Boundary Conditions and Kac Representations
INn Logarithmic Minimal Models
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Logarithmic Minimal Models LM(p, p)

Face operators defined in planar Temperley-Lieb algebra (Jones 1999)

sin(A—wu) |/ sinu \ sin(A — u) sinu
X = u | = ; X — I :
(w) § sin \ 4 T sinx ) i) sin \ sinx
,_
1 < p < p’ coprime integers, A = (p ,p)w — Crossing parameter
p
u = spectral parameter, B = 2cos\ = fugacity of loops

Planar Algebra
(Temperley-Lieb Algebra)

lYBE

Non-Local Statistical Mechanics
(Yang-Baxter Integrable Link Models)

continuum lattice
limit realization

Logarithmic CFTs
(Logarithmic Minimal Models)
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Yang-Baxter Equations and Boundary Conditions

Yang-Baxter equations

v u
u—v P = = U — v
u (v
® (r,s)-solution (r,s €N, pis related to r, and & is linear in )

R TSR

— _’u_fp—Q _’u_fp—3

U — A\ A\ N

— w1 | wEp2 u—€1

A\ A\ A

p— 1 columns s — 1 columns

® Left boundary conditions are constructed similarly.



Double-Row Transfer Matrix and Link States

® For a strip with N columns, the double-row transfer “matrix’” is the N-tangle

A—U | A—u A—U /
D(u) — N N N U
u u Uu >\

® Matrix realizations and their spectra are obtained by acting on vector spaces.

Link states

® An N-tangle acts on a vector space of planar link diagrams. Basis for N

N A (A //\\

1 2 3 45 6 123456 1 2 3 45 6 1 2 3 45 6

2 A WA
1 2 3 45 6

Transfer matrix
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Conformal Field Theory and Kac Representations

® With only one non-trivial (r,s)-type boundary condition, the double-row transfer matrix is
found to be diagonalizable.

Continuum scaling limit

C
D(u) ~ e 207, = = g == Zr,s(q) = TrD()M/2 = ¢=/2* Trg"0 = x;.5(q)

where ¢q is the modular nome, r,s € N, while

_e/oa 427 (1 — ") A @r—ps)?—(p—p)°
r,s —

PR Xr,s(q) = ¢

[182,(1 —q™)’ App/

® Associated to the boundary condition (r,s) is the so-called Kac representation (r,s).

® As a representation of the Virasoro algebra, a Kac representation can be either
(i) irreducible, (ii) reducible yet indecomposable, or (iii) fully reducible.

® There are infinitely many distinct Kac representations, associated with an infinitely
extended Kac table.

irreducible, p=1

® The identity representation is (1,1). It is _ _
reducible yet indecomposable, p > 2
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Lattice Implementation of Fusion

® Fusion is implemented on the lattice by taking non-trivial boundary conditions on the left
and right (r',s") ® (r, s):

ﬁ I I I I I ;\

\< A—U | A—u A—Uu
D(U) — )\/,IZ\ N N

0
A

® In general, these fusion transfer matrices are non-diagonalizable as they can exhibit
non-trivial Jordan blocks.

® In the continuum scaling limit, this non-diagonalizability gives rise to reducible
representations R of rank greater than 1 = Logarithmic CFT.

® There are infinitely many of these higher-rank representations; all of rank 2 or 3.

® The fusion rules obtained empirically from the lattice are commutative and associative.
For LM(1,2), they agree with Gaberdiel & Kausch (1996).
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Classification of Kac Representations in £LM(1,p")
® From the lattice

(r,s) =(r,1) ® (1, s)

Conjecture: Combining the lattice approach with the Nahm-Gaberdiel-Kausch algorithm
determines the module structure of (r,s) upto

[M,. - is irreducible]

(1, +1):

Ml,p/—|—1 — M1,3p/—1 VS Ml,p/—|—1 < M1,3p/—1

Assumption: The Kac representation (1,p’ 4+ 1) is a highest-weight representation (opt. I).

Conjectured classification: Kac representations are finitely generated Feigin-Fuchs modules

— .

(r.8) { s Mi—r41p—so = Mr_rq2s — Mp—r43p—s, = .- Mipr—1p—s, = Mp4rs,
r,§) =

2r — 1 < 2k

— .
r,s *

Mr—k,so — Mr—k—l—l,p—so — Mr—k:—l—2,so — .. Mr—i—k—l,p—so — Mr—l—k,soa 2r — 1 > 2k

where s = sg + kp with so=0,1,...,p' — 1 and k € Ny, but s # 0.

Contragredient Kac representations (r,s)*

<(r, s); r,s € N> ~ <('r, s)*ir,s € N>, <('r, s),(r,s)*; r,s € N>

Characters

X’r,s(Q) — X;S(Q) — X[QT,S] (Q), Q"",S — VT,S/Vk+T+1,p—SO
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W-Extended Picture

W-extended vacuum

©.@)

(1, := lim -1, 1)02n-1,1)@(2n-1,1)= @ (2n—-1)(2n—1,1)

n—oo

n=1

Stability properties

2m—1,5)®(1,1), = (2m—1) ( P (2n-1)(2n— 1,3))
n=1

(2m,s) ® (1,1),, = 2m ( @1 2n (2n,s)>

W-extended Kac representations

(1,8), r odd

r, S :=lfr,s 1,1), r,S —
(r, s)y = 7(r,s) ® (1, 1)y (r, $)w {é(Q»S)vw even

Elevated structure conjecture [n-m = 5(3 — (—1)"1T"M)]

(rys0 + kp)yy : MQ-r-k,so = My p—sg = Moy gsg - Mpgpsqg = Moy
#=2k+1

WLM(1,2) examples [The W-irreducible M, s is represented by its conformal weight Ay s]

1 1 1 1

1
(L3)w: NS (2,3)w: N (LB9w: v N N
0 0 0 0 0 0
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Polynomial Fusion Ring

Proposition: The contragrediently extended YW-Kac fusion algebra is isomorphic to the
polynomial ring generated by X, Y, Z and Z* modulo the ideal

T= (X2 -1, Po(X,Y),Qp(Y; 2), Qp(Y, Z°), Bp(Y, Z, 2%))

that is,
<(r, )W (r,S)T/\;; r,s € N> ~ C[X,Y,Z,Z*|/T
where
Po(X,Y) = |X —Tp(5)|Up-1(%)
: Rp(Y,Z,2*) = ZZ* — UZ (%)
(Y, 2) = |Z2-Up(5)|Up-1(%)

Here T, (x) and Uy(x) are Chebyshev polynomials of the first and second kind, respectively.

For r € Z]_’Q, b e Zo,p—1 and k£ € Np, the isomorphism reads

(r,b+ kp),, + X1 (Ukp—l—b—l(%) + :Zk — Uﬁ(%)]Ub—l(%))

(rb+kp)y o X7 (U 1(5) + [(2F = USD]U, 1 ()

7?? N (2—5b70)XT_1Tb(%)Up—1(%)
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Summary, Further Results and

Infinite series of Yang-Baxter integrable lattice models of non-local statistical mechanics.
Description in terms of planar Temperley-Lieb algebras.

Logarithmic CFTs with infinitely many (higher-rank) indecomposable representations.
W-extended picture with (in)finitely many indecomposable representations.

Fusion rules and polynomial fusion rings for LM(p,p") and WLM (p,p’).

Exact solution for critical dense polymers LM(1,2) on the strip.
Verlinde-like formulas from spectral decompositions.

Links to stochastic Loewner evolution.

Exact solution for critical dense polymers on the cylinder.

Coset graphs and modular invariant partition functions. [Talk by Paul Pearce]

Exact solutions for other models, in particular critical percolation described by LM(2,3).
Open boundary conditions.

Dilute polymers and generalizations thereof.

Lattice interpretation of YWW-symmetry.

From planar TL algebras to more general diagram algebras such as the BMW algebras.
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