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Logarithmic Minimal Models LM(p, p′)

Face operators defined in planar Temperley-Lieb algebra (Jones 1999)

X(u) = u =
sin(λ− u)

sinλ
+

sinu

sinλ
; Xj(u) =

sin(λ− u)

sinλ
I +

sinu

sinλ
ej

1 ≤ p < p′ coprime integers, λ =
(p′ − p)π

p′
= crossing parameter

u = spectral parameter, β = 2cosλ = fugacity of loops

Planar Algebra

(Temperley-Lieb Algebra)

YBE

Non-Local Statistical Mechanics

(Yang-Baxter Integrable Link Models)

continuum
limit

lattice
realization

Logarithmic CFTs

(Logarithmic Minimal Models)
non-local degrees of freedom
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Yang-Baxter Equations and Boundary Conditions

Yang-Baxter equations

u

v
u− v =

v

u
u− v

u−v

λ−u−v

u

v u−v

λ−u−v

v

u

=

• (r, s)-solution (r, s ∈ N, ρ is related to r, and ξk is linear in λ)

u =

=(r,s) (r,1) ⊗

�

�

� �

� �

u−ξρ−1 u−ξρ−2 u−ξ1

−u−ξρ−2−u−ξρ−3 −u−ξ0

(1,s) (1,1)⊗

︸ ︷︷ ︸

ρ− 1 columns
︸ ︷︷ ︸

s− 1 columns

• Left boundary conditions are constructed similarly.
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Double-Row Transfer Matrix and Link States

• For a strip with N columns, the double-row transfer “matrix” is the N-tangle

D(u) =

u u u

λ−u λ−u λ−u

� � �

� � �

u

• Matrix realizations and their spectra are obtained by acting on vector spaces.

Link states

• An N-tangle acts on a vector space of planar link diagrams. Basis for N = 6:

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Transfer matrix

instate:

outstate: β2
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Conformal Field Theory and Kac Representations

• With only one non-trivial (r, s)-type boundary condition, the double-row transfer matrix is

found to be diagonalizable.

Continuum scaling limit

D(u) ∼ e−2uH, −H → L0 −
c

24
, Zr,s(q) = TrD(u)M/2 → q−c/24Tr qL0 = χr,s(q)

where q is the modular nome, r, s ∈ N, while

c = 1−
6(p− p′)2

pp′
, χr,s(q) = q−c/24

q∆r,s(1− qrs)
∏∞
n=1(1− qn)

, ∆r,s =
(p′r − ps)2 − (p− p′)2

4pp′

• Associated to the boundary condition (r, s) is the so-called Kac representation (r, s).

• As a representation of the Virasoro algebra, a Kac representation can be either

(i) irreducible, (ii) reducible yet indecomposable, or (iii) fully reducible.

• There are infinitely many distinct Kac representations, associated with an infinitely

extended Kac table.

• The identity representation is (1,1). It is







irreducible, p = 1

reducible yet indecomposable, p ≥ 2

0-5



Lattice Implementation of Fusion

• Fusion is implemented on the lattice by taking non-trivial boundary conditions on the left

and right (r′, s′)⊗ (r, s):

D(u) =

u u u

λ−u λ−u λ−u

� � �

� � �

λ−u u

• In general, these fusion transfer matrices are non-diagonalizable as they can exhibit

non-trivial Jordan blocks.

• In the continuum scaling limit, this non-diagonalizability gives rise to reducible

representations R of rank greater than 1 ⇒ Logarithmic CFT.

• There are infinitely many of these higher-rank representations; all of rank 2 or 3.

• The fusion rules obtained empirically from the lattice are commutative and associative.

For LM(1,2), they agree with Gaberdiel & Kausch (1996).
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Classification of Kac Representations in LM(1, p′)

• From the lattice

(r, s) = (r,1)⊗ (1, s)

Conjecture: Combining the lattice approach with the Nahm-Gaberdiel-Kausch algorithm

determines the module structure of (r, s) upto [Mρ,σ is irreducible]

(1, p′+1) : M1,p′+1 →M1,3p′−1 vs M1,p′+1 ←M1,3p′−1

Assumption: The Kac representation (1, p′+1) is a highest-weight representation (opt. I).

Conjectured classification: Kac representations are finitely generated Feigin-Fuchs modules

(r, s) =







Q→r,s : Mk−r+1,p−s0
→ Mk−r+2,s0

← Mk−r+3,p−s0
→ . . .← Mk+r−1,p−s0

→ Mk+r,s0
, 2r − 1 < 2k

Q←r,s : Mr−k,s0
← Mr−k+1,p−s0

→ Mr−k+2,s0
← . . .← Mr+k−1,p−s0

→ Mr+k,s0
, 2r − 1 > 2k

where s = s0 + kp with s0 = 0,1, . . . , p′ − 1 and k ∈ N0, but s 6= 0.

Contragredient Kac representations (r, s)∗

〈

(r, s); r, s ∈ N

〉

≃
〈

(r, s)∗; r, s ∈ N

〉

,
〈

(r, s), (r, s)∗; r, s ∈ N

〉

Characters

χr,s(q) = χ∗r,s(q) = χ[Qr,s](q), Qr,s = Vr,s/Vk+r+1,p−s0
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W-Extended Picture

W-extended vacuum

(1,1)W := lim
n→∞

(2n− 1,1)⊗ (2n− 1,1)⊗ (2n− 1,1) =
∞⊕

n=1

(2n− 1) (2n− 1,1)

Stability properties

(2m− 1, s)⊗ (1,1)W = (2m− 1)

( ∞⊕

n=1

(2n− 1) (2n− 1, s)

)

(2m, s)⊗ (1,1)W = 2m

( ∞⊕

n=1

2n (2n, s)

)

W-extended Kac representations

(r, s)W := 1
r(r, s)⊗ (1,1)W , (r, s)W =







(1, s)W , r odd

1
2(2, s)W , r even

Elevated structure conjecture [n ·m = 1
2(3− (−1)n+m)]

(r, s0 + kp)W : M̂2·r·k,s0 ← M̂r·k,p−s0 → M̂2·r·k,s0 ← . . .← M̂r·k,p−s0 → M̂2·r·k,s0︸ ︷︷ ︸

#=2k+1

WLM(1,2) examples [The W-irreducible M̂r,s is represented by its conformal weight ∆r,s]

(1,3)W :
1
տ

0
ր

1
(2,3)W :

0
ւ

1
ց

0
(1,5)W :

0
ւ

1
ց

0
ւ

1
ց

0
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Polynomial Fusion Ring

Proposition: The contragrediently extended W-Kac fusion algebra is isomorphic to the

polynomial ring generated by X, Y , Z and Z∗ modulo the ideal

I =
(

X2 − 1, Pp(X, Y ), Qp(Y, Z), Qp(Y, Z
∗), Rp(Y, Z, Z

∗)
)

that is,

〈

(r, s)W , (r, s)∗W; r, s ∈ N

〉

≃ C[X, Y, Z, Z∗]/I

where

Pp(X, Y ) =
[

X − Tp(
Y
2 )

]

Up−1(
Y
2 )

Qp(Y, Z) =
[

Z − Up(
Y
2 )

]

Up−1(
Y
2 )

Rp(Y, Z, Z
∗) = ZZ∗ − U2

p (
Y
2 )

Here Tn(x) and Un(x) are Chebyshev polynomials of the first and second kind, respectively.

For r ∈ Z1,2, b ∈ Z0,p−1 and k ∈ N0, the isomorphism reads

(r, b+ kp)W ↔ Xr−1
(

Ukp+b−1(
Y
2 ) +

[

Zk − Uk
p (

Y
2 )

]

Ub−1(
Y
2 )

)

(r, b+ kp)∗W ↔ Xr−1
(

Ukp+b−1(
Y
2 ) +

[

(Z∗)k − Uk
p (

Y
2 )

]

Ub−1(
Y
2 )

)

R̂b
r ↔ (2− δb,0)X

r−1Tb(
Y
2 )Up−1(

Y
2 )
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Summary, Further Results and Outlook

• Infinite series of Yang-Baxter integrable lattice models of non-local statistical mechanics.

• Description in terms of planar Temperley-Lieb algebras.

• Logarithmic CFTs with infinitely many (higher-rank) indecomposable representations.

• W-extended picture with (in)finitely many indecomposable representations.

• Fusion rules and polynomial fusion rings for LM(p, p′) and WLM(p, p′).

• Exact solution for critical dense polymers LM(1,2) on the strip.

• Verlinde-like formulas from spectral decompositions.

• Links to stochastic Loewner evolution.

• Exact solution for critical dense polymers on the cylinder.

• Coset graphs and modular invariant partition functions. [Talk by Paul Pearce]

• Exact solutions for other models, in particular critical percolation described by LM(2,3).

• Open boundary conditions.

• Dilute polymers and generalizations thereof.

• Lattice interpretation of W-symmetry.

• From planar TL algebras to more general diagram algebras such as the BMW algebras.
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