPE _ ~OPE OPE
C —_— CAdS * CS5
—— ~——

universal operator—dependent
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Summary & outlook

@ We have considered operators dual to classical strings on S°

@ We have evaluated the (universal) AdS part of the OPE coefficients which
depends only on the dimensions of the operators

OPE _ ~OPE OPE
C —_— CAdS * CS5
—— ~——

universal operator—dependent

@ It would be interesting to compare with the Cyy; computations with
Alight — OQ.
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Summary & outlook

@ We have considered operators dual to classical strings on S°

@ We have evaluated the (universal) AdS part of the OPE coefficients which
depends only on the dimensions of the operators

OPE _ ~OPE OPE
C —_— CAdS * CS5
—— ~——

universal operator—dependent

@ It would be interesting to compare with the Cyy; computations with
Ajight — 00. One should determine backreaction and vertex operator
contributions in the Cyp; calculations...
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Summary & outlook

@ We have considered operators dual to classical strings on S°

@ We have evaluated the (universal) AdS part of the OPE coefficients which
depends only on the dimensions of the operators

OPE _ ~OPE OPE
C —_— CAdS * CS5
—— ~——

universal operator—dependent

@ It would be interesting to compare with the Cyy; computations with
Ajight — 00. One should determine backreaction and vertex operator
contributions in the Cyp; calculations...

@ Main open question: the S> contribution
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