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= ‘Symmetric space sine-Gordon (SSSG) theories‘

Tseytlin’03
Mikhailov’05

@ Relativistic integrable theories in 14+1 dimensions that are classically
equivalent, via the Pohlmeyer reduction, to the non-relativistic
(gauged fixed) world-sheet theories of strings on symmetric space
spacetimes like Ry x S”, Ry x CP", AdS,, x Si, AdS,, ...

Hofman-Maldacena’06
Chen-N.Dorey-Okamura’06

@ Admit soliton solutions that, for R; x S” or R; x CP", are the images
of the string giant magnons
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@ To describe the world-sheet theory of superstrings with all the
fermionic degrees of freedom one has to generalize the SSSG theories
to the case where the symmetric space is replaced by a
semi-symmetric space F/G, with F a supergroup
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Zarembo’ 10
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15" | Semisymmetric space sine-Gordon (SSSSG) theories‘

Metsaev-Tseytlin’98
o AdSs x S° — PSU(272\4)/50(47 1) x SO(5)

Arutyunov-Frolov’08
Stefanski’08

o AdS;x TP —  O05p(614) /503 1) x (3)
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Grigoriev-Tseytlin’08
Mikhailov-SchaferNakemi’08

15 The relativistic SSSSG theory for

PSU(2, 2|4)

716 = 52.2) < p(8)

is classically equivalent, via a fermionic generalization of Pohlmeyer
reduction, to the non-relativistic (gauge fixed) Green-Schwarz
superstring world-sheet theory on AdSs x S° [— A. Tseytlin's talk]

@ In general, the equivalence between the (S)SSSG theories and
(super)string world-sheet theories is expected to be purely classical

Mikhailov’05
- . . . Schmidtt’11
& They have different Hamiltonian structures

Grigoriev-Tseytlin’08
% ...but the equivalence has been conjectured to remain in the
(conformally invariant) quantum theory

& Poisson brackets are coordinated — interpolating family of PBs
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15" The equivalence has already passed several tests:

Roiban-Tseytlin’09

o The AdSs x S° SSSSG theory is UV-finite

Hoare-Iwashita-Tseytlin’09
Iwashita’10

e Semiclassical partition function matches with string theory at one loop
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The SSSG and SSSSG theories

15" The equivalence has already passed several tests:

. Roiban-Tseytlin’09
o The AdSs x S° SSSSG theory is UV-finite

Hoare-Iwashita-Tseytlin’09
Iwashita’10

e Semiclassical partition function matches with string theory at one loop

Outstanding problem: Find the exact relativistic S-matrix of the
1 | AdSs x S° SSSSG theory and clarify the relationship with the
non-relativistic superstring S-matrix — interesting by itself!

e Our approach:

e Focus not so much on the Lagrangian and perturbation theory but
rather on the solitons: perturbative fields re-appear!

e Quantize the moduli space dynamics of the solitons yielding the
semi-classical spectrum

o Conjecture the S-matrix by imposing all the axioms of S-matrix theory
and solving the bootstrap (account for all poles on the physical strip)



The AdSs X S SSSSG theory

SSSSG Lagrangian

Grigoriev-Tseytlin’08
Mikhailov-SchaferNakemi’08

£ = Lywzw[G/H] — £STr (M)
g STr (V4[N D_tpi] = Y[, Dytp-] — 247 )

e psu(2,2/4) = fo @\f}/@\fﬁ/@\fﬁ/
even odd even odd

e 7€ G = el and AL — bosonic fields
Y4 € f1, Y— € f3 — fermionic fields
@ The potential is fixed by A = uA € f» (constant)

15 Gauge symmetry group |H = SU(2)** c G| [H,A]=0
1" The coupling constant is the level of the WZW term = k




The AdSs X S SSSSG theory
Equations of motion

e Zero-curvature conditions | [L£,(2), £,(z)] =0

Li(2) =0y +77 04y + 7 Ay + 29y — 22N,
L (2)=0_+A_ +z 1y v—2z2yNy

‘z = spectral parameter‘ = ‘Classical integrability‘
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The AdSs X S SSSSG theory
Equations of motion

e Zero-curvature conditions | [L£,(2), £,(z)] =0

Li(2) =0y +7 10y +7 Ay + 2y — 2N,
L (2)=0_+A_ +z 1y v—2z2yNy

z = spectral parameter | = | Classical integrability
P P

1= Relativistic equations! Lorentz boost x® — Ax® ~

1 Integrability is controlled by the twisted affine loop superalgebra

L(psu(2,2|4),0 @@24”’ ®f = @fk, [, f1] C it

n€Z j=0 kEZ
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The AdSs X S SSSSG theory

Hidden symmetries

e Infinite (classical) symmetry algebra

[ = Ker(adA) N L(psu(2,2]4),0 @ fr

keZ Hollowood-JLM’11
Hoare-Tseytlin’11

15" The elements of grade 1 (or Lorentz spin £1/2) generate SUSY
transformations whose closure is the (exotic) N' = (8|8) superalgebra

(R@R) =5 o0DS5_1DBsoDs5+1 DS540

s = (psu(2]2) @ psu(2(2)) x

— S§4o: central elements corresponding to the components of p,
— 611: generators of SUSY transformations

generators of global gauge transformations

= non-abelian R-symmetry group SU(2)**

= 50!



The AdSs X S SSSSG theory

Hidden symmetries

e Infinite (classical) symmetry algebra

f- = Ker(adA) N £(psu(2,2/4),0) = Pfr
keZ Hollowood-JLM’11
Hoare-Tseytlin’11

15" The elements of grade 1 (or Lorentz spin £1/2) generate SUSY
transformations whose closure is the (exotic) N' = (8|8) superalgebra

(R@R) =5 2S5 1DsoDS5+1DS42

s = (psu(2]2) @ psu(2(2)) x

— S§4o: central elements corresponding to the components of p,

— 611: generators of SUSY transformations
generators of global gauge transformations
= non-abelian R-symmetry group SU(2)*

K5 5 is a finite subalgebra of | £(p(su(2|2) ® su(2[2)),0) C | and the

derivation is the generator of Lorentz boosts

= 50!
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The AdSs X S SSSSG theory

G

oykhman-Ivanov’11
Hollowood-JLM’11

1 The SUSY transformations act in a mildly non-local way on the

Lagrangian fields

= Conjecture: the symmetry algebra becomes g-deformed in the

quantum SSSSG theory

Uq(psu(22)? x R?)

q=¢e

im/k

2 Different from the symmetry algebra of the superstring S-matrix

psu(2[2)? x R3




The AdSs X S SSSSG theory
Solitons

Hollowood-JLM’11
B Continuous spectrum of relativistic non-abelian @Q-ball kinks with
bosonic and fermionic degrees of freedom

2k
labelled by ¢ € (0,7/2) — |m, = —p singp
T

B _ _SU(2]2) | SU(2[2)
Non-trivial moduli space |9t = U@2|1) U1

@ Grassmann coordinates arise from the non-compact AdSs sector

—— turning off the Grassmann coordinates the solitons live in S°



The AdSs X S SSSSG theory

’Quantization of moduli space dynamics‘

!

B Semiclassical spectrum
Hilbert space of modules for the short (atypical) representations of

Uq(psu(2]2) x R?) | of dimension

Mass spectrum | my = g sin (g—Z) a=1,...,k
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The AdSs X S SSSSG theory

’Quantization of moduli space dynamics‘

!

B Semiclassical spectrum
Hilbert space of modules for the short (atypical) representations of

Uq(psu(2]2) x R?) | of dimension

Mass spectrum | my = g sin (;LZ) a=1,...,k

1" The semiclassical spectrum is discrete
I 3 =1 —— perturbative states
a>1 — bound states

A The semiclassical spectrum consists of a tower of massive states in
short symmetric representations, just like the magnon bound states of
the superstring world sheet theory......
but in the relativistic SSSSG theory the tower is truncated by k, the
level of the WZW term.....



The relativistic S-matrix

The relativistic S-matrix

@ The SSSSG S-matrix with symmetry Uq(psu(2]2)? x R?) will be
constructed as a graded tensor product of elementary blocks with

symmetry ‘ Uq (psu(2]2) x R?) ‘

o The blocks are obtained as a limit of the Ug(psu(2[2) x R3)
fundamental R-matrix of quantum-deformed Hubbard model

—— Beisert-Koroteev’08



The relativistic S-matrix

The relativistic S-matrix

@ The SSSSG S-matrix with symmetry Uq(psu(2]2)? x R?) will be
constructed as a graded tensor product of elementary blocks with

symmetry ‘ Uq (psu(2]2) x R?) ‘

o The blocks are obtained as a limit of the Ug(psu(2[2) x R3)
fundamental R-matrix of quantum-deformed Hubbard model

— Beisert-Koroteev’08
15 psu(2]2) x R? is a “finite” affine algebra
psu(2|2) x R? C L(su(2]2),0)

— our relativistic S-matrix fits into the well known class of
S-matrices associated to trigonometric solutions to the Yang-Baxter
equation with affine quantum group Ugy(g) symmetry

Ahn-Bernard-LeClair’90
Hollowood ’90
deVega-Fateev’91



The relativistic S-matrix

The extended s/(2|2) superalgebra

@ Generators
Even — sl(2)?: R, £
Odd — SUSY: 0Q%,, &% Centres: €, B, R

@ |ps((2]2) x R? | algebra

[R7p, R 4] = ;R — 03R [£9,£75] = 5g£a5 — 65873
P, Q70 = 03075+ 162070 [8%, 074] = 6707 — 16307,
[S)‘{ab, Gc(;] =0;6% — %526(:5 [Eaﬂ, 655] = —(5?6C5 + %5%655

{0%,,6%} = 0p L% + 0§R ), + 6505 €
{9%,Q74} =epa P {6%5,6%} = ¥¢eps R




The relativistic S-matrix

Quantum deformation U, (psl(2]2) x R3)

@ Chevalley generators

[€1,81] = [91]g,  {€2,82} = —[92]q,  [€3,33] = —[93]q

g€ =qYi¢iq”,  ¢VFi=q NFqY

+ deformed Serre relations

2 _1 O X X
o Cartan matrix: A;=[ -1 0 1 [x]q = £=9

q9—q

5 g = eiﬂ/k




The relativistic S-matrix

Defining representation(s)

15 Uy (psl(2]2) x R3®) has a family of 4-dimensional representations

labelled by four parameters a, b, ¢, d constrained by

(ad — gbc)(ad — g 1hc) =1

@ Centres

P=ab, K=cd, ad=[C+1/2],, bc=][C-1/2],

= [C]fy - PK = [1/2]3 = (g-deformed) shortening condition




The relativistic S-matrix

Beisert-Koroteev’08

@ Beisert-Koroteev parameterization of {a, b, ¢, d}

VEo 2c-1 %t
a=.gv, 5 T =)
; —C+1/2 ;
e iv/gyq <t / . l\/gqc+1/2 (Xi _ q72C71X+)
o} xt y
subject to
xT q [ xt gx i
F""T_qx -——+iglg—q7) Xt z
15 | (g, q) = coupling constants (x*,x7) = dynamical variables

(a,v) = normalization factors



The relativistic S-matrix

The magnon and the soliton representations

@ Magnon representation:

xT -
g— 1| (ork—o0) = |—=¢"
=
p = world-sheet momentum g = string tension

[C]2 — Pk = [1/22 — e(p) = /1 + 4g2sin(p/2)



The relativistic S-matrix

The magnon and the soliton representations

@ Magnon representation:

xT -
g— 1| (ork—o0) = |—=¢"
=
p = world-sheet momentum g = string tension

[C]2 — Pk = [1/22 — e(p) = /1 + 4g2sin(p/2)

Hoare-Hollowood-JLM’11

1> Soliton representation:

g—x| = |—=gq, C=0

= [C}2 — PK = [1/2]2 becomes a relativistic mass-shell condition
q q



The relativistic S-matrix

o P= i[1/2]qe_9 = ,usin(iﬂ'/k) p—

q psin(n/k) P+

—PK = [1/2]2 = prp- = p’sin*(mw/2k) = mg




The relativistic S-matrix

o P= i[1/2]qe_9 = ,usin(iﬂ'/k) p—

q psin(n/k) P+

—PK = [1/2]2 = prp- = p’sin*(mw/2k) = mg

* Ug(psi(22) x R3) — Uq(psi(2]2) x R?)



The relativistic S-matrix

o P= i[1/2]qe_9 = ,u,sin(iw/k) p—

K= i[1/2]qe+9 = usin(iTr/k) P+

—PK = [1/2]2 = prp- = p’sin*(mw/2k) = mg

* Ug(psi(22) x R3) — Uq(psi(2]2) x R?)

15 Fundamental particle multiplet V4(0) of mass

my = psin (m/2k) — lightest semiclassical solitons

my ~ p+ O(1/k) — perturbative modes



The relativistic S-matrix

Fundamental (relativistic) S-matrix

Hoare-Tseytlin’11
Hoare-Hollowood-JLM’11

o Si1(f12) : Va(th) @ Vi(02) — Va(62) ® Va(61)

S11(0) = Y(0)Y (im — 0) R(e?)

15 R =g — oo limit of the Uy (psu(2]2) x R3) fundamental R-matrix of
quantum-deformed Hubbard model

15 S;q satifies crossing symmetry, and Y (0) is fixed by the unitarity
condition §11(0)§11(—0) =1®1
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Fundamental (relativistic) S-matrix
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quantum-deformed Hubbard model

15 S;q satifies crossing symmetry, and Y (0) is fixed by the unitarity
condition §11(0)§11(—0) =1®1

* Has Uqg(psl(2]2) x R?) symmetry



The relativistic S-matrix

Fundamental (relativistic) S-matrix

Hoare-Tseytlin’11
Hoare-Hollowood-JLM’11

o Si1(f12) : Va(th) @ Vi(02) — Va(62) ® Va(61)

S11(0) = Y(0)Y (im — 0) R(e?)

15 R =g — oo limit of the Uy (psu(2]2) x R3) fundamental R-matrix of
quantum-deformed Hubbard model

15 S;q satifies crossing symmetry, and Y (0) is fixed by the unitarity
condition §11(0)§11(—0) =1®1
* Has Uqg(psl(2]2) x R?) symmetry

% Satisfies the Yang-Baxter equation



@ R-matrix: basis {|¢?),|*)}, x = €, g = e'™/k
) [6%67) = A|¢‘a¢a> R(x) [p29®) = D[p* )

2
5 1.2\ (A qg°A+B c 1,2 2,1
k() [ote?) = T |¢¢> peat |ote®) + 1+q21ww> 1+q ]ww>,
2 21\ _ 9(A PB+A| 5 qC 1,2 2,1
k() [o%0') = 2 A \¢¢>> e )¢¢>—Hq2)ww>+l+q2]ww>,
- R @D+E | 1 F 1,2 qF 2,1
‘w¢>— 2+]_‘ > 2 +1 ‘ww>+1+2‘¢¢>_1+2‘¢¢>’
5 2,1 - 1,2 °E+D e
(X)‘ww>7 @2 +1 ‘ >+ 2 +1 ‘ > 1+q |¢¢> 1+4q 2‘¢¢>’
R() 070 ™) = G| ¢™) + H|o"v™) . R(x) [p¥¢7) = K [v% %) + L]o7y) |
(- (x+1) b (a=x)0c+1)
- ql/2x ’ - ql/2x
g © (@ =26 42— 1x— < o X (@ —2¢" +2g —1)x—1
- q3/2x ’ - q3/2x ’
i(q = 1)(¢® + D(x — 1) 5
C=F= 73/2:1/2 ’ G=l=x—x7,
(g —1)(x+1)
H=K=—tmam
@ Y function
) _ F() 3 oo dt cosh?(t(1 — 1)) sinh(t(1 — -£))sinh(££)
ywiim =0 = m ' FO = [_2/0 t sinh t cosh? t




Bound states: bootstrap

Bound states: the boostrap programme

% A non-trivial aspect of building a consistent QFT is to explain all the
singularities of the S-matrix on the physical strip 0 < Im 6 < 7 in
terms of bound states and anomalous thresholds
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Bound states: the boostrap programme

% A non-trivial aspect of building a consistent QFT is to explain all the
singularities of the S-matrix on the physical strip 0 < Im 6 < 7 in
terms of bound states and anomalous thresholds

15" Bound states give rise to simple poles, and their positions have to
mesh with the representation theory of the quantum group

If a bound state corresponding to a multiplet V. is produced in the
collision of V, and V}, in the direct channel, then

@ S.5(0) has a simple pole at 6 = iuS,

@ The representation V,(01) ® Vj(62) becomes reducible:
Voo V= V.o VE

@ [ResS,p(ius): VI —0




Bound states: bootstrap

15 Res S,p(ius,) is a weighted sum of “projectors”
Ve = @ VY, VY =irreducible representations of Ug (5[(2)X2)

i c,j cj _ mb c,j

Sab(e) ~ 6 — ,'ucb z :pJ ]P)ab’ ]P)ab - ‘:PCZ. :Pab
p .
J



Bound states: bootstrap

15 Res S,p(ius,) is a weighted sum of “projectors”
_ 2 ) _; : : x2
Ve =@ Ve Ve = irreducible representations of Ug(sl(2)*?)

Sab(0) ijpgg, Py = P2 pS)

% The scattering amplitudes of the bound state ¢ with state d can be
constructed in term of those of d with a and b.

Se(0) = (Z,- V119 @ 1) (1 ® Sqn(0 + iaia))
X (Sda(ﬁ— f,,_’ ) ® ) <1®Z/ \ﬁipab>




Bound states: bootstrap

Representation theory of U,(psl(2]2) x R3)

Zhang-Gould’05
Beisert’07

Beisert-Koroteev’08
15" Long (typical) representations |{m, n}|— dim =16(m+ 1)(n+ 1)

Irreducible for generic values of C, P, K

@ Become reducible but indecomposable for specific values of
[C]f7 — PK (shortening or BPS conditions)

V{m,n} = Vsub—rep @ VL, Viactor = V{m,n}/vsub—rep

Visub-reps Viactor = short (atypical) representations



Bound states: bootstrap

15" Short representation — dim =4(m+1)(n+ 1) +4mn

Exists for [C](z7 —PK=[(m+n+ 1)/2]‘27 — Shortening condition

% Fundamental representation = (0, 0)

Semiclassical solitons live in (m,0), m >0



Bound states: bootstrap

15 Short representation | (m, n) | — dim = 4(m+1)(n+ 1) +4mn

Exists for [C](z7 —PK=[(m+n+ 1)/2]‘27 — Shortening condition

% Fundamental representation = (0, 0)

Semiclassical solitons live in (m,0), m >0

@ Tensor product (m,0) ® (n,0) = ZT:()(m’"){m +n—2k,0}
o Multiplet splittings

{m,0} — (m+1,0)® (m,1) for [C]3 — PK = [(m+2)/2]f7

— (m—=1,0)® (m,0)3 for [C]fl — PK = [m/z]f7



Bound states: bootstrap
Bootstrap

15 The shortening conditions indicate the location of the poles
corresponding to the bound states
Vio,0}

o S11(612) : Vig,oy(61) ® Vio,0y(02) — Vjo)(62) @ Vjo0)(61)
G=G=0, P =P+ P>, K=K+ K

@ Shortening condition for {0,0} — (1,0) & (0, 1)

2 i
—PK = [l]q = 912 = :E?

15" Bound state at § = iw/k in the (factor) short representation (1,0)



Bound states: bootstrap
Bootstrap

15 The shortening conditions indicate the location of the poles
corresponding to the bound states
Vio,0}

o S511(612) : Vio.0y(61) ® Vio.0)(62) — Vio.0)(62) © Vig0(61)
G=G=0, P =P+ P>, K=K+ K
@ Shortening condition for {0,0} — (1,0) & (0, 1)

2 i
—PK = [l]q = 912 = ﬂ:?

15" Bound state at § = iw/k in the (factor) short representation (1,0)
% Consistent with the quantum group representation theory

Res gn(i’/‘[’/k) : V<071> —0




Bound states: bootstrap

_ (+) (+) (=) (=)
°® Viooy = V200 ® Vi) @ Vioo) ® Vioo) ® Vir1) @ Vo2

(1,1) (0, (1,1)
o) 0.)
T gimy o 9F1 +) L, P4 — g+ 1
Res S11(F) o WP@,O) +Pay 2¢3/2(q + 1) (0,0)



Bound states: bootstrap

_ ) & v oy g o)
Yooy = V2.0 ® V(11) @ Vio0) @ V(00 @ Vi) @ Vo)
(1,0) (0.1)
T (imy o 91 ) q4—q3+4q2—q+1 (+)
Res S11(F) o 72611/2 P20 + P(1 T 26377(q +1) P(o,O)

* 512(9): <1®§11(9+%)> (gll(e_ %)@)1) ‘

V00,00®V(1,0)




Bound states: bootstrap

_ ) & v oy g o)
Yooy = V2.0 ® V(11) @ Vio0) @ V(00 @ Vi) @ Vo)
(1,0) (0.1)
T (imy o 91 ) q4—q3+4q2—q+1 (+)
Res S11(F) o 72(71/2 P20 + P(1 T 26377(q +1) P(o,O)

* 512(9): <1®§11(9+%)> <§11(0— %)@)1) ‘

V00,00®V(1,0)

= 312(9) has four simple poles that can be explained in terms of the
fusions V(g 0y ® V(1,0 = Vi2,0) and V(g 0y ® Vi1 0y — Vio,0) in the
direct- and cross-channels
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1 Quantum spectrum of particles associated to the representations
‘ Va(0) = (a—1,0) ‘ with mass |m, = usin(wa/2k)‘

—— The semiclassical spectrum is exact!

Bound states of a and b correspond to simple poles at

0 =ir(a+ b)/2k and im— in|a— b|/2k
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15 Quantum spectrum of particles associated to the representations

‘ Va(0) = (a—1,0) ‘ with mass |m, = usin(wa/2k)‘

—— The semiclassical spectrum is exact!
Bound states of a and b correspond to simple poles at

0 =ir(a+ b)/2k and im— in|a— b|/2k

% This meshes with the quantum group representation theory

Va(61) ® Vp(02) ={a+b—-2,0} {a+b—-4,0}®---®{|a— b|,0}

— At ’012 =in(a+ b)/Zk‘ the representation {a+ b — 2,0} becomes

reducible with a factor representation V,,,, and gab(ﬁlz) is only
non-vanishing on V,

— At ’012 =irm —ir|la— b|/2k‘ the representation {|a — b|,0} becomes

reducible with a factor representation Vj,_, and §ab(912) is only
non-vanishing on V/|,_y
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B Complete the closure of the bootstrap

o Interpretation of all the singularities on the physical strip: bound
states, anomalous thresholds, etc.
% Truncation of the spectrum: m, = psin(wa/2k), a=1,...,k

" Requires a better understanding of the quantum group representations
for g = "™/* a root of unity

B Connection with semiclassical calculations

[— Hoare-Iwashita-Roiban-Tseytlin’09-11]
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Open questions

How can a relativistic S-matrix be equivalent to a

non-relativistic one?

B Non-relativistic interpolating S-matrix

—1 C . .
S[g, ) ——— (non-relativistic) string/magnon S-matrix

—E7, (relativistic) SSSSG S-matrix

= Quantum version of the interpolating classical Poisson brackets

% Requires the construction of the interpolating dressing function
[— Hoare-Hollowood-JLM in progress|



	The SSSG and SSSSG theories
	The AdS5S5 SSSSG theory
	The relativistic S-matrix
	Bound states: bootstrap
	Open questions

