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Calogero-Sutherland model and 2d CFT’s

• Laughlin wavefunction, c=1 CFT and CS model [Haldane 90’s, ... Haldane, Bernevig 07]

• Matrix models and collective field representation for CS model [Jevicki, 92,...]

• Spinons in su(2)k=1 WZW model [Bernard, Pasquier, DS, 94]

• CS and singular vectors of Virasoro algebra [Awata, Matsuo, Odake, Shiraisi, 95; 

Arnaudon, Avan, Frappat, Ragoucy, Shiraishi, 06]

• Quantum hydrodynamics, CS and Benjamin-Ono [Abanov, Wiegmann, 05; this 

morning’s talk]

• SLE, CFT and CS model [Cardy, 04; Cardy, Doyon, 07; Dubedat, 06]

• FQHE with pairing properties, CFT’s and CS model [Nayak, Wilczek, 96; Haldane, 

Bernevig 07; Estienne, Bernevig, Santachiara, 10]

• AGT conjecture and CS model [Alba, Fateev, Litvinov, Tarnopolsky 10; V. Fateev’s talk; 

Belavin, Belavin 11, ...]

...
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Conformal blocks of some 2d CFT’s

FQHE states with non-
abelian statistics

AGT conjecture
(Nekrasov’s partition function ~

Liouville conformal blocks) 

Integrable structure of the CS model

[Estienne, Bernevig, Santachiara, 10] [Alba, Fateev, Litvinov, Tarnopolsky 10]
V. Fateev’s talk

After expressing the zero mode of the W current in terms of the bosonic fields, one finds
that

I+
3 (g) =

k∑

j=1

I±(cj; g) + 2(1 − g)
∑

j<l

∑

m≥1

m : cj
−mcl

m : +(1 − g)
∑

j

djL0(c
j) + zero modes

〈Φ12(z1) · · ·Φ12(zN)Φ21(w1) · · ·Φ21(wM)〉 = (45)
∑

λ

〈0|Φ12(z1) · · ·Φ12(zN )|λ〉a〈λ|Φ21(w1) · · ·Φ21(wM)|0〉 (46)
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N∑

i=1

z2
i O

g
i 〈Ψ(z1) . . .Ψ(zN)〉 = 0 . (41) Nff_de

∏

i<j

z2
ij 〈Ψ(z1) . . .Ψ(zN)〉 =

∏

i<j

z2
ij Pf

(
1

zij

)
=

∏

i<j

zij J−3
λ0

(z) (42) MR_gs

H =
∑

i"=j "=k

δ(2)(xi − xj)δ
(2)(xj − xk) (43)

〈Φ12(z1) · · ·Φ12(zN)〉a
∏

i<j

z2h
ij

c = 1 − 12α2
0

λ1 ≥ ... ≥ λN ≥ 0

[
H1/g + gHg + C(N, M)

] N∏

i=1

M∏

i=1

(1 + ziwj) = 0

λi − λi+2 ≥ 2

λ

λi

I+
3 (g) = I+

3 (c; g) + I+
3 (c̃; g) + (

√
2gb0 + g − 1)(L0(c) − L0(c̃)) + 2(1 − g)

∑

m>0

mc−mc̃m .

c−n ∼ pn =
∑

i

xn
i

λi

|no, ne; q〉 = |ne, no;−q〉 → |no, ne; 0〉 = |ne, no; 0〉

|no, ne; q〉 = J1/g
no (c) J1/g

ne (c̃) |q〉 + . . .

g → −g (44)

b → ib (45)
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• CS Hamiltonian and the degenerate fields in CFT

• duality of the conformal blocks

• Ising CFT and FQHE states 

•  AFLT Hamiltonians for generic Virasoro models

• WAk-1 models

Summary
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Calogero-Sutherland Hamiltonian

...

Trigonometric CS model: set of N commuting Hamiltonians for N particles on a circle:

(zi − zj)
g
, for every couple of particles (note that for g ≥ 3/2 this condition is a necessary one to ensure

normalizability of the wavefunctions).

The usual wave-functions of this model are obtained by imposing the same boundary conditions for every

couple of particles, and are of the form

Ψ
+
(z) = ∆

g
(z)F+

(z) Ψ
−

(z) = ∆
1−g

(z)F−(z) (2.11)

where F±(z) are analytic functions when zi → zj and ∆
γ
(z) is the Jastrow factor (2.8). It follows from (2.9)

that these functions are eigenvectors of the so-called Laplace-Beltrami operator

H
α

=

N�

i=1

(zi∂i)
2

+
1

α

N�

i<j

zi + zj

zij
(zi∂i − zj∂j), (2.12)

for α = 1/g and α = 1/(1 − g), respectively. The simplest such eigenfunctions are symmetric polynomials,

known as Jack polynomials Jα
λ . They are labelled by partitions, i.e. a decreasing sequence of positive

integers λ = [λ1, λ2 . . . λN ], and have eigenvalue

E
α
λ =

N�

i

λi

�
λi +

1

α
(N + 1− 2i)

�
. (2.13)

For more details on Jack polynomials we refer the reader to [37]. This method allows to construct two

branches of eigenfunctions for the Calogero-Sutherland Hamitlonian (2.3)

Ψ
+
λ (z) = ∆

g
(z)J1/g

λ (z) Ψ
−
λ (z) = ∆

1−g
(z)J1/(1−g)

λ (z) (2.14)

for which all pair of particles have the same boundary conditions as they approach each other. Such wave-

functions can be interpreted as describing particles with abelian fractional statistics [10, 11], in the sense of

Haldane [35].

However, as it has been well discussed in [17], one can allow for more general boundary conditions, thus

enlarging the Hilbert space under consideration. New eigenstates of (2.1) are shown to be given by certain

conformal block of CFTs. As we will discuss later, these new solutions are characterized by non-Abelian

monodromies, and therefore can be thought of as describing non-Abelian anyons. This is precisely the type

of wavefunctions appearing in the context of non-Abelian states [31, 33] in the fractional quantum Hall

effect, as was obtained in [19]. These solutions form non trivial representations of the braid group, and

therefore induce huge degeneracies in the spectrum of the (2.1) operator in these sectors. In this paper

we studied in full details these new solutions and we showed some clear and deep connections between the

Calogero-Sutherland model and the integrable structure of the CFT.

Moreover it is well known [28, 37, 29] that there is a duality relating the Calogero-Sutherland models (2.1)

with parameter g and 1/g. In particular this duality relates the corresponding Jack polynomials through

the decomposition of
�

i,j(1 + ziwj) separating the variables zi and wj :

�

i,j

(1 + ziwj) =

�

λ

J1/g
λ (z)Jg

λ�(w), (2.15)

where λ
�
is the transpose of λ. We studied how this duality manifests itself in this larger class of non-Abelian

Calogero-Sutherland eigenfunctions described by certain CFT correlators, and we developed a method to

tackle the problem of separating variables for these functions.

Before studying these non-Abelian eigenfunctions, we need to introduce some basic concepts of CFT

which are behind this connection.

3 CFT: basic notions

We briefly review here the basic notions of CFTs. For a more in-depth introduction to CFT we refer the

curious reader to [32].

The CFT is a two dimensional quantum filed theory which enjoys conformal symmetry. The CFT

approach aims to compute the correlator �Φ(z1, z1), . . .Φ(zN , zN )� of local fields Φ(z, z) by exploiting the

infinite number of constraints which the conformal symmetry in two dimension imposes.

4

Two different boundary conditions for the wave functions:

The Hamiltonian (2.1) describes a system of N particles at positions xi ∈ [0, L], i = 1, . . . , N on a circle
of perimeter L which interact with a long-range potential with coupling g(g − 1). It proves convenient to
introduce the variables

zj = e
2iπxj/L

, (2.2)

in which the Hamiltonian (2.1) takes the form (up to a multiplicative factor)

H
g =

N�

i=1

(zi∂i)2 − g(g − 1)
�

i �=j

zizj

z
2
ij

, (2.3)

where ∂i = ∂/∂zi and zij = zi − zj . The total momentum operator reads as

P =
N�

i=1

zi∂i. (2.4)

The Calogero-Sutherland model is completely integrable [34]. The total momentum P and the Hamiltonian
H

g belong to a set of N functionally independent commuting operators H
g
n, whose first members are

H
g
1 = P =

N�

i=1

zi∂i (2.5)

H
g
2 = H

g =
N�

i=1

(zi∂i)2 − g(g − 1)
�

i �=j

zizj

z
2
ij

(2.6)

H
g
3 =

N�

i=1

(zi∂i)3 +
3
2
g(1− g)

�

i �=j

zizj

z
2
ij

(zi∂i − zj∂j). (2.7)

These integral of motions, and the underlying integrability structure, can be derived using the so called
Dunkl operator [6]. In order to compare the Hamiltonian (2.3) with expressions coming from CFT, it is
particularly useful to conjugate with a generic Jastrow factor :

H
g → H

g,γ = ∆−γ
H

g∆γ ∆γ(z) =
�

i<j

(zi − zj)γ
. (2.8)

Naturally, if a function Ψ(z) is eigenvector of H
g, the function ∆−γ(z)Ψ(z) is an eigenvector of H

g,γ with
the same eigenvalue. Under such a transformation the momentum P is simply shifted, and the Hamiltonian
becomes

H
g,γ ≡

N�

i=1

(zi∂i)2 + 2(γ − g)(g + γ − 1)
�

i<j

zizj

z
2
ij

+ γ

�

i<j

zi + zj

zij
(zi∂i − zj∂j) (2.9)

up to a commuting term a(g, γ)+b(g, γ)P, which is irrelevant for our purposes. When studying the connection
between Calogero-Sutherland wavefunctions and CFT correlator we can safely consider the z variables as
general complex variables on the plane. Operators of the form (2.9) will be used later.

2.2 Calogero-Sutherland eigenfunctions : Jack polynomials and beyond

Whenever two coordinates zi and zj approaches each other, an eigenfunction Ψ(z) of the Calogero-Sutherland
Hamiltonian (2.3) has a regular singularity

Ψ(z) ∼ (zi − zj)γ (2.10)

where the singular exponent γ can only assume two possible values, namely γ = g and γ = 1− g. Imposing
the behavior of the wavefunctions when two particles collide is equivalent to choosing a particular boundary
conditions and thus fixing the Hilbert space in which the operator (2.1) acts. For instance in the case of a
repulsive interaction (g > 1) between N identical particles, it is natural to select wavefunctions behaving as

3

or

The Hamiltonian (2.1) describes a system of N particles at positions xi ∈ [0, L], i = 1, . . . , N on a circle
of perimeter L which interact with a long-range potential with coupling g(g − 1). It proves convenient to
introduce the variables

zj = e
2iπxj/L

, (2.2)

in which the Hamiltonian (2.1) takes the form (up to a multiplicative factor)

H
g =

N�

i=1

(zi∂i)2 − g(g − 1)
�

i �=j

zizj

z
2
ij

, (2.3)

where ∂i = ∂/∂zi and zij = zi − zj . The total momentum operator reads as

P =
N�

i=1

zi∂i. (2.4)

The Calogero-Sutherland model is completely integrable [34]. The total momentum P and the Hamiltonian
H

g belong to a set of N functionally independent commuting operators H
g
n, whose first members are

H
g
1 = P =

N�

i=1

zi∂i (2.5)

H
g
2 = H

g =
N�

i=1

(zi∂i)2 − g(g − 1)
�

i �=j

zizj

z
2
ij

(2.6)

H
g
3 =

N�

i=1

(zi∂i)3 +
3
2
g(1− g)

�

i �=j

zizj

z
2
ij

(zi∂i − zj∂j). (2.7)

These integral of motions, and the underlying integrability structure, can be derived using the so called
Dunkl operator [6]. In order to compare the Hamiltonian (2.3) with expressions coming from CFT, it is
particularly useful to conjugate with a generic Jastrow factor :

H
g → H

g,γ = ∆−γ
H

g∆γ ∆γ(z) =
�

i<j

(zi − zj)γ
. (2.8)

Naturally, if a function Ψ(z) is eigenvector of H
g, the function ∆−γ(z)Ψ(z) is an eigenvector of H

g,γ with
the same eigenvalue. Under such a transformation the momentum P is simply shifted, and the Hamiltonian
becomes

H
g,γ ≡

N�

i=1

(zi∂i)2 + 2(γ − g)(g + γ − 1)
�

i<j

zizj

z
2
ij

+ γ

�

i<j

zi + zj

zij
(zi∂i − zj∂j) (2.9)

up to a commuting term a(g, γ)+b(g, γ)P, which is irrelevant for our purposes. When studying the connection
between Calogero-Sutherland wavefunctions and CFT correlator we can safely consider the z variables as
general complex variables on the plane. Operators of the form (2.9) will be used later.

2.2 Calogero-Sutherland eigenfunctions : Jack polynomials and beyond

Whenever two coordinates zi and zj approaches each other, an eigenfunction Ψ(z) of the Calogero-Sutherland
Hamiltonian (2.3) has a regular singularity

Ψ(z) ∼ (zi − zj)γ (2.10)

where the singular exponent γ can only assume two possible values, namely γ = g and γ = 1− g. Imposing
the behavior of the wavefunctions when two particles collide is equivalent to choosing a particular boundary
conditions and thus fixing the Hilbert space in which the operator (2.1) acts. For instance in the case of a
repulsive interaction (g > 1) between N identical particles, it is natural to select wavefunctions behaving as

3

Polynomial eigenfunctions (Jack symmetric polynomials)                  abelian statistics

(zi − zj)
g
, for every couple of particles (note that for g ≥ 3/2 this condition is a necessary one to ensure

normalizability of the wavefunctions).

The usual wave-functions of this model are obtained by imposing the same boundary conditions for every

couple of particles, and are of the form

Ψ
+
(z) = ∆

g
(z)F+

(z) Ψ
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(z) = ∆
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where F±(z) are analytic functions when zi → zj and ∆
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that these functions are eigenvectors of the so-called Laplace-Beltrami operator

H
α

=

N�

i=1
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2
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1

α

N�

i<j

zi + zj

zij
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E
α
λ =

N�

i

λi

�
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1

α
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�
. (2.13)

For more details on Jack polynomials we refer the reader to [37]. This method allows to construct two

branches of eigenfunctions for the Calogero-Sutherland Hamitlonian (2.3)

Ψ
+
λ (z) = ∆

g
(z)J1/g

λ (z) Ψ
−
λ (z) = ∆

1−g
(z)J1/(1−g)

λ (z) (2.14)

for which all pair of particles have the same boundary conditions as they approach each other. Such wave-

functions can be interpreted as describing particles with abelian fractional statistics [10, 11], in the sense of

Haldane [35].

However, as it has been well discussed in [17], one can allow for more general boundary conditions, thus

enlarging the Hilbert space under consideration. New eigenstates of (2.1) are shown to be given by certain

conformal block of CFTs. As we will discuss later, these new solutions are characterized by non-Abelian

monodromies, and therefore can be thought of as describing non-Abelian anyons. This is precisely the type

of wavefunctions appearing in the context of non-Abelian states [31, 33] in the fractional quantum Hall

effect, as was obtained in [19]. These solutions form non trivial representations of the braid group, and

therefore induce huge degeneracies in the spectrum of the (2.1) operator in these sectors. In this paper

we studied in full details these new solutions and we showed some clear and deep connections between the
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�

λ
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�
is the transpose of λ. We studied how this duality manifests itself in this larger class of non-Abelian

Calogero-Sutherland eigenfunctions described by certain CFT correlators, and we developed a method to

tackle the problem of separating variables for these functions.

Before studying these non-Abelian eigenfunctions, we need to introduce some basic concepts of CFT

which are behind this connection.

3 CFT: basic notions

We briefly review here the basic notions of CFTs. For a more in-depth introduction to CFT we refer the

curious reader to [32].

The CFT is a two dimensional quantum filed theory which enjoys conformal symmetry. The CFT

approach aims to compute the correlator �Φ(z1, z1), . . .Φ(zN , zN )� of local fields Φ(z, z) by exploiting the

infinite number of constraints which the conformal symmetry in two dimension imposes.
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, for every couple of particles (note that for g ≥ 3/2 this condition is a necessary one to ensure

normalizability of the wavefunctions).

The usual wave-functions of this model are obtained by imposing the same boundary conditions for every

couple of particles, and are of the form
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+
(z) = ∆
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�
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(z)J1/(1−g)

λ (z) (2.14)

for which all pair of particles have the same boundary conditions as they approach each other. Such wave-

functions can be interpreted as describing particles with abelian fractional statistics [10, 11], in the sense of

Haldane [35].

However, as it has been well discussed in [17], one can allow for more general boundary conditions, thus

enlarging the Hilbert space under consideration. New eigenstates of (2.1) are shown to be given by certain

conformal block of CFTs. As we will discuss later, these new solutions are characterized by non-Abelian

monodromies, and therefore can be thought of as describing non-Abelian anyons. This is precisely the type

of wavefunctions appearing in the context of non-Abelian states [31, 33] in the fractional quantum Hall

effect, as was obtained in [19]. These solutions form non trivial representations of the braid group, and
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we studied in full details these new solutions and we showed some clear and deep connections between the
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with parameter g and 1/g. In particular this duality relates the corresponding Jack polynomials through
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�
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�

i,j
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�

λ
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where λ
�
is the transpose of λ. We studied how this duality manifests itself in this larger class of non-Abelian

Calogero-Sutherland eigenfunctions described by certain CFT correlators, and we developed a method to

tackle the problem of separating variables for these functions.

Before studying these non-Abelian eigenfunctions, we need to introduce some basic concepts of CFT

which are behind this connection.

3 CFT: basic notions

We briefly review here the basic notions of CFTs. For a more in-depth introduction to CFT we refer the

curious reader to [32].

The CFT is a two dimensional quantum filed theory which enjoys conformal symmetry. The CFT

approach aims to compute the correlator �Φ(z1, z1), . . .Φ(zN , zN )� of local fields Φ(z, z) by exploiting the

infinite number of constraints which the conformal symmetry in two dimension imposes.

4

Duality                    :

They are degenerate at level L = 2:

�
L2
−1 − gL−2

�
Φ(1|2) = 0 ,

�
L2
−1 −

1

g
L−2

�
Φ(2|1) = 0 . (3.9)

The null vector conditions characterizing a field Φ(r|s) yields a differential equation of order rs which is

satisfied by any conformal block containing Φ(r|s). In particular, for the fields Φ(1|2) and Φ(2|1), this gives an

order 2 differential equation which can be related to the Calogero-Sutherland Hamiltonian [16, 17, 18, 19].

Consider the most generic conformal block containing the field Φ(1|2), namely

�Φ(1|2)(z1)Φ∆2(z2) . . . Φ∆N (zN )� . (3.10)

Using standard contour deformation manipulations [32], the null-vector condition (3.9) can be cast in the

differential form

O
g
(z)�Φ(1|2)(z)Φ∆1(z1) . . . Φ∆N (zN )� = 0 (3.11)

where the order 2 differential operator Og
(z) is

O
g
(z) =

∂2

∂z2
− g




N�

j=1

∆i

(z − zj)
2

+
1

z − zj

∂

∂zj



 . (3.12)

Likewise, conformal blocks containing the dual field Φ(2|1) obey a similar differential equation, which can be

obtained by simply changing g → 1/g.

3.3 u(1) CFT

The CFT based on the Heisenberg algebra has an additional u(1) symmetry generated by a conserved current

J(z) of conformal dimension one. As usual one defines the operator an through the Laurent series of the

J(z) current:

J(z)Φ(w) ≡

�

n

1

(z − w)n+1
anΦ(w) (3.13)

and they obey the so called Heisenberg algebra:

[an, am] = nδn+m,0 . (3.14)

The stress energy tensor T (z) of the theory is given by:

T (z) =
1

2
: J(z)J(z) : (3.15)

where :: stands for the regularized product, and has central charge c = 1. The correspondent Virasoro

operators ln3
are written in terms of an as

ln =
1

2

�

m∈Z
an−mam n �= 0 (3.16)

l0 =

�

m>0

a−mam +
1

2
a2
0 . (3.17)

The ln commute with the an in the following way

[ln, am] = −man+m (3.18)

and form a Virasoro algebra with central charge c = 1

[ln, lm] = (n−m)ln+m +
1

12
n(n2

− 1)δn+m,0 . (3.19)

3Throughout the paper we use the notation ln to refer to the Virasoro operator associated to the u(1) CFT.
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Jack polynomials:  eigenfunctions of the Hamiltonian
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(zi∂i)
2

+
1

α

N�

i<j

zi + zj

zij
(zi∂i − zj∂j),

E
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λ =

N�

i

λi

�
λi +

1

α
(N + 1− 2i)

�

λ

λ

’
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∏

i<j

zij 〈Ψ(z1) . . .Ψ(zN )〉 =
∏

i<j

zij Pf

(
1

zij

)
= J−3

λ0
(z) (42) MR_gs

H =
∑

i"=j "=k

δ(2)(xi − xj)δ
(2)(xj − xk) (43)

〈Φ12(z1) · · ·Φ12(zN)〉a
∏

i<j

z2h
ij

c = 1 − 12α2
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[
H1/g + gHg + C(N, M)
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i=1

M∏
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(1 + ziwj) = 0
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I±
3 (g) = k(1 − g)

∑

m≥1

ma−mam ± 2

√
g

k

∑

m#=0

a−mLm ±
√

g

k

∑

m,k≥1

(a−m−kamak + a−ma−kam+k) ±
√

gW̃0

(46)

After expressing the zero mode of the W current in terms of the bosonic fields, one finds
that

I+
3 (g) =

k∑

j=1

I±(cj; g) + 2(1 − g)
∑

j<l

∑

m≥1

m : cj
−mcl

m : +(1 − g)
∑

j

djL0(c
j) + zero modes

〈Φ12(z1) · · ·Φ12(zN )Φ21(w1) · · ·Φ21(wM)〉 (47)

=
∑

λ

〈0|Φ12(z1) · · ·Φ12(zN)|λ〉〈λ|Φ21(w1) · · ·Φ21(wM)|0〉 (48)

α−1 = g or 1 − g
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Degenerate fields in CFT 

3.1 Virasoro algebra and primary fields

The conformal symmetry implies the existence of an holomorphic T (z) and anti-holomorphic T (z) stress

energy tensor. In two dimensions the conformal group is the tensor product of holomorphic and antiholo-

morphic Virasoro algebras which are formed respectively by the Virasoro operators Ln and Ln. For our

purposes we consider only the holomorphic part of the theory, i.e. the holomorphic part of functions and

fields.

The Virasoro operators Ln are defined from the Laurent series of the stress-energy tensor T (z)

T (z)Φ(w) ≡
�

n

1

(z − w)n+2
LnΦ(w) (3.1)

and obey the commutation relations

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0. (3.2)

The above relations define the Virasoro algebra with central charge c.
A Virasoro primary field Φ∆(z) satisfies the following relations

L0Φ∆ = ∆Φ∆ LnΦ∆ = 0 for n > 0 (3.3)

The ∆ appearing in the above expression is the conformal dimension of the field primary Φ. To each primary

field correspond an infinite family of fields, called descendants, which are obtained by acting with the Virasoro

operators on Φ∆,

Φ
(n1,n2,...,nk)
∆ = L−nk . . . L−n1Φ∆. (3.4)

The descendant fields Φ
(n1,n2,...,nk)
∆ are eigenvectors of L0 with eigenvalue ∆ + L, where L =

�
i ni is called

level and classify the descendant fields. For general values of c and ∆, all the independent fields are obtained

by setting n1 ≥ n2 ≥ n2 · · · ≥ nk. The number of possible descendants at a level L is then equal to the

possible partitions of L.

3.2 Degenerate fields and differential equations

For special value of the conformal dimension ∆, ∆ = ∆(c), one can establish the existence of a descendant

field χ(∆, L) at a certain level L such that Lnχ(∆, L) = 0 for n > 0. The primary field Φ∆ is then said to

be degenerate at level L with χ(∆, L) being coined a null-vector.

It is convenient in this respect to reparametrize the theory by defining:

c = 1− 6
(g − 1)2

g
(3.5)

As it will be clear later, the fact that we use the same notation g for the parameter fixing the central charge

in the above expression and the coupling of the Calogero-Sutherland model in (2.6) is not casual. Degenerate

primary fields Φ(r|s) are labelled by two integers r and s. Their conformal dimension is

∆(r|s) =
1

4

�
r2 − 1

g
+ (s2 − 1)g + 2(1− rs)

�
, (3.6)

and they have a null-vector at level L = rs.
Such a null vector is equivalent to a linear relation between usually independent descendants. The identity

operator, for instance, can be identified with the field Φ(1|1) which presents a null-vector at level L = 1

L−1Φ(1|1)(z) = ∂zΦ(1|1)(z) = 0 . (3.7)

Of particular interest are the operators Φ(1|2) and Φ(2|1), with conformal dimension

∆(1|2) =
3g − 2

4
, ∆(2|1) =

3− 2g

4g
. (3.8)

5
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The conformal symmetry implies the existence of an holomorphic T (z) and anti-holomorphic T (z) stress

energy tensor. In two dimensions the conformal group is the tensor product of holomorphic and antiholo-

morphic Virasoro algebras which are formed respectively by the Virasoro operators Ln and Ln. For our

purposes we consider only the holomorphic part of the theory, i.e. the holomorphic part of functions and
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∆ are eigenvectors of L0 with eigenvalue ∆ + L, where L =

�
i ni is called

level and classify the descendant fields. For general values of c and ∆, all the independent fields are obtained

by setting n1 ≥ n2 ≥ n2 · · · ≥ nk. The number of possible descendants at a level L is then equal to the

possible partitions of L.

3.2 Degenerate fields and differential equations

For special value of the conformal dimension ∆, ∆ = ∆(c), one can establish the existence of a descendant
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As it will be clear later, the fact that we use the same notation g for the parameter fixing the central charge

in the above expression and the coupling of the Calogero-Sutherland model in (2.6) is not casual. Degenerate

primary fields Φ(r|s) are labelled by two integers r and s. Their conformal dimension is

∆(r|s) =
1

4
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r2 − 1

g
+ (s2 − 1)g + 2(1− rs)

�
, (3.6)

and they have a null-vector at level L = rs.
Such a null vector is equivalent to a linear relation between usually independent descendants. The identity

operator, for instance, can be identified with the field Φ(1|1) which presents a null-vector at level L = 1

L−1Φ(1|1)(z) = ∂zΦ(1|1)(z) = 0 . (3.7)
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4g
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5

Degenerate field with dimensions :

Two second-level degenerate fields :

They are degenerate at level L = 2:

�
L2
−1 − gL−2

�
Φ(1|2) = 0 ,

�
L2
−1 −

1

g
L−2

�
Φ(2|1) = 0 . (3.9)

The null vector conditions characterizing a field Φ(r|s) yields a differential equation of order rs which is

satisfied by any conformal block containing Φ(r|s). In particular, for the fields Φ(1|2) and Φ(2|1), this gives an

order 2 differential equation which can be related to the Calogero-Sutherland Hamiltonian [16, 17, 18, 19].

Consider the most generic conformal block containing the field Φ(1|2), namely

�Φ(1|2)(z1)Φ∆2(z2) . . . Φ∆N (zN )� . (3.10)

Using standard contour deformation manipulations [32], the null-vector condition (3.9) can be cast in the

differential form

O
g
(z)�Φ(1|2)(z)Φ∆1(z1) . . . Φ∆N (zN )� = 0 (3.11)

where the order 2 differential operator Og
(z) is

O
g
(z) =

∂2

∂z2
− g




N�

j=1

∆i

(z − zj)
2

+
1

z − zj

∂

∂zj



 . (3.12)

Likewise, conformal blocks containing the dual field Φ(2|1) obey a similar differential equation, which can be

obtained by simply changing g → 1/g.

3.3 u(1) CFT

The CFT based on the Heisenberg algebra has an additional u(1) symmetry generated by a conserved current

J(z) of conformal dimension one. As usual one defines the operator an through the Laurent series of the

J(z) current:

J(z)Φ(w) ≡

�

n

1

(z − w)n+1
anΦ(w) (3.13)

and they obey the so called Heisenberg algebra:

[an, am] = nδn+m,0 . (3.14)

The stress energy tensor T (z) of the theory is given by:

T (z) =
1

2
: J(z)J(z) : (3.15)

where :: stands for the regularized product, and has central charge c = 1. The correspondent Virasoro

operators ln3
are written in terms of an as

ln =
1

2

�

m∈Z
an−mam n �= 0 (3.16)

l0 =

�

m>0

a−mam +
1

2
a2
0 . (3.17)

The ln commute with the an in the following way

[ln, am] = −man+m (3.18)

and form a Virasoro algebra with central charge c = 1

[ln, lm] = (n−m)ln+m +
1

12
n(n2

− 1)δn+m,0 . (3.19)

3Throughout the paper we use the notation ln to refer to the Virasoro operator associated to the u(1) CFT.
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3Throughout the paper we use the notation ln to refer to the Virasoro operator associated to the u(1) CFT.
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Conformal blocks and the duality 

It is therefore natural to expand the function Fa
M,N (w; z) on the basis of Jack polynomial J−3

λ (z) where
λ is a (2, 2, N) admissible partition:

F
a(w; z) =

�

λ

P 4,a
λ� (w)J−3

λ (z) (4.22)

λ (2, 2, N)− admissible , λ0
i ≤ λi ≤ Λ0

i (M) , (4.23)

where the maximum admissible partition Λ0(M) is defined below in (??) and λ0 ≡ Λ0(M = 0). In the above
expression we have:

H
−3(z) J−3

λ (z) = E
−3
λ J−3

λ (z) (4.24)

with the energies E−3
λ given in (2.13). The P 1/4,a

λ (w) are, so far, some (non polynomial) function of the
variables w which we will completely specify in the following. In this respect, the crucial observation is that,
by using the N + M second order null-vector conditions (3.11), one can show that [19]

�
3
4
H
−3(z) +

5−M −N

4

N�

i

zi∂i + H
4(w)

�
F

a
M,N (w; z) = E(M, N)Fa

M,N (w; z) (4.25)

with

E(N,M) = −
1

192
�
−2M3 + M2(3− 12N) + M

�
2− 24N − 24N2

�
− 8N

�
−14 + 3N + 2N2

��
. (4.26)

The above equations imply then that the differential operator annihilating the Fa
M,N (w; z) decouples in the

variables z and w. From the (4.25), in the expansion (4.23) the P 4
λ�(w) are then eigenstates of H4:

H
4(w) P 4,a

λ� (w) = E
4
λ� P 4,a

λ� (w) (4.27)

with
3
4
E
−3
λ + E

4
λ� +

5−M −N

4
|λ| = E(N,M). (4.28)

Note that we have associated the eigenfunctions P 4,a
λ� (w) to an admissible partition λ�. Until now this is

a simply consequence of the expansion 4.23. We will show that this labeling has a precise mathematical
meaning which can be traced back to the duality of the Calogero-Sutherland model and generalises to each
values of the central charge, i.e. of g. Since this property generalizes to the Virasoro models, we are going
to describe it in the general case in the next section.
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ij

�

i,j
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1≤i<j

z2h
ij (5.1)

where the conformal block structure is now taken into account by the double index a, b, and we denote for
simplicity
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3g

4
−

1
2

, �h = ∆21 =
3
4g

−
1
2

. (5.2)
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F
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��
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Consider the dressed conformal blocks :

Duality :

The function F
a,b
M,N (w; z) has again the property of being regular whenever two fields come close to each

other, since the short-distance singularities of the corresponding fields are given by

Φ12(z1)Φ12(z2) ∼
I

(z1 − z2)2h
, (5.3)

Φ21(w1)Φ21(w2) ∼
I

(w1 − w2)2eh
, (5.4)

Φ21(z1)Φ12(w1) ∼
Φ22(w1)

(z1 − w1)1/2
, (5.5)

The null-vector conditions (3.11) can be combined together to show that F
a,b
M,N (w; z) obeys the duality

condition
�
hα(z) + g heα(w)

�
F

a,b
M,N (w; z) = 0 (5.6)

with

hα(z) ≡ H
α(z)− E

α
0 +

�
N − 2

α
− 1

�
[P(z)− P0]−

NM(M − 2)
4

, (5.7)

heα(w) ≡ H
eα(w)− E

eα
0 +

�
M − 2

�α − 1
�

[P(w)− P
�
0]−

NM(N − 2)
4

, (5.8)

where
α−1 = 1− g , �α−1 = 1− g−1 , α + �α = 1 . (5.9)

The constants Eα
0 ≡ Eα

λ0 and P0 ≡ Pλ0 are given by

E
α
0 =

h

3
N(N − 2)(N(2g − 1)− 5g + 4) , P0 = N(N − 2)h , (5.10)

while E eα
0 and P �

0 are given by similar expressions with g → g−1 and N → M and λ0 → λ�0. The degree of
homogeneity of Fa,b

M,N (w; z) in both the variables w and z is

P(z) + P(w) = N(N − 2)h + M(M − 2)�h + MN/2 (5.11)

and it is clear that generically this function cannot be expanded in polynomial eigenbases neither in w nor
in z. However, it can be expanded on non-polynomial eigenfunctions of Hα(z) and Heα(w) and a duality
property similar to that of section (4.4) holds

F
a,b
M,N (w; z) =

�

λ

P eα,a
λ� (w)Pα,b

λ (z) . (5.12)

This looks like the duality property [28, 37, 29] of the Calogero-Sutherland model g → 1/g, with some
differences. One difference consists in the boundary condition of the CS eigenfunctions, which force us to
choose α = 1/(1 − g). The second is the non-abelian monodromy of the conformal blocks, and the third is
the non-polynomial nature of the eigenfunctions.

Although neither Pα,b
λ (z) nor P eα,a

λ� (w) are polynomials, we are still able to compute the leading powers
for z1 � z2 � · · · � zN and w1 � w2 � · · · � wM when M = 0 and N = 0 respectively. Let us consider
the case M = 0 and the first conformal block, where the successive fields are fused two by two into the
identity. Since the eigenvalues do not depend on the conformal block, this case is sufficiently general. The
leading powers in F1

0,N (z) are

z2h(N−2)
1 z2h(N−2)

2 z2h(N−4)
3 z2h(N−4)

4 . . . z0
N−1z

0
N (5.13)

and similarly for F1
M,0(w). We infer that the “partition”5 corresponding to the lowest eigenstate in w is

given by

λ�02j−1 = λ�02j = 2�h(M − 2j) , j = 1, . . . ,M/2 . (5.14)
5We use the quotes in ”partition” to stress that the parts λi are generally not integers, which is related to the fact that the

corresponding eigenfunctions are not polynomials.
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Ising CFT and the Moore-Read FQHE wave-function

The simplest way to realize the c = 1 theory is by introducing a free boson φ(z) normalized to

�φ(z)φ(w)� = − ln(z − w) . (3.20)

In terms of this boson the current J(z) reads

J(z) = i∂φ(z) . (3.21)

The primaries of the (3.14) algebra are the vertex operators Vβ =: eiβφ(z)
:

anVβ = 0 , n > 0 (3.22)

a0Vβ = β Vβ (3.23)

where β is the U(1) charge. From the (3.17), it is easy to derive the conformal dimension ∆β of the vertex

Vβ :

∆β =
β2

2
. (3.24)

From a vertex operator Vβ all possible independent descendant can be obtained by applying the an

operator, V (n1,...,nk)
β = an1 . . . ankVβ with n1 ≥ n2 · · · ≥ nk. Note that, for the c = 1 theory, there are no

singular vectors in this basis. Moreover the conformal block of N vertex operator are easily computed,

�Vβ1(z1) . . . Vβ2(zN )� =

�

i<j

z
βiβj

ij for

�

i

βi = 0 . (3.25)

4 u(1)⊗ Ising conformal field theory

In order keep the contact with the FQHE applications, we discuss first the structure of the conformal blocks

and the link with Calogero-Sutherland model in the framework of the Ising conformal field theory. The fact

that the fermionic conformal blocks of the Ising model are Jack polynomials with particular properties is

crucial to these applications. The generic Virasoro models which will be going to be discussed in the next

section are a generalization of the Ising model, where none of the conformal blocks can be expressed in

terms of polynomial eigenfunctions of the Calogero-Sutherland model. The parafermionic models which are

related to the WAk−1(k + 1, k + r) minimal models with k and r arbitrary integers ≥ 2 share with the Ising

model the feature that some of the conformal blocks can be expressed in terms of Jack polynomials with

clustering properties. This series can be extended to generic WAk−1 algebras if r is not integer; this case

will be discussed in section 6.

4.1 Ising primary fields

The Ising model is the unitary minimal model of the Virasoro algebra (3.2) with central charge c = 1/2. It

presents a finite number of operators which close under operator algebra: besides the identity I, there are

only the two Virasoro primary fields Φ12 and Φ21 with conformal dimension ∆12 = 1/2 and ∆21 = 1/16. In

our notations, this fixes g = 4/3. The fields Φ12 and Φ21 correspond to the free fermion field Ψ = Φ12 and

to the spin operator σ = Φ21. Their fusion relations read

Ψ(z)Ψ(w) =
1

z − w
I , (4.1)

σ(z)σ(w) =
CI

σ,σ

(z − w)1/8
I +

CΨ
σ,σ

(z − w)−3/8
Ψ(w) , (4.2)

σ(z)Ψ(w) =
Cσ

σ,ψ

(z − w)1/2
σ(w) , (4.3)

where the CZ
X,Y are the structure constants of the operator algebra.
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4.2 Relation with Calogero-Sutherland model

Conformal block of N free fermions : Consider first the conformal block of N free fermions:

�Ψ(z1) . . . Ψ(zN )�. (4.4)

This correlator can of course be easily computed by using the Wick theorem, �Ψ(z1) . . . Ψ(zN )� = Pf(1/zij),
where Pf(Mij) if the Pfaffian of the matrix Mij . The N fermion fields Ψ degenerate second order fields
and their correlation function satisfies a system of N second order equations (3.11). On can recast these
equations in the following way:
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i=1

z2
i O

4/3
i �Ψ(z1) . . . Ψ(zN )� = 0 . (4.5)

Using the Ward identities satisfied by the conformal blocks

N�

i=1

∂i �Ψ(z1) . . . Ψ(zN )� = 0

N�

i=1

�
zi∂i +

1
2

�
�Ψ(z1) . . . Ψ(zN )� = 0, (4.6)

one obtains from the equation (4.5):



N�

i=1

(zi∂i)2 −
4
3

�

i<j

zizj

z2
ij

+
2
3

�

i<j

zi + zj

zij
(zi∂i − zj∂j)−

2N

3



 �Ψ(z1) . . . Ψ(zN )� = 0 . (4.7)

One can recognize in the above the Calogero-Sutherland Hamiltonian in the form (2.9) with γ = 2/3 and
g = 4/3. The function

Ψ(z) ≡
�

i<j

z2/3
ij Pf (1/zij) (4.8)

is then eigenfunction of (2.6) with coupling g = 4/3. It is easy to convince oneself that
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�
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ij F (z) =

�
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z1−g
ij F (z) , (4.9)

with F (z) regular at zi → zj , which means that Ψ(z) is subject to the second type of boundary conditions
Ψ−(z) in the terminology of equation (2.11).

Conformal blocks of M spin operators σ : Analogously, we could consider the correlation function of
M fields σ:

�σ(z1) . . . σ(zM )�a (4.10)

where a = 1, . . . , 2M/2−1 is the conformal block index. Indeed, from the fusions (4.2)-(4.3), there are 2M/2−1

different conformal blocks corresponding to the function (4.10).

Again, using the M second order differential equations (3.11) and the conformal Ward identities, the
conformal block (4.10) can be shown to satisfy the equation:




M�

i=1

(zi∂i)2 −
3
32

�

i<j

zizj

z2
ij

+
3
8

�

i<j

zi + zj

zij
(zi∂i − zj∂j)−

3M

64



 �σ(z1) . . . σ(zN )�a = 0, (4.11)

which corresponds to the operator (2.9) for γ = 3/8 and g = 3/4. An eigenfunction of (2.6) with coupling
g = 3/4 is then obtained by setting:

Ψ(z)a ≡

�

i<j

z3/8
ij �σ(z1) . . . σ(zM )�a. (4.12)

8

Figure 1: A diagram representing the conformal block (4.10) for M = 6. For each diagram there are M/2−1
fields X which can correspond to the I or to the σ field, with X = I or X = σ. The total number of possible
conformal blocks is then 2M/2−1.

It is interesting to notice that the eigenvalue associated to the eigenfunctions Ψ(z)a does not depend on the
particular conformal block index a. Generally, by using the (4.2) into (4.12), one has that:

Ψ(z)a ∼ ca1 z1/4
ij + ca2 z3/4

ij for zi → zj . (4.13)

The possible asymptotic behavior characterizing the eigenfunctions of (2.6) with g = 3/4, see (2.10), are then
associated to the two fusion channels in (4.2). The exponents characterizing the two boundary condition are
given by 1− g = 1/4 and g = 3/4. The first exponent is smaller, so we can write

Ψ(z)a =
�

i<j

z1/4
ij F (z)a =

�

i<j

z1−g
ij F (z)a (4.14)

with F (z)a ∼ ca1 + ca2
√

zij for zi → zj .

Each conformal block Ψ(z)a is characterized by having a given configuration of boundary conditions. In this
respect, consider for instance the simplest non trivial case, i.e. with N = 4. Here one has two conformal
blocks, Ψ(z)a with a = 1, 2. One conformal block, say Ψ(z)1, can be chosen such that:

Ψ(z)1 ∼z1→z2 z1/4
12 Ψ(z)1 ∼z3→z4 z1/4

34

Ψ(z)1 ∼z1→z3 c11 z1/4
13 + c12 z3/4

13 Ψ(z)1 ∼z2→z4 c11 z1/4
24 + c12z

3/4
24

while the other behave as:

Ψ(z)2 ∼z1→z2 z3/4
12 Ψ(z)2 ∼z3→z4 z3/4

34

Ψ(z)2 ∼z1→z3 c21 z1/4
13 + c22 z3/4

13 Ψ(z)2 ∼z2→z4 c21 z1/4
24 + c22 z3/4

24

where the constants cnm are in this case the elements of the crossing matrix of the four spin conformal block.
A detailed discussion about the possible boundary conditions configurations associated to conformal block
correlator has been done in [17].

4.3 Clustering polynomials and admissible partitions

Let us come back for a moment to the fermionic conformal blocks. The function
�

i<j

zij �Ψ(z1) . . . Ψ(zN )� (4.15)

is a function regular when zij → 0, monovalued, symmetric of total degree N(N − 2)/2, therefore it should
be a symmetric polynomial4. It is an eigenfunction of the CS Hamiltonian (2.12) with α = 1/(1− g) = −3,
therefore it should be a Jack polynomial with a negative coupling constant. By inspection it is equal to
J−3

λ0
(z) where λ0 is the partition

λ0 = [N − 2, N − 2, N − 4, N − 4, · · · , 0, 0] . (4.16)
4N should be even, otherwise the conformal block vanishes.
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respect, consider for instance the simplest non trivial case, i.e. with N = 4. Here one has two conformal
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while the other behave as:
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where the constants cnm are in this case the elements of the crossing matrix of the four spin conformal block.
A detailed discussion about the possible boundary conditions configurations associated to conformal block
correlator has been done in [17].

4.3 Clustering polynomials and admissible partitions

Let us come back for a moment to the fermionic conformal blocks. The function
�

i<j

zij �Ψ(z1) . . . Ψ(zN )� (4.15)

is a function regular when zij → 0, monovalued, symmetric of total degree N(N − 2)/2, therefore it should
be a symmetric polynomial4. It is an eigenfunction of the CS Hamiltonian (2.12) with α = 1/(1− g) = −3,
therefore it should be a Jack polynomial with a negative coupling constant. By inspection it is equal to
J−3

λ0
(z) where λ0 is the partition

λ0 = [N − 2, N − 2, N − 4, N − 4, · · · , 0, 0] . (4.16)
4N should be even, otherwise the conformal block vanishes.
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The electron eigenfunction is monovalued:

with clustering properties (it vanishes when a  cluster of 3 particles come together):

It is interesting to point out that the polynomial J−3
λ0

(z) does not vanish when two variables are at the same

point but vanishes with power 2 when the third particles approches a cluster of two. Due to this property,

this polynomial is the zero-energy eigenstate of model 3-body Hamiltonian and thus it has been considered

as a good trial many-body wavefunctions for fractional quantum Hall systems.

More generally, Jack polynomials with (k, r)-clustering properties appear in the WAk−1(k + 1, k + r)
theories; these polynomials vanish with a power r when at least k + 1 particles come to the same point. A

characterization of symmetric polynomials with clustering properties was initiated in the work of Feigin et
al. [39, 40]. Let k, r be positive integer such that k + 1 and r − 1 are co-prime. A partition λ is said to be

(k, r, N)-admissible if it satisfies the following condition:

λi − λi+k ≥ r (1 ≤ i ≤ N − k). (4.17)

The (4.16) is then a (2, 2, N) admissible partition. Given a (k, r, N)-admissible partition λ Feigin et al. [39]

showed that:

• the coefficients cλµ(α) do not have a pole for the particular negative value α = −(k + 1)/(r − 1).

• the Jack polynomial J−(k+1)/(r−1)
λ (z1, · · · , zn) vanishes when z1 = z2 = · · · = zk+1.

The space spanned by the Jack polynomials J−(k+1)/(r−1)
λ (z1, · · · , zN ) for all (k, r, N)-admissible partitions

λ coincides with the space of symmetric polynomials satisfying the (k, r) clusterings.

4.4 Duality and separation

Let us now consider the mixed conformal block of M spin operator and N fermionic fields

Fa
M,N (w; z) ≡ �σ(w1) · · ·σ(wM )ψ(z1) · · ·ψ(zN )�a

M�

1≤i<j

w1/8
ij

�

i,j

(wi − zj)
1/2

N�

1≤i<j

zij (4.18)

where the index a run over the possible 2
M/2−1

possible independent conformal blocks. The function

Fa
M,N (w; z), which has been introduced to describe the the excited M−quasihole wavefunction for the paired

fractional quantum Hall state [31, 36], has been computed exactly in [41, 42] (note that it vanishes for M
odd).

Because of the fusions (4.1)-(4.3), the factors
�

i<j zij and
�

i,j(wi−zj)
1/2

insure the function Fa
M,N (w; z)

to be a symmetric polynomial in the z variables. In particular the factor
�

i,j(wi−zj)
1/2

renders the variables

z and w mutually local. The factor
�

i<j w1/8
ij supresses the divergence as wij → 0. It is rather easy to show

from the fusion (4.1) that the function Fa
M,N (w; z) satisfies the following (2, 2)−clustering properties:

Fa
M,N (w, z1 = z2 = Z, z3, z4, · · · , zN ) =

M�

i=1

(wi − Z)

N�

i=3

(Z − zi)
2Fa

M,N−2(w, z3, z4, · · · , zN ). (4.19)

The function Fa
M,N (w; z) can in general be expanded in symmetric polynomials of z, each of which satisfies

the (2, 2)-clustering condition and has total degree D such that:

N(N − 2)

2
≤ D ≤ N(N − 2)

2
+

NM

2
. (4.20)

This can be seen, for instance, from the conformal block F1
M,N (w; z) corresponding to the case where all the

σi fuse into the identity. In the limit w2n → w2n−1 ≡ Wn, n = 1, . . . ,M/2, one has from (4.2):

F1
M,N (w1, . . . , wM , z) →

M/2�

i=1

N�

j=1

(zj −Wi)J
−3
λ0

(z) for w2n, w2n−1 → Wn n = 1, . . . ,M/2. (4.21)

Similar considerations can be made for all the conformal blocks.
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Fa
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Because of the fusions (4.1)-(4.3), the factors
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insure the function Fa
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to be a symmetric polynomial in the z variables. In particular the factor
�
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1/2
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z and w mutually local. The factor
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i<j w1/8
ij supresses the divergence as wij → 0. It is rather easy to show

from the fusion (4.1) that the function Fa
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The function Fa
M,N (w; z) can in general be expanded in symmetric polynomials of z, each of which satisfies

the (2, 2)-clustering condition and has total degree D such that:
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Generic             clustering properties of Jack polynomials for coupling constant 

It is interesting to point out that the polynomial J−3
λ0

(z) does not vanish when two variables are at the same

point but vanishes with power 2 when the third particles approches a cluster of two. Due to this property,

this polynomial is the zero-energy eigenstate of model 3-body Hamiltonian and thus it has been considered
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theories; these polynomials vanish with a power r when at least k + 1 particles come to the same point. A
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al. [39, 40]. Let k, r be positive integer such that k + 1 and r − 1 are co-prime. A partition λ is said to be

(k, r, N)-admissible if it satisfies the following condition:

λi − λi+k ≥ r (1 ≤ i ≤ N − k). (4.17)

The (4.16) is then a (2, 2, N) admissible partition. Given a (k, r, N)-admissible partition λ Feigin et al. [39]

showed that:

• the coefficients cλµ(α) do not have a pole for the particular negative value α = −(k + 1)/(r − 1).
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where the index a run over the possible 2
M/2−1

possible independent conformal blocks. The function

Fa
M,N (w; z), which has been introduced to describe the the excited M−quasihole wavefunction for the paired

fractional quantum Hall state [31, 36], has been computed exactly in [41, 42] (note that it vanishes for M
odd).

Because of the fusions (4.1)-(4.3), the factors
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The function Fa
M,N (w; z) can in general be expanded in symmetric polynomials of z, each of which satisfies

the (2, 2)-clustering condition and has total degree D such that:
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This can be seen, for instance, from the conformal block F1
M,N (w; z) corresponding to the case where all the

σi fuse into the identity. In the limit w2n → w2n−1 ≡ Wn, n = 1, . . . ,M/2, one has from (4.2):
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[Feigin, Miwa, Jimbo, Mukhin, 02]

It is interesting to point out that the polynomial J−3
λ0

(z) does not vanish when two variables are at the same

point but vanishes with power 2 when the third particles approches a cluster of two. Due to this property,

this polynomial is the zero-energy eigenstate of model 3-body Hamiltonian and thus it has been considered

as a good trial many-body wavefunctions for fractional quantum Hall systems.

More generally, Jack polynomials with (k, r)-clustering properties appear in the WAk−1(k + 1, k + r)
theories; these polynomials vanish with a power r when at least k + 1 particles come to the same point. A

characterization of symmetric polynomials with clustering properties was initiated in the work of Feigin et
al. [39, 40]. Let k, r be positive integer such that k + 1 and r − 1 are co-prime. A partition λ is said to be

(k, r, N)-admissible if it satisfies the following condition:

λi − λi+k ≥ r (1 ≤ i ≤ N − k). (4.17)

The (4.16) is then a (2, 2, N) admissible partition. Given a (k, r, N)-admissible partition λ Feigin et al. [39]

showed that:

• the coefficients cλµ(α) do not have a pole for the particular negative value α = −(k + 1)/(r − 1).

• the Jack polynomial J−(k+1)/(r−1)
λ (z1, · · · , zn) vanishes when z1 = z2 = · · · = zk+1.
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λ (z1, · · · , zN ) for all (k, r, N)-admissible partitions

λ coincides with the space of symmetric polynomials satisfying the (k, r) clusterings.

4.4 Duality and separation
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where the index a run over the possible 2
M/2−1

possible independent conformal blocks. The function

Fa
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fractional quantum Hall state [31, 36], has been computed exactly in [41, 42] (note that it vanishes for M
odd).
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�

i,j(wi−zj)
1/2

renders the variables

z and w mutually local. The factor
�

i<j w1/8
ij supresses the divergence as wij → 0. It is rather easy to show

from the fusion (4.1) that the function Fa
M,N (w; z) satisfies the following (2, 2)−clustering properties:

Fa
M,N (w, z1 = z2 = Z, z3, z4, · · · , zN ) =

M�

i=1

(wi − Z)

N�

i=3

(Z − zi)
2Fa

M,N−2(w, z3, z4, · · · , zN ). (4.19)

The function Fa
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This can be seen, for instance, from the conformal block F1
M,N (w; z) corresponding to the case where all the
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It is interesting to point out that the polynomial J−3
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(z) does not vanish when two variables are at the same

point but vanishes with power 2 when the third particles approches a cluster of two. Due to this property,

this polynomial is the zero-energy eigenstate of model 3-body Hamiltonian and thus it has been considered

as a good trial many-body wavefunctions for fractional quantum Hall systems.

More generally, Jack polynomials with (k, r)-clustering properties appear in the WAk−1(k + 1, k + r)
theories; these polynomials vanish with a power r when at least k + 1 particles come to the same point. A

characterization of symmetric polynomials with clustering properties was initiated in the work of Feigin et
al. [39, 40]. Let k, r be positive integer such that k + 1 and r − 1 are co-prime. A partition λ is said to be

(k, r, N)-admissible if it satisfies the following condition:

λi − λi+k ≥ r (1 ≤ i ≤ N − k). (4.17)

The (4.16) is then a (2, 2, N) admissible partition. Given a (k, r, N)-admissible partition λ Feigin et al. [39]

showed that:

• the coefficients cλµ(α) do not have a pole for the particular negative value α = −(k + 1)/(r − 1).

• the Jack polynomial J−(k+1)/(r−1)
λ (z1, · · · , zn) vanishes when z1 = z2 = · · · = zk+1.

The space spanned by the Jack polynomials J−(k+1)/(r−1)
λ (z1, · · · , zN ) for all (k, r, N)-admissible partitions

λ coincides with the space of symmetric polynomials satisfying the (k, r) clusterings.

4.4 Duality and separation

Let us now consider the mixed conformal block of M spin operator and N fermionic fields

Fa
M,N (w; z) ≡ �σ(w1) · · ·σ(wM )ψ(z1) · · ·ψ(zN )�a

M�

1≤i<j

w1/8
ij

�

i,j

(wi − zj)
1/2

N�

1≤i<j

zij (4.18)

where the index a run over the possible 2
M/2−1

possible independent conformal blocks. The function

Fa
M,N (w; z), which has been introduced to describe the the excited M−quasihole wavefunction for the paired

fractional quantum Hall state [31, 36], has been computed exactly in [41, 42] (note that it vanishes for M
odd).

Because of the fusions (4.1)-(4.3), the factors
�

i<j zij and
�

i,j(wi−zj)
1/2

insure the function Fa
M,N (w; z)

to be a symmetric polynomial in the z variables. In particular the factor
�

i,j(wi−zj)
1/2

renders the variables

z and w mutually local. The factor
�

i<j w1/8
ij supresses the divergence as wij → 0. It is rather easy to show

from the fusion (4.1) that the function Fa
M,N (w; z) satisfies the following (2, 2)−clustering properties:

Fa
M,N (w, z1 = z2 = Z, z3, z4, · · · , zN ) =

M�

i=1

(wi − Z)

N�

i=3

(Z − zi)
2Fa

M,N−2(w, z3, z4, · · · , zN ). (4.19)

The function Fa
M,N (w; z) can in general be expanded in symmetric polynomials of z, each of which satisfies

the (2, 2)-clustering condition and has total degree D such that:

N(N − 2)

2
≤ D ≤ N(N − 2)

2
+

NM

2
. (4.20)

This can be seen, for instance, from the conformal block F1
M,N (w; z) corresponding to the case where all the

σi fuse into the identity. In the limit w2n → w2n−1 ≡ Wn, n = 1, . . . ,M/2, one has from (4.2):

F1
M,N (w1, . . . , wM , z) →

M/2�

i=1

N�

j=1

(zj −Wi)J
−3
λ0

(z) for w2n, w2n−1 → Wn n = 1, . . . ,M/2. (4.21)

Similar considerations can be made for all the conformal blocks.
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[Moore, Read, 91]

- the coefficients of the Jack polynomials diverge except for admissible partitions 

:

N∑

i=1

z2
i O

g
i 〈Ψ(z1) . . .Ψ(zN)〉 = 0 . (41) Nff_de

∏

i<j

z2
ij 〈Ψ(z1) . . .Ψ(zN)〉 =

∏

i<j

z2
ij Pf

(
1

zij

)
=

∏

i<j

zij J−3
λ0

(z) (42) MR_gs

H =
∑

i"=j "=k

δ(2)(xi − xj)δ
(2)(xj − xk) (43)

〈Φ12(z1) · · ·Φ12(zN)〉a
∏

i<j

z2h
ij

c = 1 − 12α2
0

λ1 ≥ ... ≥ λN ≥ 0

[
H1/g + gHg + C(N, M)

] N∏

i=1

M∏

i=1

(1 + ziwj) = 0

λi − λi+2 ≥ 2

λ

λi

I+
3 (g) = I+

3 (c; g) + I+
3 (c̃; g) + (

√
2gb0 + g − 1)(L0(c) − L0(c̃)) + 2(1 − g)

∑

m>0

mc−mc̃m .

c−n ∼ pn =
∑

i

xn
i

λi

|no, ne; q〉 = |ne, no;−q〉 → |no, ne; 0〉 = |ne, no; 0〉

|no, ne; q〉 = J1/g
no (c) J1/g

ne (c̃) |q〉 + . . .

I±
3 (g) = k(1 − g)

∑

m≥1

ma−mam ± 2

√
g

k

∑

m"=0

a−mLm ±
√

g

k

∑

m,k≥1

(a−m−kamak + a−ma−kam+k) ±
√

gW̃0

(44)
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Ising CFT and the Moore-Read FQHE wave-function

it is multivalued, with the                 conformal blocks corresponding to the different fusion channels              

It is interesting to point out that the polynomial J−3
λ0

(z) does not vanish when two variables are at the same

point but vanishes with power 2 when the third particles approches a cluster of two. Due to this property,

this polynomial is the zero-energy eigenstate of model 3-body Hamiltonian and thus it has been considered

as a good trial many-body wavefunctions for fractional quantum Hall systems.

More generally, Jack polynomials with (k, r)-clustering properties appear in the WAk−1(k + 1, k + r)
theories; these polynomials vanish with a power r when at least k + 1 particles come to the same point. A

characterization of symmetric polynomials with clustering properties was initiated in the work of Feigin et
al. [39, 40]. Let k, r be positive integer such that k + 1 and r − 1 are co-prime. A partition λ is said to be

(k, r, N)-admissible if it satisfies the following condition:

λi − λi+k ≥ r (1 ≤ i ≤ N − k). (4.17)

The (4.16) is then a (2, 2, N) admissible partition. Given a (k, r, N)-admissible partition λ Feigin et al. [39]

showed that:

• the coefficients cλµ(α) do not have a pole for the particular negative value α = −(k + 1)/(r − 1).

• the Jack polynomial J−(k+1)/(r−1)
λ (z1, · · · , zn) vanishes when z1 = z2 = · · · = zk+1.

The space spanned by the Jack polynomials J−(k+1)/(r−1)
λ (z1, · · · , zN ) for all (k, r, N)-admissible partitions

λ coincides with the space of symmetric polynomials satisfying the (k, r) clusterings.

4.4 Duality and separation

Let us now consider the mixed conformal block of M spin operator and N fermionic fields

Fa
M,N (w; z) ≡ �σ(w1) · · ·σ(wM )ψ(z1) · · ·ψ(zN )�a

M�

1≤i<j

w1/8
ij

�

i,j

(wi − zj)
1/2

N�

1≤i<j

zij (4.18)

where the index a run over the possible 2
M/2−1

possible independent conformal blocks. The function

Fa
M,N (w; z), which has been introduced to describe the the excited M−quasihole wavefunction for the paired

fractional quantum Hall state [31, 36], has been computed exactly in [41, 42] (note that it vanishes for M
odd).

Because of the fusions (4.1)-(4.3), the factors
�

i<j zij and
�

i,j(wi−zj)
1/2

insure the function Fa
M,N (w; z)

to be a symmetric polynomial in the z variables. In particular the factor
�

i,j(wi−zj)
1/2

renders the variables

z and w mutually local. The factor
�

i<j w1/8
ij supresses the divergence as wij → 0. It is rather easy to show

from the fusion (4.1) that the function Fa
M,N (w; z) satisfies the following (2, 2)−clustering properties:

Fa
M,N (w, z1 = z2 = Z, z3, z4, · · · , zN ) =

M�

i=1

(wi − Z)

N�

i=3

(Z − zi)
2Fa

M,N−2(w, z3, z4, · · · , zN ). (4.19)

The function Fa
M,N (w; z) can in general be expanded in symmetric polynomials of z, each of which satisfies

the (2, 2)-clustering condition and has total degree D such that:

N(N − 2)

2
≤ D ≤ N(N − 2)

2
+

NM

2
. (4.20)

This can be seen, for instance, from the conformal block F1
M,N (w; z) corresponding to the case where all the

σi fuse into the identity. In the limit w2n → w2n−1 ≡ Wn, n = 1, . . . ,M/2, one has from (4.2):

F1
M,N (w1, . . . , wM , z) →

M/2�

i=1

N�

j=1

(zj −Wi)J
−3
λ0

(z) for w2n, w2n−1 → Wn n = 1, . . . ,M/2. (4.21)

Similar considerations can be made for all the conformal blocks.
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Figure 1: A diagram representing the conformal block (4.10) for M = 6. For each diagram there are M/2−1
fields X which can correspond to the I or to the σ field, with X = I or X = σ. The total number of possible
conformal blocks is then 2M/2−1.

It is interesting to notice that the eigenvalue associated to the eigenfunctions Ψ(z)a does not depend on the
particular conformal block index a. Generally, by using the (4.2) into (4.12), one has that:

Ψ(z)a ∼ ca1 z1/4
ij + ca2 z3/4

ij for zi → zj . (4.13)

The possible asymptotic behavior characterizing the eigenfunctions of (2.6) with g = 3/4, see (2.10), are then
associated to the two fusion channels in (4.2). The exponents characterizing the two boundary condition are
given by 1− g = 1/4 and g = 3/4. The first exponent is smaller, so we can write

Ψ(z)a =
�

i<j

z1/4
ij F (z)a =

�

i<j

z1−g
ij F (z)a (4.14)

with F (z)a ∼ ca1 + ca2
√

zij for zi → zj .

Each conformal block Ψ(z)a is characterized by having a given configuration of boundary conditions. In this
respect, consider for instance the simplest non trivial case, i.e. with N = 4. Here one has two conformal
blocks, Ψ(z)a with a = 1, 2. One conformal block, say Ψ(z)1, can be chosen such that:

Ψ(z)1 ∼z1→z2 z1/4
12 Ψ(z)1 ∼z3→z4 z1/4

34

Ψ(z)1 ∼z1→z3 c11 z1/4
13 + c12 z3/4

13 Ψ(z)1 ∼z2→z4 c11 z1/4
24 + c12z

3/4
24

while the other behave as:

Ψ(z)2 ∼z1→z2 z3/4
12 Ψ(z)2 ∼z3→z4 z3/4

34

Ψ(z)2 ∼z1→z3 c21 z1/4
13 + c22 z3/4

13 Ψ(z)2 ∼z2→z4 c21 z1/4
24 + c22 z3/4

24

where the constants cnm are in this case the elements of the crossing matrix of the four spin conformal block.
A detailed discussion about the possible boundary conditions configurations associated to conformal block
correlator has been done in [17].

4.3 Clustering polynomials and admissible partitions

Let us come back for a moment to the fermionic conformal blocks. The function
�

i<j

zij �Ψ(z1) . . . Ψ(zN )� (4.15)

is a function regular when zij → 0, monovalued, symmetric of total degree N(N − 2)/2, therefore it should
be a symmetric polynomial4. It is an eigenfunction of the CS Hamiltonian (2.12) with α = 1/(1− g) = −3,
therefore it should be a Jack polynomial with a negative coupling constant. By inspection it is equal to
J−3

λ0
(z) where λ0 is the partition

λ0 = [N − 2, N − 2, N − 4, N − 4, · · · , 0, 0] . (4.16)
4N should be even, otherwise the conformal block vanishes.
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fields X which can correspond to the I or to the σ field, with X = I or X = Ψ. The total number of possible
conformal blocks is then 2M/2−1.

It is interesting to notice that the eigenvalue associated to the eigenfunctions Ψ(z)a does not depend on the
particular conformal block index a. Generally, by using the (4.2) into (4.12), one has that:

Ψ(z)a ∼ ca1 z1/4
ij + ca2 z3/4

ij for zi → zj . (4.13)

The possible asymptotic behavior characterizing the eigenfunctions of (2.6) with g = 3/4, see (2.10), are then
associated to the two fusion channels in (4.2). The exponents characterizing the two boundary condition are
given by 1− g = 1/4 and g = 3/4. The first exponent is smaller, so we can write
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z1−g
ij F (z)a (4.14)

with F (z)a ∼ ca1 + ca2
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zij for zi → zj .

Each conformal block Ψ(z)a is characterized by having a given configuration of boundary conditions. In this
respect, consider for instance the simplest non trivial case, i.e. with N = 4. Here one has two conformal
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Ψ(z)1 ∼z1→z2 z1/4
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34
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3/4
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34

Ψ(z)2 ∼z1→z3 c21 z1/4
13 + c22 z3/4

13 Ψ(z)2 ∼z2→z4 c21 z1/4
24 + c22 z3/4

24

where the constants cnm are in this case the elements of the crossing matrix of the four spin conformal block.
A detailed discussion about the possible boundary conditions configurations associated to conformal block
correlator has been done in [17].

4.3 Clustering polynomials and admissible partitions

Let us come back for a moment to the fermionic conformal blocks. The function
�

i<j

zij �Ψ(z1) . . . Ψ(zN )� (4.15)

is a function regular when zij → 0, monovalued, symmetric of total degree N(N − 2)/2, therefore it should
be a symmetric polynomial4. It is an eigenfunction of the CS Hamiltonian (2.12) with α = 1/(1− g) = −3,
therefore it should be a Jack polynomial with a negative coupling constant. By inspection it is equal to
J−3

λ0
(z) where λ0 is the partition

λ0 = [N − 2, N − 2, N − 4, N − 4, · · · , 0, 0] . (4.16)
4N should be even, otherwise the conformal block vanishes.
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Figure 1: A diagram representing the conformal block (4.10) for M = 6. For each diagram there are M/2−1
fields X which can correspond to the I or to the σ field, with X = I or X = Ψ. The total number of possible
conformal blocks is then 2M/2−1.

It is interesting to notice that the eigenvalue associated to the eigenfunctions Ψ(z)a does not depend on the
particular conformal block index a. Generally, by using the (4.2) into (4.12), one has that:

Ψ(z)a ∼ ca1 z1/4
ij + ca2 z3/4

ij for zi → zj . (4.13)

The possible asymptotic behavior characterizing the eigenfunctions of (2.6) with g = 3/4, see (2.10), are then
associated to the two fusion channels in (4.2). The exponents characterizing the two boundary condition are
given by 1− g = 1/4 and g = 3/4. The first exponent is smaller, so we can write

Ψ(z)a =
�

i<j

z1/4
ij F (z)a =

�

i<j

z1−g
ij F (z)a (4.14)

with F (z)a ∼ ca1 + ca2
√

zij for zi → zj .

Each conformal block Ψ(z)a is characterized by having a given configuration of boundary conditions. In this
respect, consider for instance the simplest non trivial case, i.e. with N = 4. Here one has two conformal
blocks, Ψ(z)a with a = 1, 2. One conformal block, say Ψ(z)1, can be chosen such that:

Ψ(z)1 ∼z1→z2 z1/4
12 Ψ(z)1 ∼z3→z4 z1/4

34

Ψ(z)1 ∼z1→z3 c11 z1/4
13 + c12 z3/4

13 Ψ(z)1 ∼z2→z4 c11 z1/4
24 + c12z

3/4
24

while the other behave as:

Ψ(z)2 ∼z1→z2 z3/4
12 Ψ(z)2 ∼z3→z4 z3/4

34

Ψ(z)2 ∼z1→z3 c21 z1/4
13 + c22 z3/4

13 Ψ(z)2 ∼z2→z4 c21 z1/4
24 + c22 z3/4

24

where the constants cnm are in this case the elements of the crossing matrix of the four spin conformal block.
A detailed discussion about the possible boundary conditions configurations associated to conformal block
correlator has been done in [17].

4.3 Clustering polynomials and admissible partitions

Let us come back for a moment to the fermionic conformal blocks. The function
�

i<j

zij �Ψ(z1) . . . Ψ(zN )� (4.15)

is a function regular when zij → 0, monovalued, symmetric of total degree N(N − 2)/2, therefore it should
be a symmetric polynomial4. It is an eigenfunction of the CS Hamiltonian (2.12) with α = 1/(1− g) = −3,
therefore it should be a Jack polynomial with a negative coupling constant. By inspection it is equal to
J−3

λ0
(z) where λ0 is the partition

λ0 = [N − 2, N − 2, N − 4, N − 4, · · · , 0, 0] . (4.16)
4N should be even, otherwise the conformal block vanishes.
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• non-polynomial eigenfunctions of the CS Hamiltonian with non-abelian monodromy
• symmetric generalization of hypergeometric functions ~ [Kaneko, 93; Forrester, 92]

• can be represented as Coulomb integrals [Dotsenko, Fateev, 84]

[Nayak, Wilczek, 96]

4.2 Relation with Calogero-Sutherland model

Conformal block of N free fermions : Consider first the conformal block of N free fermions:

�Ψ(z1) . . . Ψ(zN )�. (4.4)

This correlator can of course be easily computed by using the Wick theorem, �Ψ(z1) . . . Ψ(zN )� = Pf(1/zij),
where Pf(Mij) if the Pfaffian of the matrix Mij . The N fermion fields Ψ degenerate second order fields
and their correlation function satisfies a system of N second order equations (3.11). On can recast these
equations in the following way:

N�

i=1

z2
i O

4/3
i �Ψ(z1) . . . Ψ(zN )� = 0 . (4.5)

Using the Ward identities satisfied by the conformal blocks

N�

i=1

∂i �Ψ(z1) . . . Ψ(zN )� = 0

N�

i=1

�
zi∂i +

1
2

�
�Ψ(z1) . . . Ψ(zN )� = 0, (4.6)

one obtains from the equation (4.5):



N�

i=1

(zi∂i)2 −
4
3

�

i<j

zizj

z2
ij

+
2
3

�

i<j

zi + zj

zij
(zi∂i − zj∂j)−

2N

3



 �Ψ(z1) . . . Ψ(zN )� = 0 . (4.7)

One can recognize in the above the Calogero-Sutherland Hamiltonian in the form (2.9) with γ = 2/3 and
g = 4/3. The function

Ψ(z) ≡
�

i<j

z2/3
ij Pf (1/zij) (4.8)

is then eigenfunction of (2.6) with coupling g = 4/3. It is easy to convince oneself that

Ψ(z) =
�

i<j

z−1/3
ij F (z) =

�

i<j

z1−g
ij F (z) , (4.9)

with F (z) regular at zi → zj , which means that Ψ(z) is subject to the second type of boundary conditions
Ψ−(z) in the terminology of equation (2.11).

Conformal blocks of M spin operators σ : Analogously, we could consider the correlation function of
M fields σ:

�σ(z1) . . . σ(zM )�a (4.10)

where a = 1, . . . , 2M/2−1 is the conformal block index. Indeed, from the fusions (4.2)-(4.3), there are 2M/2−1

different conformal blocks corresponding to the function (4.10).

Again, using the M second order differential equations (3.11) and the conformal Ward identities, the
conformal block (4.10) can be shown to satisfy the equation:




M�

i=1

(zi∂i)2 −
3
32

�

i<j

zizj

z2
ij

+
3
8

�

i<j

zi + zj

zij
(zi∂i − zj∂j)−

3M

64



 �σ(z1) . . . σ(zN )�a = 0, (4.11)

which corresponds to the operator (2.9) for γ = 3/8 and g = 3/4. An eigenfunction of (2.6) with coupling
g = 3/4 is then obtained by setting:

Ψ(z)a ≡

�

i<j

z3/8
ij �σ(z1) . . . σ(zM )�a. (4.12)
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M/2

N

λ

Duality and the non-poynomial wave-functions

•    ground state (M=0):

The function F
a,b
M,N (w; z) has again the property of being regular whenever two fields come close to each

other, since the short-distance singularities of the corresponding fields are given by

Φ12(z1)Φ12(z2) ∼
I

(z1 − z2)2h
, (5.3)

Φ21(w1)Φ21(w2) ∼
I

(w1 − w2)2eh
, (5.4)

Φ21(z1)Φ12(w1) ∼
Φ22(w1)

(z1 − w1)1/2
, (5.5)

The null-vector conditions (3.11) can be combined together to show that F
a,b
M,N (w; z) obeys the duality

condition
�
hα(z) + g heα(w)

�
F

a,b
M,N (w; z) = 0 (5.6)

with

hα(z) ≡ H
α(z)− E

α
0 +

�
N − 2

α
− 1

�
[P(z)− P0]−

NM(M − 2)
4

, (5.7)

heα(w) ≡ H
eα(w)− E

eα
0 +

�
M − 2

�α − 1
�

[P(w)− P
�
0]−

NM(N − 2)
4

, (5.8)

where
α−1 = 1− g , �α−1 = 1− g−1 , α + �α = 1 . (5.9)

The constants Eα
0 ≡ Eα

λ0 and P0 ≡ Pλ0 are given by

E
α
0 =

h

3
N(N − 2)(N(2g − 1)− 5g + 4) , P0 = N(N − 2)h , (5.10)

while E eα
0 and P �

0 are given by similar expressions with g → g−1 and N → M and λ0 → λ�0. The degree of
homogeneity of Fa,b

M,N (w; z) in both the variables w and z is

P(z) + P(w) = N(N − 2)h + M(M − 2)�h + MN/2 (5.11)

and it is clear that generically this function cannot be expanded in polynomial eigenbases neither in w nor
in z. However, it can be expanded on non-polynomial eigenfunctions of Hα(z) and Heα(w) and a duality
property similar to that of section (4.4) holds

F
a,b
M,N (w; z) =

�

λ

P eα,a
λ� (w)Pα,b

λ (z) . (5.12)

This looks like the duality property [28, 37, 29] of the Calogero-Sutherland model g → 1/g, with some
differences. One difference consists in the boundary condition of the CS eigenfunctions, which force us to
choose α = 1/(1 − g). The second is the non-abelian monodromy of the conformal blocks, and the third is
the non-polynomial nature of the eigenfunctions.

Although neither Pα,b
λ (z) nor P eα,a

λ� (w) are polynomials, we are still able to compute the leading powers
for z1 � z2 � · · · � zN and w1 � w2 � · · · � wM when M = 0 and N = 0 respectively. Let us consider
the case M = 0 and the first conformal block, where the successive fields are fused two by two into the
identity. Since the eigenvalues do not depend on the conformal block, this case is sufficiently general. The
leading powers in F1

0,N (z) are

z2h(N−2)
1 z2h(N−2)

2 z2h(N−4)
3 z2h(N−4)

4 . . . z0
N−1z

0
N (5.13)

and similarly for F1
M,0(w). We infer that the “partition”5 corresponding to the lowest eigenstate in w is

given by

λ�02j−1 = λ�02j = 2�h(M − 2j) , j = 1, . . . ,M/2 . (5.14)
5We use the quotes in ”partition” to stress that the parts λi are generally not integers, which is related to the fact that the

corresponding eigenfunctions are not polynomials.
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and it corresponds under the duality to the maximum “partition”

Λ0
i = λ0

i +
M

2
, (5.15)

λ0
2i−1 = λ0

2i = 2h(N − 2i) , i = 1, . . . , N/2 .

It is encouraging that for the Ising model we have 2h = 1 and we retrieve the partition λ0 from (4.16) which
has the property of (2, 2) admissibility. Whenever 2h is an integer, λ0 becomes a true partition (with integer
parts) and the corresponding eigenfunction is a Jack polynomial. We now turn to the description of the
excited states λ appearing in the expansion (5.12). It is likely that they differ from the ground state λ0 by
λi − λ0

i = ni with ni positive integers, since they can be constructed from the ground state by applying
some ”creation operators” [?] which increase degree of homogeneity by one to Raoul: can you add this
reference?. We conjecture that the sets λ and λ� are characterized by two sets of dual partitions ne,o and
n�e,o in the following manner

λ2i−1 = Λ0
2i−1 − ne

N/2−i+1 , λ2i = Λ0
2i − no

N/2−i+1 , (5.16)

λ�2i−1 = λ�02j−1 + n�oj , λ�2j = λ0
2j + n�ej , (5.17)

with ne,o
i ≤M/2 and n�e,o

i ≤ N/2 . (5.18)

For a partition n with lines of length ni the dual partition n�, with lines of length n�j , is the partition where
the lines of n become the columns of n�. For two partitions n and n� dual to each other the following relations
hold [28]

b(n) ≡ 2
�

i

(i− 1)ni =
�

j

n�j(n
�
j − 1) , |n| ≡

�

i

ni = |n�| . (5.19)

We can check this conjecture by evaluating the eigenvalues of Hα(z) and Heα(w) on the corresponding
states, eigenvalues which are given in equation (2.13)

E
α
λ =

N�

i=1

λi[λi + (1− g)(N + 1− 2i)] (5.20)

E
eα
λ� =

M�

j=1

λ�j [λ
�
j + (1− g−1)(M + 1− 2j)] . (5.21)

Substituting the expressions (5.16), (5.17) in the above formulas and using the notations from equation (5.19)
we obtain now the expressions of the energies of the intermediate states purely in terms of the partitions
ne,o and n�e,o as

E
α
λ = [b(n�o) + b(n�e)]− g [b(no) + b(ne)] + ((1− g)N −M + g)(|no

|+ |ne
|) + 2(g − 1)|ne

|+ E
α
(M/2)N (5.22)

and

E
eα
λ� = [b(no) + b(ne)]−

1
g

[b(n�o) + b(n�e)] +
(2− g)M + 2g − 3

g
(|n�e|+ |n�o|) +

2(g − 1)
g

|n�o|+ E
eα
0 . (5.23)

It is a non-trivial check of the conjectured expressions (5.16), (5.17) that the two eigenvalues Eα
λ and E eα

λ�

satisfy the duality condition implied by (5.6)

E
α
λ − E

α
0 + g(E eα

λ� − E
eα
0 ) +

�
N − 2

α
− 1

�
(Pλ − P0) + g

�
M − 2

�α − 1
�

(Pλ� − P0�) =

E
α
(M/2)N − E

α
0 +

NM

2

�
N − 2

α
− 1

�
=

NM(M − 2)
4

+
gMN(N − 2)

4
. (5.24)

In the particular case of the Ising CFT (g = 4/3), we checked explicitly the duality in some particular cases.
In Appendix B we give the explicit expressions of the non-polynomial eigenfunctions P 4,a

λ� (w) for M = 4 and
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smallest “partition”

largest “partition”
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i +
M

2
, (5.15)

λ0
2i−1 = λ0

2i = 2h(N − 2i) , i = 1, . . . , N/2 .

It is encouraging that for the Ising model we have 2h = 1 and we retrieve the partition λ0 from (4.16) which
has the property of (2, 2) admissibility. Whenever 2h is an integer, λ0 becomes a true partition (with integer
parts) and the corresponding eigenfunction is a Jack polynomial. We now turn to the description of the
excited states λ appearing in the expansion (5.12). It is likely that they differ from the ground state λ0 by
λi − λ0

i = ni with ni positive integers, since they can be constructed from the ground state by applying
some ”creation operators” [?] which increase degree of homogeneity by one to Raoul: can you add this
reference?. We conjecture that the sets λ and λ� are characterized by two sets of dual partitions ne,o and
n�e,o in the following manner

λ2i−1 = Λ0
2i−1 − ne

N/2−i+1 , λ2i = Λ0
2i − no

N/2−i+1 , (5.16)

λ�2i−1 = λ�02j−1 + n�oj , λ�2j = λ0
2j + n�ej , (5.17)

with ne,o
i ≤M/2 and n�e,o

i ≤ N/2 . (5.18)

For a partition n with lines of length ni the dual partition n�, with lines of length n�j , is the partition where
the lines of n become the columns of n�. For two partitions n and n� dual to each other the following relations
hold [28]

b(n) ≡ 2
�

i

(i− 1)ni =
�

j

n�j(n
�
j − 1) , |n| ≡

�

i

ni = |n�| . (5.19)

We can check this conjecture by evaluating the eigenvalues of Hα(z) and Heα(w) on the corresponding
states, eigenvalues which are given in equation (2.13)

E
α
λ =

N�

i=1

λi[λi + (1− g)(N + 1− 2i)] (5.20)

E
eα
λ� =

M�

j=1

λ�j [λ
�
j + (1− g−1)(M + 1− 2j)] . (5.21)

Substituting the expressions (5.16), (5.17) in the above formulas and using the notations from equation (5.19)
we obtain now the expressions of the energies of the intermediate states purely in terms of the partitions
ne,o and n�e,o as

E
α
λ = [b(n�o) + b(n�e)]− g [b(no) + b(ne)] + ((1− g)N −M + g)(|no

|+ |ne
|) + 2(g − 1)|ne

|+ E
α
(M/2)N (5.22)

and

E
eα
λ� = [b(no) + b(ne)]−

1
g

[b(n�o) + b(n�e)] +
(2− g)M + 2g − 3

g
(|n�e|+ |n�o|) +

2(g − 1)
g

|n�o|+ E
eα
0 . (5.23)

It is a non-trivial check of the conjectured expressions (5.16), (5.17) that the two eigenvalues Eα
λ and E eα

λ�

satisfy the duality condition implied by (5.6)

E
α
λ − E

α
0 + g(E eα

λ� − E
eα
0 ) +

�
N − 2

α
− 1

�
(Pλ − P0) + g

�
M − 2

�α − 1
�

(Pλ� − P0�) =

E
α
(M/2)N − E

α
0 +

NM

2

�
N − 2

α
− 1

�
=
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4

+
gMN(N − 2)

4
. (5.24)

In the particular case of the Ising CFT (g = 4/3), we checked explicitly the duality in some particular cases.
In Appendix B we give the explicit expressions of the non-polynomial eigenfunctions P 4,a

λ� (w) for M = 4 and
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•    Ising: 2h=1                        is a partition satisfiying the (2,2) admissibility condition

The function F
a,b
M,N (w; z) has again the property of being regular whenever two fields come close to each

other, since the short-distance singularities of the corresponding fields are given by

Φ12(z1)Φ12(z2) ∼
I

(z1 − z2)2h
, (5.3)

Φ21(w1)Φ21(w2) ∼
I

(w1 − w2)2eh
, (5.4)

Φ21(z1)Φ12(w1) ∼
Φ22(w1)

(z1 − w1)1/2
, (5.5)

The null-vector conditions (3.11) can be combined together to show that F
a,b
M,N (w; z) obeys the duality

condition
�
hα(z) + g heα(w)

�
F

a,b
M,N (w; z) = 0 (5.6)

with

hα(z) ≡ H
α(z)− E

α
0 +

�
N − 2

α
− 1

�
[P(z)− P0]−

NM(M − 2)
4

, (5.7)

heα(w) ≡ H
eα(w)− E

eα
0 +

�
M − 2

�α − 1
�

[P(w)− P
�
0]−

NM(N − 2)
4

, (5.8)

where
α−1 = 1− g , �α−1 = 1− g−1 , α + �α = 1 . (5.9)

The constants Eα
0 ≡ Eα

λ0 and P0 ≡ Pλ0 are given by

E
α
0 =

h

3
N(N − 2)(N(2g − 1)− 5g + 4) , P0 = N(N − 2)h , (5.10)

while E eα
0 and P �

0 are given by similar expressions with g → g−1 and N → M and λ0 → λ�0. The degree of
homogeneity of Fa,b

M,N (w; z) in both the variables w and z is

P(z) + P(w) = N(N − 2)h + M(M − 2)�h + MN/2 (5.11)

and it is clear that generically this function cannot be expanded in polynomial eigenbases neither in w nor
in z. However, it can be expanded on non-polynomial eigenfunctions of Hα(z) and Heα(w) and a duality
property similar to that of section (4.4) holds

F
a,b
M,N (w; z) =

�

λ

P eα,a
λ� (w)Pα,b

λ (z) . (5.12)

This looks like the duality property [28, 37, 29] of the Calogero-Sutherland model g → 1/g, with some
differences. One difference consists in the boundary condition of the CS eigenfunctions, which force us to
choose α = 1/(1 − g). The second is the non-abelian monodromy of the conformal blocks, and the third is
the non-polynomial nature of the eigenfunctions.

Although neither Pα,b
λ (z) nor P eα,a

λ� (w) are polynomials, we are still able to compute the leading powers
for z1 � z2 � · · · � zN and w1 � w2 � · · · � wM when M = 0 and N = 0 respectively. Let us consider
the case M = 0 and the first conformal block, where the successive fields are fused two by two into the
identity. Since the eigenvalues do not depend on the conformal block, this case is sufficiently general. The
leading powers in F1

0,N (z) are

z2h(N−2)
1 z2h(N−2)

2 z2h(N−4)
3 z2h(N−4)

4 . . . z0
N−1z

0
N (5.13)

and similarly for F1
M,0(w). We infer that the “partition”5 corresponding to the lowest eigenstate in w is

given by

λ�02j−1 = λ�02j = 2�h(M − 2j) , j = 1, . . . ,M/2 . (5.14)
5We use the quotes in ”partition” to stress that the parts λi are generally not integers, which is related to the fact that the

corresponding eigenfunctions are not polynomials.
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special conformal block with X=I:

N∑

i=1

z2
i O

g
i 〈Ψ(z1) . . .Ψ(zN)〉 = 0 . (41) Nff_de

∏

i<j

zij 〈Ψ(z1) . . .Ψ(zN )〉 =
∏

i<j

zij Pf

(
1

zij

)
= J−3

λ0
(z) (42) MR_gs

H =
∑

i"=j "=k

δ(2)(xi − xj)δ
(2)(xj − xk) (43)

〈Φ12(z1) · · ·Φ12(zN)〉a
∏

i<j

z2h
ij
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smallest “partition”    

It is therefore natural to expand the function Fa
M,N (w; z) on the basis of Jack polynomial J−3

λ (z) where
λ is a (2, 2, N) admissible partition:

F
a(w; z) =

�

λ

P 4,a
λ� (w)J−3

λ (z) (4.22)

λ (2, 2, N)− admissible , λ0
i ≤ λi ≤ Λ0

i (M) , (4.23)

where the maximum admissible partition Λ0(M) is defined below in (??) and λ0 ≡ Λ0(M = 0). In the above
expression we have:

H
−3(z) J−3

λ (z) = E
−3
λ J−3

λ (z) (4.24)

with the energies E−3
λ given in (2.13). The P 1/4,a

λ (w) are, so far, some (non polynomial) function of the
variables w which we will completely specify in the following. In this respect, the crucial observation is that,
by using the N + M second order null-vector conditions (3.11), one can show that [19]

�
3
4
H
−3(z) +

5−M −N

4

N�

i

zi∂i + H
4(w)

�
F

a
M,N (w; z) = E(M, N)Fa

M,N (w; z) (4.25)

with

E(N, M) = −
1

192
�
−2M3 + M2(3− 12N) + M

�
2− 24N − 24N2

�
− 8N

�
−14 + 3N + 2N2

��
. (4.26)

The above equations imply then that the differential operator annihilating the Fa
M,N (w; z) decouples in the

variables z and w. From the (4.25), in the expansion (4.23) the P 4
λ�(w) are then eigenstates of H4:

H
4(w) P 4,a

λ� (w) = E
4
λ� P 4,a

λ� (w) (4.27)

with
3
4
E
−3
λ + E

4
λ� +

5−M −N

4
|λ| = E(N,M). (4.28)

Note that we have associated the eigenfunctions P 4,a
λ� (w) to an admissible partition λ�. Until now this is

a simply consequence of the expansion 4.23. We will show that this labeling has a precise mathematical
meaning which can be traced back to the duality of the Calogero-Sutherland model and generalises to each
values of the central charge, i.e. of g. Since this property generalizes to the Virasoro models, we are going
to describe it in the general case in the next section.

5 Generic Virasoro models

Most of the results which were obtained for the Ising model (g = 4/3) in the previous section hold for
arbitrary values of g. This is in particular the case for the duality relation obeyed by the conformal blocks
involving second order degenerate fields (4.25). What is lost is the property of certain wave-functions being
polynomial. Let us define

F
a,b
M,N (w; z) ≡ �Φ21(w1) · · ·Φ21(wM )Φ12(z1) · · ·Φ12(zN )�a,b

M�

1≤i<j

w2eh
ij

�

i,j

(wi − zj)1/2
N�

1≤i<j

z2h
ij (5.1)

where the conformal block structure is now taken into account by the double index a, b, and we denote for
simplicity

h = ∆12 =
3g

4
−

1
2

, �h = ∆21 =
3
4g

−
1
2

. (5.2)
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How to characterize an arbitrary excited  “partition”     (          generically not integers)  ?
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with the energies E−3
λ given in (2.13). The P 1/4,a

λ (w) are, so far, some (non polynomial) function of the
variables w which we will completely specify in the following. In this respect, the crucial observation is that,
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meaning which can be traced back to the duality of the Calogero-Sutherland model and generalises to each
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to describe it in the general case in the next section.

5 Generic Virasoro models

Most of the results which were obtained for the Ising model (g = 4/3) in the previous section hold for
arbitrary values of g. This is in particular the case for the duality relation obeyed by the conformal blocks
involving second order degenerate fields (4.25). What is lost is the property of certain wave-functions being
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h = ∆12 =
3g

4
−

1
2

, �h = ∆21 =
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−
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N∑

i=1

z2
i O

g
i 〈Ψ(z1) . . .Ψ(zN)〉 = 0 . (41) Nff_de

∏

i<j

zij 〈Ψ(z1) . . .Ψ(zN )〉 =
∏

i<j

zij Pf

(
1

zij

)
= J−3

λ0
(z) (42) MR_gs

H =
∑

i"=j "=k

δ(2)(xi − xj)δ
(2)(xj − xk) (43)

〈Φ12(z1) · · ·Φ12(zN)〉a
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i<j

z2h
ij

c = 1 − 12α2
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λ1 ≥ ... ≥ λN ≥ 0
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G̃±(s) = 2i(ε/s)1∓ 1

4

(
∞∑

n=0

α±n,0

Γ(n ± 1
4)

sn + O(ε)

)

g̃±(s) =
∑

n≥0

g±
n s−n−1/2 +

∑

n≥0

h±
n s−n−1

f(ε) =
1

ε
+ 4

∑

n∈Z

ε|n|−1n αn(ε) =
1

ε
−

3 ln 2

π
−

K

π2
ε + . . .

Ψ(x2, x1) = ±Ψ(x1, x2)

Ψ(x2, x1) = eiπλ Ψ(x1, x2)

λ = 0 bosons (36)

λ = 1 fermions (37)

λ = 1/2 systèmes magnétiques, condensats de Bose − Einstein (38)

λ = 1/3 effet Hall quantique fractionnaire (39)

Y +
a,sY

−
a,s =

(1 + Ya,s+1)(1 + Ya,s−1)

(1 + 1/Ya+1,s)(1 + 1/Ya−1,s)

D2 = −2
L∑

i=1

(Pi,i+1 − 1) . (40)

gs ∼
1

N2

Ya,0(x) =

(
xa−

xa+

)L fa−

fa+
T l

a,−1 T r
a,1

T±
a,s = Ta,s(u ± i/2)

f(u) → f̃(u)

u → u

(xa+, xa−) → (xa+, 1/xa−)

δE ∼ Ỹa,0(x) ∼ g2L

g2 =
λ

16π2

Ωij(xk)

i, j = 1̂, . . . , 4̂, 1̃, . . . , 4̃
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and it corresponds under the duality to the maximum “partition”

Λ0
i = λ0

i +
M

2
, (5.15)

λ0
2i−1 = λ0

2i = 2h(N − 2i) , i = 1, . . . , N/2 .

It is encouraging that for the Ising model we have 2h = 1 and we retrieve the partition λ0 from (4.16) which
has the property of (2, 2) admissibility. Whenever 2h is an integer, λ0 becomes a true partition (with integer
parts) and the corresponding eigenfunction is a Jack polynomial. We now turn to the description of the
excited states λ appearing in the expansion (5.12). It is likely that they differ from the ground state λ0 by
λi − λ0

i = ni with ni positive integers, since they can be constructed from the ground state by applying
some ”creation operators” [?] which increase degree of homogeneity by one to Raoul: can you add this
reference?. We conjecture that the sets λ and λ� are characterized by two sets of dual partitions ne,o and
n�e,o in the following manner

λ2i−1 = Λ0
2i−1 − ne

N/2−i+1 , λ2i = Λ0
2i − no

N/2−i+1 , (5.16)

λ�2i−1 = λ�02j−1 + n�oj , λ�2j = λ0
2j + n�ej , (5.17)

with ne,o
i ≤M/2 and n�e,o

i ≤ N/2 . (5.18)

For a partition n with lines of length ni the dual partition n�, with lines of length n�j , is the partition where
the lines of n become the columns of n�. For two partitions n and n� dual to each other the following relations
hold [28]

b(n) ≡ 2
�

i

(i− 1)ni =
�

j

n�j(n
�
j − 1) , |n| ≡

�

i

ni = |n�| . (5.19)

We can check this conjecture by evaluating the eigenvalues of Hα(z) and Heα(w) on the corresponding
states, eigenvalues which are given in equation (2.13)

E
α
λ =

N�

i=1

λi[λi + (1− g)(N + 1− 2i)] (5.20)

E
eα
λ� =

M�

j=1

λ�j [λ
�
j + (1− g−1)(M + 1− 2j)] . (5.21)

Substituting the expressions (5.16), (5.17) in the above formulas and using the notations from equation (5.19)
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In the particular case of the Ising CFT (g = 4/3), we checked explicitly the duality in some particular cases.
In Appendix B we give the explicit expressions of the non-polynomial eigenfunctions P 4,a
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In the particular case of the Ising CFT (g = 4/3), we checked explicitly the duality in some particular cases.
In Appendix B we give the explicit expressions of the non-polynomial eigenfunctions P 4,a

λ� (w) for M = 4 and

13

An excited state       is characterized by two partitions ne   and no   (reminiscent of AGT conjecture):

It is therefore natural to expand the function Fa
M,N (w; z) on the basis of Jack polynomial J−3

λ (z) where
λ is a (2, 2, N) admissible partition:

F
a(w; z) =

�

λ

P 4,a
λ� (w)J−3

λ (z) (4.22)

λ (2, 2, N)− admissible , λ0
i ≤ λi ≤ Λ0

i (M) , (4.23)

where the maximum admissible partition Λ0(M) is defined below in (??) and λ0 ≡ Λ0(M = 0). In the above
expression we have:

H
−3(z) J−3

λ (z) = E
−3
λ J−3

λ (z) (4.24)

with the energies E−3
λ given in (2.13). The P 1/4,a

λ (w) are, so far, some (non polynomial) function of the
variables w which we will completely specify in the following. In this respect, the crucial observation is that,
by using the N + M second order null-vector conditions (3.11), one can show that [19]

�
3
4
H
−3(z) +

5−M −N

4

N�

i

zi∂i + H
4(w)

�
F

a
M,N (w; z) = E(M, N)Fa

M,N (w; z) (4.25)

with

E(N, M) = −
1

192
�
−2M3 + M2(3− 12N) + M

�
2− 24N − 24N2

�
− 8N

�
−14 + 3N + 2N2

��
. (4.26)

The above equations imply then that the differential operator annihilating the Fa
M,N (w; z) decouples in the

variables z and w. From the (4.25), in the expansion (4.23) the P 4
λ�(w) are then eigenstates of H4:

H
4(w) P 4,a

λ� (w) = E
4
λ� P 4,a

λ� (w) (4.27)

with
3
4
E
−3
λ + E

4
λ� +

5−M −N

4
|λ| = E(N,M). (4.28)

Note that we have associated the eigenfunctions P 4,a
λ� (w) to an admissible partition λ�. Until now this is

a simply consequence of the expansion 4.23. We will show that this labeling has a precise mathematical
meaning which can be traced back to the duality of the Calogero-Sutherland model and generalises to each
values of the central charge, i.e. of g. Since this property generalizes to the Virasoro models, we are going
to describe it in the general case in the next section.

5 Generic Virasoro models

Most of the results which were obtained for the Ising model (g = 4/3) in the previous section hold for
arbitrary values of g. This is in particular the case for the duality relation obeyed by the conformal blocks
involving second order degenerate fields (4.25). What is lost is the property of certain wave-functions being
polynomial. Let us define

F
a,b
M,N (w; z) ≡ �Φ21(w1) · · ·Φ21(wM )Φ12(z1) · · ·Φ12(zN )�a,b

M�

1≤i<j

w2eh
ij

�

i,j

(wi − zj)1/2
N�

1≤i<j

z2h
ij (5.1)

where the conformal block structure is now taken into account by the double index a, b, and we denote for
simplicity

h = ∆12 =
3g

4
−

1
2

, �h = ∆21 =
3
4g

−
1
2

. (5.2)
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u(1) x Virasoro models

introduce a u(1) component                 electromagnetic current for FQHE

They are degenerate at level L = 2:

�
L2
−1 − gL−2

�
Φ(1|2) = 0 ,

�
L2
−1 −

1

g
L−2

�
Φ(2|1) = 0 . (3.9)

The null vector conditions characterizing a field Φ(r|s) yields a differential equation of order rs which is

satisfied by any conformal block containing Φ(r|s). In particular, for the fields Φ(1|2) and Φ(2|1), this gives an

order 2 differential equation which can be related to the Calogero-Sutherland Hamiltonian [16, 17, 18, 19].

Consider the most generic conformal block containing the field Φ(1|2), namely

�Φ(1|2)(z1)Φ∆2(z2) . . . Φ∆N (zN )� . (3.10)

Using standard contour deformation manipulations [32], the null-vector condition (3.9) can be cast in the

differential form

O
g
(z)�Φ(1|2)(z)Φ∆1(z1) . . . Φ∆N (zN )� = 0 (3.11)

where the order 2 differential operator Og
(z) is

O
g
(z) =

∂2

∂z2
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


N�

j=1

∆i

(z − zj)
2

+
1

z − zj

∂

∂zj



 . (3.12)

Likewise, conformal blocks containing the dual field Φ(2|1) obey a similar differential equation, which can be

obtained by simply changing g → 1/g.

3.3 u(1) CFT

The CFT based on the Heisenberg algebra has an additional u(1) symmetry generated by a conserved current

J(z) of conformal dimension one. As usual one defines the operator an through the Laurent series of the

J(z) current:

J(z)Φ(w) ≡

�

n

1

(z − w)n+1
anΦ(w) (3.13)

and they obey the so called Heisenberg algebra:

[an, am] = nδn+m,0 . (3.14)

The stress energy tensor T (z) of the theory is given by:

T (z) =
1

2
: J(z)J(z) : (3.15)

where :: stands for the regularized product, and has central charge c = 1. The correspondent Virasoro

operators ln3
are written in terms of an as

ln =
1

2

�

m∈Z
an−mam n �= 0 (3.16)

l0 =

�

m>0

a−mam +
1

2
a2
0 . (3.17)

The ln commute with the an in the following way

[ln, am] = −man+m (3.18)

and form a Virasoro algebra with central charge c = 1

[ln, lm] = (n−m)ln+m +
1

12
n(n2

− 1)δn+m,0 . (3.19)

3Throughout the paper we use the notation ln to refer to the Virasoro operator associated to the u(1) CFT.
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Heisenberg algebra :

Virasoro algebra :

N = 2. In the Ising case, due to the constraint of (2, 2, N) admissibility of the partition λ, (4.17), no
and ne

obey the extra mutual constraints

0 ≤ ne
i ≤ no

i ≤ M/2 , no
i+1 ≤ ne

i + 2 . (5.25)

States which are indexed by a pair (k-uple) of Young diagrams appeared in the expression of the Nekrasov’s

instanton partition function [20] which can be related to the conformal blocks of the Liouville theory [22].

Since Liouville theory can be treated exactly in the same fashion as the generic Virasoro models in this

section, provided that we change the sign of the coupling constant g, one can suspect that the basis we have

identified in this section is related to the basis used to prove the AGT conjecture [22, 21]. In the remaining of

this section we are going to show that this basis indeed corresponds to the basis considered by Alba, Fateev,

Litvinov and Tanopolsky in [21].

5.1 The u(1) sector and the Coulomb gas representation of the minimal model

An essential feature in proving the duality (5.6) is the presence of the term
�

i,j(zi − wj)
1/2

which dresses

the conformal block in Fa,b
M,N (w; z). This factor can be accounted for by introducing an u(1) component in

the CFT. In the context of the quantum Hall effect, the u(1) component carries the electric charge. The

corresponding conserved current is J(z) = i∂φ(z). It is more convenient to work with a slightly modified

function

F a,b
M,N (w; z) ≡ Fa,b

M,N (w; z)

N�

1≤i<j

z1−g
ij

M�

1≤i<j

w1−g−1

ij , (5.26)

which corresponds exactly to conformal blocks of the product theory

F a,b
M,N (w; z) = ��V (w1) . . . �V (wM ) V (z1) . . . V (zN )�a,b , (5.27)

with

V (z) ≡ Φ12(z) ei
√

g
2 φ(z) , �V (w) ≡ Φ21(w) ei 1√

2g
φ(w) . (5.28)

The minimal model can be represented also with the help of a bosonic field ϕ(z), with some constraints

which include the null vector conditions (3.9). Denoting the Fourier modes of the bosonic field ϕ(z) by bn,

the generators of the Virasoro algebra (3.2) are given by

Ln =
1

2

�

m∈Z
: bn−mbm : −α0(n + 1)bn , with 2α0 =

�
2

g
−

�
2g . (5.29)

The operator with conformal dimension ∆α = α(α − 2α0)/2 can be represented with one of the vertex

operators

Φα(z) ∼: eiαϕ(z)
: or Φα(z) ∼: ei(2α0−α)ϕ(z)

: . (5.30)

The identification of the vertex operators with reflected charge α and 2α0 − α is a non-trivial property of

the theory. Let us consider the first possibility for the field identification in (5.30); we can then write for the

fields in (5.28)

V (z) =: ei
√

g
2 [φ(z)+ϕ(z)]

: , �V (w) =: ei 1√
2g

[φ(w)−ϕ(z)]
: . (5.31)

Let us note that the Virasoro modes Ln in (5.29) are left invariant under simultaneous change of sign of the

bosonic modes bn and of the charge at infinity α0, which in turn is equivalent to g → 1/g. This operation

exchanges the operators V (z) and �V (z) in equation (5.31) and it correspond to the duality transformation.

It is tempting to relate the decoupling relation (5.6) to the fact that the two vertex operators are built from

commuting bosonic fields.
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3.1 Virasoro algebra and primary fields

The conformal symmetry implies the existence of an holomorphic T (z) and anti-holomorphic T (z) stress

energy tensor. In two dimensions the conformal group is the tensor product of holomorphic and antiholo-

morphic Virasoro algebras which are formed respectively by the Virasoro operators Ln and Ln. For our

purposes we consider only the holomorphic part of the theory, i.e. the holomorphic part of functions and

fields.

The Virasoro operators Ln are defined from the Laurent series of the stress-energy tensor T (z)

T (z)Φ(w) ≡
�

n

1

(z − w)n+2
LnΦ(w) (3.1)

and obey the commutation relations

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0. (3.2)

The above relations define the Virasoro algebra with central charge c.
A Virasoro primary field Φ∆(z) satisfies the following relations

L0Φ∆ = ∆Φ∆ LnΦ∆ = 0 for n > 0 (3.3)

The ∆ appearing in the above expression is the conformal dimension of the field primary Φ. To each primary

field correspond an infinite family of fields, called descendants, which are obtained by acting with the Virasoro

operators on Φ∆,

Φ
(n1,n2,...,nk)
∆ = L−nk . . . L−n1Φ∆. (3.4)

The descendant fields Φ
(n1,n2,...,nk)
∆ are eigenvectors of L0 with eigenvalue ∆ + L, where L =

�
i ni is called

level and classify the descendant fields. For general values of c and ∆, all the independent fields are obtained

by setting n1 ≥ n2 ≥ n2 · · · ≥ nk. The number of possible descendants at a level L is then equal to the

possible partitions of L.

3.2 Degenerate fields and differential equations

For special value of the conformal dimension ∆, ∆ = ∆(c), one can establish the existence of a descendant

field χ(∆, L) at a certain level L such that Lnχ(∆, L) = 0 for n > 0. The primary field Φ∆ is then said to

be degenerate at level L with χ(∆, L) being coined a null-vector.

It is convenient in this respect to reparametrize the theory by defining:

c = 1− 6
(g − 1)2

g
(3.5)

As it will be clear later, the fact that we use the same notation g for the parameter fixing the central charge

in the above expression and the coupling of the Calogero-Sutherland model in (2.6) is not casual. Degenerate

primary fields Φ(r|s) are labelled by two integers r and s. Their conformal dimension is

∆(r|s) =
1

4

�
r2 − 1

g
+ (s2 − 1)g + 2(1− rs)

�
, (3.6)

and they have a null-vector at level L = rs.
Such a null vector is equivalent to a linear relation between usually independent descendants. The identity

operator, for instance, can be identified with the field Φ(1|1) which presents a null-vector at level L = 1

L−1Φ(1|1)(z) = ∂zΦ(1|1)(z) = 0 . (3.7)

Of particular interest are the operators Φ(1|2) and Φ(2|1), with conformal dimension

∆(1|2) =
3g − 2

4
, ∆(2|1) =

3− 2g

4g
. (3.8)
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Let us note that the Virasoro modes Ln in (5.29) are left invariant under simultaneous change of sign of the

bosonic modes bn and of the charge at infinity α0, which in turn is equivalent to g → 1/g. This operation

exchanges the operators V (z) and �V (z) in equation (5.31) and it correspond to the duality transformation.

It is tempting to relate the decoupling relation (5.6) to the fact that the two vertex operators are built from

commuting bosonic fields.
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Consider generic correlation functions :

5.2 The Hilbert space and the Calogero-Sutherland integrals of motion

The duality (5.6) can be seen as a simple consequence of a deeper connection between Calogero-Sutherland
Hamiltonians and integrals of motions acting in the modules of V ir(g) ⊗ H. Here we describe this corre-
spondence. We are concerned with correlation functions

f
+
µ (z1, z2, · · · , zN ) = �µ|V (z1)V (z2) · · ·V (zN )|P � (5.32)

f
−
µ (z1, z2, · · · , zN ) = �P |V (z1)V (z2) · · ·V (zN )|µ� (5.33)

where |µ� is an arbitrary field (primary or descendant), and |P � is a primary field (i.e. annihilated by an

and Ln for n > 0). The order n CS Hamiltonian H
g
n can be rewritten as an operator I

±
n acting on the state

µ:
H

g
nf
±
µ (z1, z2, · · · , zN ) =

�

ν

�
I
±
n+1(g)

�
µ,ν

f
±
ν (z1, z2, · · · , zN ) (5.34)

To put it differently, f
±
µ (z1, · · · , zn) is an eigenstate of Hn(g) iff |µ� is an eigenstate of I

(±)
n+1(g). We checked

this correspondence and computed the value of I
±
n+1(g) for n = 2, 3 in Appendix A.

This expression for H
g
2 comes from the degeneracy at level 2 in the module of the operator V :

�
L

2
−1 − gL−2

�
V = 0 (5.35)

where V is defined:
V = Φ12 : e

i
√

g
2 ϕ : (5.36)

By standard contour deformation (see Appendix A for more details), this relation yields a differential equation
of order 2 for any correlator involving V (z). For a symmetric correlation function of the form (5.32), this
differential equation becomes the order 2 CS Hamiltonian

H
g
2 =

N�

i=1

�
zi

∂

∂zi

�2

+ g(1− g)
�

i �=j

zizj

z
2
ij

(5.37)

up to an extra term corresponding to the contours being at infinity, yielding an operator acting on �µ|. This
is of course the operator I

+
3 (g). The operator which acts on |µ� is I

−
3 (g) with

I
(±)
3 (g) = 2(1− g)

�

m≥1

ma−mam ±
�

2g

�

m�=0

a−mLm ±

�
g

2




�

m,k≥1

a−m−kamak + a−ma−kam+k



 . (5.38)

The relation for H
g
3 can be obtained from the degeneracy at level 3

(L−1 + 3
�

g/2a−1)
�
L

2
−1 − gL−2

�
V = 0 (5.39)

and the explicit expression for I
±
4 (g) is given in (A.39). I

−
4 (g) coincides, up to the change g → −g and

a change in normalizations of the bosonic operator, with the operator I4(g) which appeared in [21] in the
context of the AGT conjecture. We conjecture that this structure holds true for any n. This defines (two)
towers of commuting integral of motions I

+
n (g) and I

−
n (g), charge conjugate from one another.

In the module of the primary field P , i.e. the set of all V ir(g)⊗H descendants of P , one can diagonalize
the operators I

(±)
n (g). We denote the corresponding basis of descendants |P

±
λ (g)�. These two orthogonal

bases are charge conjugate from one another. In this basis, the OPE of N vertex operator V

V (z1) · · ·V (zN )|P � =
�

λ

F
(g,+)
λ (z1, · · · , zN )|P+

λ (g)� (5.40)

�P |V (z1) · · ·V (zN ) =
�

λ

F
(g,−)
λ (z1, · · · , zN )�P−λ (g)| (5.41)

enjoys a natural action of Calogero-Sutherland Hamiltonians. All the N -point functions

F
(g,+)
λ (z1, · · · , zN ) = �P

+
λ (g)|V (z1) · · ·V (zN )|P � F

(g,−)
λ (z1, · · · , zN ) = �P |V (z1) · · ·V (zN )|P−λ (g)� (5.42)
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i
√

g
2 ϕ : (5.36)

By standard contour deformation (see Appendix A for more details), this relation yields a differential equation
of order 2 for any correlator involving V (z). For a symmetric correlation function of the form (5.32), this
differential equation becomes the order 2 CS Hamiltonian
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up to an extra term corresponding to the contours being at infinity, yielding an operator acting on �µ|. This
is of course the operator I

+
3 (g). The operator which acts on |µ� is I

−
3 (g) with

I
(±)
3 (g) = 2(1− g)
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The relation for H
g
3 can be obtained from the degeneracy at level 3

(L−1 + 3
�

g/2a−1)
�
L

2
−1 − gL−2

�
V = 0 (5.39)

and the explicit expression for I
±
4 (g) is given in (A.39). I

−
4 (g) coincides, up to the change g → −g and

a change in normalizations of the bosonic operator, with the operator I4(g) which appeared in [21] in the
context of the AGT conjecture. We conjecture that this structure holds true for any n. This defines (two)
towers of commuting integral of motions I

+
n (g) and I

−
n (g), charge conjugate from one another.

In the module of the primary field P , i.e. the set of all V ir(g)⊗H descendants of P , one can diagonalize
the operators I

(±)
n (g). We denote the corresponding basis of descendants |P

±
λ (g)�. These two orthogonal

bases are charge conjugate from one another. In this basis, the OPE of N vertex operator V
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�

λ

F
(g,+)
λ (z1, · · · , zN )|P+
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λ (z1, · · · , zN )�P−λ (g)| (5.41)

enjoys a natural action of Calogero-Sutherland Hamiltonians. All the N -point functions

F
(g,+)
λ (z1, · · · , zN ) = �P

+
λ (g)|V (z1) · · ·V (zN )|P � F

(g,−)
λ (z1, · · · , zN ) = �P |V (z1) · · ·V (zN )|P−λ (g)� (5.42)
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: generic state (primary or descendant) 

Translate the CS action on states :
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Hamiltonians and integrals of motions acting in the modules of V ir(g) ⊗ H. Here we describe this corre-
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To put it differently, f
±
µ (z1, · · · , zn) is an eigenstate of Hn(g) iff |µ� is an eigenstate of I

(±)
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n+1(g) for n = 2, 3 in Appendix A.
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of order 2 for any correlator involving V (z). For a symmetric correlation function of the form (5.32), this
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up to an extra term corresponding to the contours being at infinity, yielding an operator acting on �µ|. This
is of course the operator I
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3 (g). The operator which acts on |µ� is I
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±
4 (g) is given in (A.39). I

−
4 (g) coincides, up to the change g → −g and

a change in normalizations of the bosonic operator, with the operator I4(g) which appeared in [21] in the
context of the AGT conjecture. We conjecture that this structure holds true for any n. This defines (two)
towers of commuting integral of motions I

+
n (g) and I

−
n (g), charge conjugate from one another.

In the module of the primary field P , i.e. the set of all V ir(g)⊗H descendants of P , one can diagonalize
the operators I

(±)
n (g). We denote the corresponding basis of descendants |P

±
λ (g)�. These two orthogonal

bases are charge conjugate from one another. In this basis, the OPE of N vertex operator V

V (z1) · · ·V (zN )|P � =
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λ

F
(g,+)
λ (z1, · · · , zN )|P+

λ (g)� (5.40)

�P |V (z1) · · ·V (zN ) =
�

λ

F
(g,−)
λ (z1, · · · , zN )�P−λ (g)| (5.41)

enjoys a natural action of Calogero-Sutherland Hamiltonians. All the N -point functions

F
(g,+)
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+
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The simplest way to realize the c = 1 theory is by introducing a free boson φ(z) normalized to

�φ(z)φ(w)� = − ln(z − w) . (3.20)

In terms of this boson the current J(z) reads

J(z) = i∂φ(z) . (3.21)

The primaries of the (3.14) algebra are the vertex operators Vβ =: eiβφ(z)
:

anVβ = 0 , n > 0 (3.22)

a0Vβ = β Vβ (3.23)

where β is the U(1) charge. From the (3.17), it is easy to derive the conformal dimension ∆β of the vertex

Vβ :

∆β =
β2

2
. (3.24)

From a vertex operator Vβ all possible independent descendant can be obtained by applying the an

operator, V (n1,...,nk)
β = an1 . . . ankVβ with n1 ≥ n2 · · · ≥ nk. Note that, for the c = 1 theory, there are no

singular vectors in this basis. Moreover the conformal block of N vertex operator are easily computed,

�Vβ1(z1) . . . Vβ2(zN )� =

�

i<j

z
βiβj

ij for

�

i

βi = 0 . (3.25)

4 u(1)⊗ Ising conformal field theory

In order keep the contact with the FQHE applications, we discuss first the structure of the conformal blocks

and the link with Calogero-Sutherland model in the framework of the Ising conformal field theory. The fact

that the fermionic conformal blocks of the Ising model are Jack polynomials with particular properties is

crucial to these applications. The generic Virasoro models which will be going to be discussed in the next

section are a generalization of the Ising model, where none of the conformal blocks can be expressed in

terms of polynomial eigenfunctions of the Calogero-Sutherland model. The parafermionic models which are

related to the WAk−1(k + 1, k + r) minimal models with k and r arbitrary integers ≥ 2 share with the Ising

model the feature that some of the conformal blocks can be expressed in terms of Jack polynomials with

clustering properties. This series can be extended to generic WAk−1 algebras if r is not integer; this case

will be discussed in section 6.

4.1 Ising primary fields

The Ising model is the unitary minimal model of the Virasoro algebra (3.2) with central charge c = 1/2. It

presents a finite number of operators which close under operator algebra: besides the identity I, there are

only the two Virasoro primary fields Φ12 and Φ21 with conformal dimension ∆12 = 1/2 and ∆21 = 1/16. In

our notations, this fixes g = 4/3. The fields Φ12 and Φ21 correspond to the free fermion field Ψ = Φ12 and

to the spin operator σ = Φ21. Their fusion relations read

Ψ(z)Ψ(w) =
1

z − w
I , (4.1)

σ(z)σ(w) =
CI

σ,σ

(z − w)1/8
I +

CΨ
σ,σ

(z − w)−3/8
Ψ(w) , (4.2)

σ(z)Ψ(w) =
Cσ

σ,ψ

(z − w)1/2
σ(w) , (4.3)

where the CZ
X,Y are the structure constants of the operator algebra.

7

N∑

i=1

z2
i O

g
i 〈Ψ(z1) . . .Ψ(zN)〉 = 0 . (41) Nff_de

∏

i<j

zij 〈Ψ(z1) . . .Ψ(zN )〉 =
∏

i<j

zij Pf

(
1

zij

)
= J−3

λ0
(z) (42) MR_gs

H =
∑

i"=j "=k

δ(2)(xi − xj)δ
(2)(xj − xk) (43)

〈Φ12(z1) · · ·Φ12(zN)〉a
∏

i<j

z2h
ij

c = 1 − 12α2
0
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5.2 The Hilbert space and the Calogero-Sutherland integrals of motion

The duality (5.6) can be seen as a simple consequence of a deeper connection between Calogero-Sutherland
Hamiltonians and integrals of motions acting in the modules of V ir(g) ⊗ H. Here we describe this corre-
spondence. We are concerned with correlation functions

f
+
µ (z1, z2, · · · , zN ) = �µ|V (z1)V (z2) · · ·V (zN )|P � (5.32)

f
−
µ (z1, z2, · · · , zN ) = �P |V (z1)V (z2) · · ·V (zN )|µ� (5.33)

where |µ� is an arbitrary field (primary or descendant), and |P � is a primary field (i.e. annihilated by an

and Ln for n > 0). The order n CS Hamiltonian H
g
n can be rewritten as an operator I

±
n acting on the state

µ:
H

g
nf
±
µ (z1, z2, · · · , zN ) =

�

ν

�
I
±
n+1(g)

�
µ,ν

f
±
ν (z1, z2, · · · , zN ) (5.34)

To put it differently, f
±
µ (z1, · · · , zn) is an eigenstate of Hn(g) iff |µ� is an eigenstate of I

(±)
n+1(g). We checked

this correspondence and computed the value of I
±
n+1(g) for n = 2, 3 in Appendix A.

This expression for H
g
2 comes from the degeneracy at level 2 in the module of the operator V :

�
L

2
−1 − gL−2

�
V = 0 (5.35)

where V is defined:
V = Φ12 : e

i
√

g
2 ϕ : (5.36)

By standard contour deformation (see Appendix A for more details), this relation yields a differential equation
of order 2 for any correlator involving V (z). For a symmetric correlation function of the form (5.32), this
differential equation becomes the order 2 CS Hamiltonian

H
g
2 =

N�

i=1

�
zi

∂

∂zi

�2

+ g(1− g)
�

i �=j

zizj

z
2
ij

(5.37)

up to an extra term corresponding to the contours being at infinity, yielding an operator acting on �µ|. This
is of course the operator I

+
3 (g). The operator which acts on |µ� is I

−
3 (g) with

I
(±)
3 (g) = 2(1− g)

�

m≥1

ma−mam ±
�

2g

�

m�=0

a−mLm ±

�
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2




�

m,k≥1

a−m−kamak + a−ma−kam+k



 . (5.38)

The relation for H
g
3 can be obtained from the degeneracy at level 3

(L−1 + 3
�

g/2a−1)
�
L

2
−1 − gL−2

�
V = 0 (5.39)

and the explicit expression for I
±
4 (g) is given in (A.39). I

−
4 (g) coincides, up to the change g → −g and

a change in normalizations of the bosonic operator, with the operator I4(g) which appeared in [21] in the
context of the AGT conjecture. We conjecture that this structure holds true for any n. This defines (two)
towers of commuting integral of motions I

+
n (g) and I

−
n (g), charge conjugate from one another.

In the module of the primary field P , i.e. the set of all V ir(g)⊗H descendants of P , one can diagonalize
the operators I

(±)
n (g). We denote the corresponding basis of descendants |P

±
λ (g)�. These two orthogonal

bases are charge conjugate from one another. In this basis, the OPE of N vertex operator V

V (z1) · · ·V (zN )|P � =
�

λ

F
(g,+)
λ (z1, · · · , zN )|P+

λ (g)� (5.40)

�P |V (z1) · · ·V (zN ) =
�

λ

F
(g,−)
λ (z1, · · · , zN )�P−λ (g)| (5.41)

enjoys a natural action of Calogero-Sutherland Hamiltonians. All the N -point functions

F
(g,+)
λ (z1, · · · , zN ) = �P

+
λ (g)|V (z1) · · ·V (zN )|P � F

(g,−)
λ (z1, · · · , zN ) = �P |V (z1) · · ·V (zN )|P−λ (g)� (5.42)
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up to an extra term corresponding to the contours being at infinity, yielding an operator acting on �µ|. This
is of course the operator I

+
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and the explicit expression for I
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4 (g) is given in (A.39). I
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4 (g) coincides, up to the change g → −g and

a change in normalizations of the bosonic operator, with the operator I4(g) which appeared in [21] in the
context of the AGT conjecture. We conjecture that this structure holds true for any n. This defines (two)
towers of commuting integral of motions I

+
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In the module of the primary field P , i.e. the set of all V ir(g)⊗H descendants of P , one can diagonalize
the operators I
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n (g). We denote the corresponding basis of descendants |P

±
λ (g)�. These two orthogonal

bases are charge conjugate from one another. In this basis, the OPE of N vertex operator V
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enjoys a natural action of Calogero-Sutherland Hamiltonians. All the N -point functions

F
(g,+)
λ (z1, · · · , zN ) = �P

+
λ (g)|V (z1) · · ·V (zN )|P � F

(g,−)
λ (z1, · · · , zN ) = �P |V (z1) · · ·V (zN )|P−λ (g)� (5.42)

15

•  second-order null vector condition:
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context of the AGT conjecture. We conjecture that this structure holds true for any n. This defines (two)
towers of commuting integral of motions I
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n (g), charge conjugate from one another.

In the module of the primary field P , i.e. the set of all V ir(g)⊗H descendants of P , one can diagonalize
the operators I
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±
λ (g)�. These two orthogonal
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V (z1) · · ·V (zN )|P � =
�

λ

F
(g,+)
λ (z1, · · · , zN )|P+

λ (g)� (5.40)

�P |V (z1) · · ·V (zN ) =
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enjoys a natural action of Calogero-Sutherland Hamiltonians. All the N -point functions
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•  null vector condition at level 3:

We obtained the following relation for Fa,b = �a|V (z1)V (z2) · · ·V (zN )|b�

H
g
2Fa,b =




−−→
I
(−)
3 (g) +

←−−
I
(+)
3 (g) + 4(g − 1)
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m≥1

m
←−
am
−→
am + E



Fa,b (A.32)

with

I
(±)
3 (g) = 2(1−g)

�

m≥1

ma−mam±
�

2g

�

m≥1

(a−mLm + L−mam)±
�

g

2




�

m,k≥1

a−m−kamak + a−ma−kam+k





(A.33)

The extra term
�

m≥1 m
←−
am
−→
am vanishes identically whenever a or b is primary, and E is simply a constant:

EFa,b =

�
g(N − 1) + (1− g) + 2

�
g
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−→
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��
�

i

zi∂i

�
Fa,b (A.34)

+

�
gN
−→
T0 + (g − 1)N

�
g

2

−→
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�
g
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A.2.3 Correspondence at level 3

It is quite natural to expect that a relation involving the order 3 CS Hamiltonian
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into a differential operator on one side and an operator acting in the conformal Hilbert space on the other

side. It turns our that demanding this separability amounts to consider the degeneracy:
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Using the same techniques as for the level 2 degeneracy we obtained the expression
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We obtained the following relation for Fa,b = �a|V (z1)V (z2) · · ·V (zN )|b�

H
g
2Fa,b =




−−→
I
(−)
3 (g) +

←−−
I
(+)
3 (g) + 4(g − 1)

�

m≥1

m
←−
am
−→
am + E



Fa,b (A.32)

with

I
(±)
3 (g) = 2(1−g)

�

m≥1

ma−mam±
�

2g

�

m≥1

(a−mLm + L−mam)±
�

g

2




�

m,k≥1

a−m−kamak + a−ma−kam+k





(A.33)

The extra term
�

m≥1 m
←−
am
−→
am vanishes identically whenever a or b is primary, and E is simply a constant:

EFa,b =

�
g(N − 1) + (1− g) + 2

�
g

2

−→
a0

��
�

i

zi∂i

�
Fa,b (A.34)

+

�
gN
−→
T0 + (g − 1)N

�
g

2

−→
a0 − g

�
g

�
N

3

�
+ (1− g)

�
N

2

�
+ 2

�
g

2

−→
a0

�
N

2

�
+ N

−→
a0

2

��
Fa,b (A.35)

A.2.3 Correspondence at level 3

It is quite natural to expect that a relation involving the order 3 CS Hamiltonian

H
g
3 =

N�

i=1

�
zi

∂

∂zi

�3

+
3

2
g(1− g)

�

i �=j

zizj

z
2
ij

(zi∂i − zj∂j) (A.36)

can be obtained from a degeneracy at level 3 of V = Φ(1|2) : e
i
√

g
2 ϕ

:. However there are two such null states:

• L−1

�
L

2
−1 − gL−2

�
V = 0

• a−1

�
L

2
−1 − gL−2

�
V = 0

and taking a generic linear combination of them will not work: the corresponding relation will not separate

into a differential operator on one side and an operator acting in the conformal Hilbert space on the other

side. It turns our that demanding this separability amounts to consider the degeneracy:

�
L−1 + 3

�
g

2
a−1

� �
L

2
−1 − gL−2

�
V = 0 (A.37)

i.e.

T
3
−1−gT−1T−2 +(g−3)

�
g

2
a−2T−1−ga

2
−1T−1−g

�
2ga−1T−2 +(g−1)

�
2ga−3 +g(g+1)a−1a−2 +g

�
2ga

3
−1

(A.38)

Using the same techniques as for the level 2 degeneracy we obtained the expression
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[Alba, Fateev, Litvinov, Tarnopolsky,10]
for Liouville

to investigate the AGT conjecture [22], i.e. the expansion of the Nekrasov instanton functions [20] of SU(2)
gauge theories in terms of conformal blocks of Liouville theory2. In some sense, our finding is not surprising.
The basis of descendant states have been shown [21] to diagonalize a series of commuting integrals of motion
which, in the classical limit, correspond to the Benjamin-Ono equation conserved quantities. The Benjamin-
Ono integrable hierarchy is in turn related to the CS system [25]. The advantage of our approach is that
the connection between the CS Hamiltonian and the set of commuting integral of motion obtained in [21] is
direct and explicit. For general k, the basis of descendant states associated to CS eigenfunctions is expected
[21] to play an analogous role in the generalization of the AGT conjecture concerning the SU(k) gauge
theories and the WAk−1 theories [23, 24].

Integrability of the CS Hamiltonian implies that there exists other, higher order conserved quantities
which should be simultaneously diagonalized by the CS eigenfunctions. We have proven that the conformal
blocks discussed above obey also a third-order differential equation which is related to the third order
CS Hamiltonian. In order to prove this property, we have used the null vector condition for a particular
descendant of the second order null vector. In our approach, it is still an open question how to systematically
obtain the whole tower of integral of motion. We have verified that our third order integral of motion coincides
with the expression I4 conjectured in Appendix C of [21].

Our strategy is as follow: we first conjecture the eigenenergy formula for the CS non-polynomial eigen-
states by using the separation of the variables between Ψ and σ fields and the singularity structure of the
conformal blocks. Second, we translate the action of the CS Hamiltonian in the differential form into an
operatorial form similar to that of [21], involving the Heisenberg and Virasoro (or more generally WAk−1)
generators. Then, using the bosonisation of Virasoro (WAk−1) algebra, and performing a change of basis
in the space of bosonic fields, like in [21] and in [26] we write the integral of motion associated to the CS
Hamiltonian in terms of k bosonic fields. As shown by Belavin and Belavin [26] in the case k = 2, for g = 1
the CS Hamiltonian splits into k copies of one-component bosonized CS Hamiltonians [30], with a trivial
coupling term involving the zero modes. This splitting explains in particular why we can characterize the
generic CS eigenstates using k partitions. Outside the point g = 1, the CS Hamiltonian is a sum of k copies
of one-component bosonized CS Hamiltonians with g �= 1, plus a coupling term with a triangular structure in
the creation/annihilation operators. The triangular structure of the coupling term insures that the spectrum
is still given by the sum of k one-component CS eigenenergies, each characterized by a partition. This proves
our initial conjecture on the eigenenergies. Finally, the duality g → 1/g has a very simple realization in
terms of the bosonized CS Hamiltonians and it gives rise to two dual bases in the Hilbert space.

The classical limit of the CS integrals of motion in the u(1) ⊗ WAk−1 gives rise to some integrable
hierarchy which is can be considered as a k component generalization of the Benjamin-Ono hierarchy.

The paper is organized as follows: sections 2 and 3 are reviewing basic facts about the CS model and
CFT’s respectively and are fixing the notations. Since the generic formulas for the WAk−1 algebras are
rather complicated, we have preferred to treat first the Virasoro case, k = 2 in section 4 and then repeat the
computation for generic k in section 5. In Appendix A we specialize to the Ising case, which is a special case
where a class of eigenfunctions become polynomial. Appendix B contains details on the derivation of the
operatorial form of the CS integrals of motion and Appendix C is devoted to the Coulomb gas representation
of the non-polynomial CS eigenfunctions.

2 Calogero-Sutherland model

In this section we review the standard relation between the Calogero-Sutherland model and Jack polynomials,
and introduce some notations.

2.1 Integrability and Hamitlonians

The trigonometric version of Calogero-Sutherland model is a one-dimensional quantum model defined by the
Hamiltonian:

H
g
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1
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∂
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+ g(g − 1)
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1≤i<j≤N

(π/L)2

sin2 [π(xi − xj)/L]
. (2.1)

2Our results can be related to those in [21] by changing g → −g.

2

second order CS hamiltonian: 

third order CS hamiltonian: 

are simultaneously eigenstates of the whole tower of Hamitlonians H
g
n because of the correspondence (5.34).

As the CFT remains unchanged under g → 1/g, one could think of introducing another two bases, namely
|P±λ (1/g)�. However the operators I

±
n (g) are self dual in the sense:

I
(±)
n (g) ∝ I

(∓)
n (1/g) (5.43)

and these bases are related through
|P±λ (g)� = |P∓λ (1/g)�. (5.44)

This relation induces the duality (5.6), as the (5.34) implies the following structure for the M points OPE
of �V :

�V (w1) · · · �V (wM )|P � =
�

λ

�F (1/g,+)
λ (w1, · · · , wM )|P−λ (1/g)� (5.45)

where �F (1/g,+)
λ (z1, · · · , zN ) diagonalize all CS Hamiltonians H

1/g
n . It is then straightforward to derive duality

relations of type (5.6) by inserting a complete basis of descendants |P−λ (g)� = |P+
λ (1/g)� between the V ’s

and �V ’s in the mixed correlator:
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5.3 The Virasoro model at g = 1

As noticed by Belavin and Belavin for the Liouville case [26], at g = 1 the structure of the Hilbert space
of the conformal field theory and the duality become particularly transparent, in particular we can better
understand the role of the extra u(1) component. After a change of basis, the theory can be described with
two copies of independent bosons, coupled only by zero modes. We give the details of the construction below
and we use the definitions from the section 5.1 for the bosonisation of the minimal model. Let us note that
at g = 1 the charge at infinity α0 defined in (5.29) vanishes and the stress-energy tensor is purely quadratic
in the bosonic field.

The first non-trivial integral of motion, I
±
3 is in this case cubic in the bosonic fields,

I
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Moreover, it is the odd in the operators am, so that

am → −am sends I
+
3 (1) → I

−
3 (1) = −I

+
3 (1) (5.48)

and it is even in the operators bm, since Lm is quadratic in the bm’s. The next integral of motion, I
±
4 is even

in both sets of bosonic creation/annihilation operators am and bm,
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We are going to show that these two integrals of motion can be separated each into sums of two integrals
of motion for independent bosons, plus a part containing the zero mode b0. Let us rotate the bosonic basis
and define the new bosonic operators

cm =
1√
2

(am + bm) , �cm =
1√
2

(am − bm) (5.50)
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•  rotate the boson basis: [AFLT, 10; Belavin and Belavin, 11]

•  introduce the one-component bosonised CS Hamiltonians:

Modulo the normalizations, these vectors coincide with the ones of Belavin and Belavin [26]. The corre-
sponding eigenvalues of I3 are −2, 2, 0, while for I4 they are −4,−4,−1.

For states which are not in the module of the identity but have a charge q, b0|q� = q|q�, we have

|no
, n

�e; q� = Sno(c)Sne(�c)|q�+ Sno(�c)Sne(c)|− q� . (5.63)

5.4 Arbitrary g

The separation of the energy of the intermediate states into two independent parts (5.22) begs for an
explanation. We have seen in the previous section that at g = 1 this separation originates in the separation of
the hamiltonian I3 into two commuting parts. In this section we are going to investigate how the Hamiltonian
I3 can be written in terms of two independent bosons. First, we define the following one-component bosonic
Calogero-Sutherland Hamiltonians [30, 9]

I±3 (c; g) = (1− g)
�
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with eigenvalues
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obeying the duality property e
+
3,n(g) = e

−
3,n�(g) and e

+
3,n(g) = e

−
3,n�(g). These properties can be shown using

the transformations g → 1/g and/or cm → −cm.
In the classical limit g → 0, these Hamiltonians are the conserved quantities of the Benjamin-Ono

equation. Let us set v = √
g∂φ and In → gIn; in the classical limit we obtain

I2 =
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1
2
v
2

, (5.68)
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2
x +

3
4
v
2
H(vx)

�
,

where vx = ∂xv and H(f) is the Hilbert transform of the function f . I2 ∼ L0 corresponds to the stress-
energy tensor. One can verify directly that the above quantities are integrals of motion of the Benjamin-Ono
equation

v̇ = vvx +
1
2
H(vxx) . (5.70)

The conservation of I4 relies on the identity
�

dxf
3 = 3

�
dxfH(f)2 applied to f = vx.

The full integral of motion I3 for the minimal model times the u(1) component can now be written as
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•  classical limit                                                                           

Modulo the normalizations, these vectors coincide with the ones of Belavin and Belavin [26]. The corre-
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I±3 (c; g) = (1− g)
�

m>0

mc−mcm ±√g

�

m,k>0

(c−m−kcmck + c−mc−kcm+k) (5.64)

I±4 (c; g) = ±
�

3g

2
− g

2 − 1
� �

m>0

m
2
c−mcm −

g

4

�

m1+m2+m3+m4=0
mi �=0

: cm1cm2cm3cm4 : ± (5.65)

± 3
√

g(g − 1)
�

m,l>0

m(c−m−lcmcl + c−mc−lcm+l) .

with eigenvalues
e
+
3,n(g) = −g e

−
3,n(1/g) = −

�

i

ni [ni − g(2i− 1)] = b(n�)− gb(n) , (5.66)

e
+
4,n(g) = g

2
e
−
4,n(1/g) = −

�

i

��
ni − g

�
i− 1

2

��3

+ g
3

�
i− 1

2

�3
�
− g

2

4

�

i

ni . (5.67)

obeying the duality property e
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where vx = ∂xv and H(f) is the Hilbert transform of the function f . I2 ∼ L0 corresponds to the stress-
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Jack polynomials and the Hilbert space of u(1) x Virasoro 

At g=1  the CS Hamiltonian is a sum of two copies of one-component CS models
(up to zero modes):

[Belavin and Belavin, 11]

and define the mutually commuting Hamiltonians I3(c) and I4(c) as

I3(c) =
�

m,k>0

(c−m−kcmck + c−mc−kcm+k) (5.51)

I4(c) = −1
2

�

m>0

m2c−mcm − 1
4

�

m1+m2+m3+m4=0
mi �=0

: cm1cm2cm3cm4 : . (5.52)

The Hamiltonian (5.51) is known to be the one-component Calogero-Sutherland Hamiltonian at g = 1
expressed in collective variables [30, 27, 9] while (5.52) is the next corresponding conserved charge. It is
likely that there exists a whole tower of conserved charges Ir(c), each being of total degree r in the bosonic
operators. Their joint eigenfunctions are given by the Schur polynomials,

|n� = Sn(c)|0� . (5.53)

The eigenstates are indexed by partitions n and the corresponding eigenvalues are given by the simple
formulas

e3,n =
�

i

ni(ni − 2i + 1) = b(n�)− b(n) , (5.54)

e4,n = −
�

i

��
ni − i +

1
2

�3

+
�

i− 1
2

�3
�
− 1

4

�

i

ni . (5.55)

where b(n) is defined in equation (5.19). On the expression (5.54) it is obvious that dual partitions n and
n� have opposite energies e3,n = −e3,n� . It is slightly more complicated to show that e4,n = e4,n� . On
the Schur polynomials, the duality acts like Sn(−c) ∼ Sn�(c) where n� is the partition dual to n. These
findings are consistent with the fact that changing the sign of the bosonic operators ck changes the sign of
the Hamiltonian I3(c) and it leaves I4(c) invariant.

The Hamiltonian I3(1) can be written as a sum of two commuting Hamiltonians depending on the bosonic
modes cm and �cm

I+
3 (1) =

1√
2

�

m,k>0

(a−m−kamak + a−ma−kam+k) +
1√
2

�

m�=0,k∈Z

a−mbm−kbk

= I3(c) + I3(�c) +
√

2b0(L0(c)− L0(�c)− a0b0) , (5.56)

the two copies being only related by the zero mode b0. On the module of the identity, the last term in the
previous expression vanishes. A similar property is valid for the next conserved charge,

I+
4 (1) = I4(c) + I4(�c)− b0D(c,�c, b0) . (5.57)

The immediate consequence of the separation (5.56, 5.57) is that the eigenfunctions are factorized, for
example for the module of the identity

|no, ne� = [Sno(c)Sne(�c) + Sno(�c)Sne(c)] |0� (5.58)

where Sn(c) is the Schur polynomial associated to the partition n constructed from the creation operators
c−k. We have isolated the combination which is symmetric in bk → −bk, since this is what we get from the
minimal model by constructing the descendants using L−k. The corresponding energy is the sum of the two
independent energies

Er; no,ne = er,no + er,ne , r = 3, 4 . (5.59)

and this agrees with the equation (5.22). To illustrate the construction of the eigenstates, we give below the
three eigenvectors at level 2 for b0 = 0 obtained by direct diagonalization of I3 and I4,

| [2] , [∅]� =
√

2
�
a−2 +

1√
2
(a2
−1 + b2

−1)
�
|0� =

�
c−2 + c2

−1 + c → �c
�
|0� (5.60)

| [1, 1] , [∅]� =
√

2
�
−a−2 +

1√
2
(a2
−1 + b2

−1)
�
|0� =

�
−c−2 + c2

−1 + c → �c
�
|0� (5.61)

| [1] , [1]� = 2
�
a2
−1 − b2

−1

�
|0� = c−1�c−1|0� . (5.62)
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The immediate consequence of the separation (5.56, 5.57) is that the eigenfunctions are factorized, for
example for the module of the identity

|no, ne� = [Sno(c)Sne(�c) + Sno(�c)Sne(c)] |0� (5.58)

where Sn(c) is the Schur polynomial associated to the partition n constructed from the creation operators
c−k. We have isolated the combination which is symmetric in bk → −bk, since this is what we get from the
minimal model by constructing the descendants using L−k. The corresponding energy is the sum of the two
independent energies

Er; no,ne = er,no + er,ne , r = 3, 4 . (5.59)

and this agrees with the equation (5.22). To illustrate the construction of the eigenstates, we give below the
three eigenvectors at level 2 for b0 = 0 obtained by direct diagonalization of I3 and I4,

| [2] , [∅]� =
√

2
�
a−2 +

1√
2
(a2
−1 + b2

−1)
�
|0� =

�
c−2 + c2

−1 + c → �c
�
|0� (5.60)

| [1, 1] , [∅]� =
√

2
�
−a−2 +

1√
2
(a2
−1 + b2

−1)
�
|0� =

�
−c−2 + c2

−1 + c → �c
�
|0� (5.61)

| [1] , [1]� = 2
�
a2
−1 − b2

−1

�
|0� = c−1�c−1|0� . (5.62)
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The states can be constructed with the help of Schur polynomials:

Modulo the normalizations, these vectors coincide with the ones of Belavin and Belavin [26]. The corre-
sponding eigenvalues of I3 are −2, 2, 0, while for I4 they are −4,−4,−1.

For states which are not in the module of the identity but have a charge q, b0|q� = q|q�, we have

|no
, n

�e; q� = Sno(c)Sne(�c)|q�+ Sno(�c)Sne(c)|− q� . (5.63)

5.4 Arbitrary g

The separation of the energy of the intermediate states into two independent parts (5.22) begs for an
explanation. We have seen in the previous section that at g = 1 this separation originates in the separation of
the hamiltonian I3 into two commuting parts. In this section we are going to investigate how the Hamiltonian
I3 can be written in terms of two independent bosons. First, we define the following one-component bosonic
Calogero-Sutherland Hamiltonians [30, 9]

I±3 (c; g) = (1− g)
�

m>0

mc−mcm ±√g

�

m,k>0

(c−m−kcmck + c−mc−kcm+k) (5.64)

I±4 (c; g) = ±
�

3g

2
− g

2 − 1
� �

m>0

m
2
c−mcm −

g

4

�

m1+m2+m3+m4=0
mi �=0

: cm1cm2cm3cm4 : ± (5.65)

± 3
√

g(g − 1)
�

m,l>0

m(c−m−lcmcl + c−mc−lcm+l) .

with eigenvalues
e
+
3,n(g) = −g e

−
3,n(1/g) = −

�

i

ni [ni − g(2i− 1)] = b(n�)− gb(n) , (5.66)

e
+
4,n(g) = g

2
e
−
4,n(1/g) = −

�

i

��
ni − g

�
i− 1

2

��3

+ g
3

�
i− 1

2

�3
�
− g

2

4

�

i

ni . (5.67)

obeying the duality property e
+
3,n(g) = e

−
3,n�(g) and e

+
3,n(g) = e

−
3,n�(g). These properties can be shown using

the transformations g → 1/g and/or cm → −cm.
In the classical limit g → 0, these Hamiltonians are the conserved quantities of the Benjamin-Ono

equation. Let us set v = √
g∂φ and In → gIn; in the classical limit we obtain

I2 =
�

dx
1
2
v
2

, (5.68)

I3 =
�

dx

�
1
3
v
3 +

1
2
vH(vx)

�
, (5.69)

I4 =
�

dx

�
1
4
v
4 +

1
4
v
2
x +

3
4
v
2
H(vx)

�
,

where vx = ∂xv and H(f) is the Hilbert transform of the function f . I2 ∼ L0 corresponds to the stress-
energy tensor. One can verify directly that the above quantities are integrals of motion of the Benjamin-Ono
equation

v̇ = vvx +
1
2
H(vxx) . (5.70)

The conservation of I4 relies on the identity
�

dxf
3 = 3

�
dxfH(f)2 applied to f = vx.

The full integral of motion I3 for the minimal model times the u(1) component can now be written as

I
±
3 (g) = I±3 (c; g) + I±3 (�c; g) ± (

�
2gb0 + g − 1)(L0(c)− L0(�c)) +

+ (1− g)

�
(1∓ 1)

�

m>0

m�c−mcm + (1 ± 1)
�

m>0

mc−m�cm

�
. (5.71)
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At arbitrary g there is an interacting term with triangular structure:

The first line of this formula is an operator which can be diagonalized in the basis of Jack polynomials

spanned by

J1/g
no (c) J1/g

ne (�c) |q� (5.72)

while the second line has a triangular structure in this basis, in the sense that it removes bosons of one type

and it bosons of the other type. We conclude that the energy can be written in the module of the identity,

q = 0, as a sum

E±
3; no,ne(g) = e±3,no(g) + e±3,ne(g)± (g − 1)(|no

|− |ne
|) . (5.73)

This formula reproduces, up to some trivial redefinition, the eigenenergies in (5.22) and thus proves (5.16),

(5.17).

6 WAk−1 theories

The duality obeyed by the conformal blocks was first discovered [19] in the context of WAk−1(k + 1, k + r)
theories, which for r = 2 are related to Zk parafermions. For k = 2 these models coincides with the Virasoro

models from the section 5, with g = (2+r)/3. When r is integer, the WAk−1(k+1, k+r) theories correspond

to Z(r)
k parafermions [18, 19] complete citations. The results in [19] generalize straightforwardly to any

value of r, not necessarily integer, in the same manner the results for the Ising CFT were extended to generic

Virasoro models in the previous section. Again, the main object is the dressed conformal block

F
a,b
M,N (w; z) ≡ �σ(w1) . . . σ(wM )Ψ(z1) . . . Ψ(zN )�

a,b
M�

1≤i<j

w
er
k
ij

�

i,j

(wi − zj)
1
k

N�

1≤i<j

z
r
k
ij (6.1)

where now σ(w) and Ψ(z) represents the primary fields Φ1,...,1,2|1,...1(w) and Φ1,...,1|2,1,...1(z) with conformal

dimensions �r(k − 1)/2k and r(k − 1)/2k respectively, where �r is implicitly defined in equation (6.5) below.

This conformal block obeys the second order differential equation

α hα
(z) F

a,b
M,N (w; z) = �α heα

(w) F
a,b
M,N (w; z) (6.2)

where hα
(z) and heα

(w) are defined in terms of two differential Calogero-Sutherland operators

hα
(z) = H

α
(z)− E

α
0 +

�
N − k

α
− 1

�
[P(z)− P0]−

NM(M − k)

k2
, (6.3)

heα
(w) = H

eα
(w)− E

eα
0 +

�
M − k

�α − 1

�
[P(w)− P

�
0]−

NM(N − k)

k2
. (6.4)

The coupling constant take now the values

α = −
k + 1

r − 1
, �α =

k + r

r − 1
, and g ≡ −

�α
α

=
k + r

k + 1
=

k + 1

k + �r . (6.5)

The constants Eα
0 and P0 are given by

E
α
0 ≡ E

α
λ0 =

rN(N − k)[2Nr + k2
(1− 2r) + k(N − r + Nr)]

6k2(k + 1)
, P0 =

rN(N − k)

2k
, (6.6)

while E eα
0 and P �

0 are given by similar expressions with r → �r, which is equivalent to g → g−1
, and N → M .

The degree of homogeneity of F
a,b
M,N (w; z) in both the variables w and z is

P(z) + P(w) =
rN(N − k)

2k
+

�rM(M − k)

2k
+

MN

k
. (6.7)

In the following we suppose that both M and N are divisible by k, which insures that the conformal block

(6.1) is non-zero. The duality property (6.2) implies that the conformal block (6.1) can be expanded on

eigenfunctions of the dual Calogero-Sutherland Hamiltonians similarly to (5.12),

F
a,b
M,N (w; z) =

�

λ

P eα,a
λ� (w)Pα,b

λ (z) . (6.8)
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additive spectrum! :

[Maulik, Okounkov, unpublished]
[Shou, Wu, Yu, 11]
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•  example: states at level 2 in the identity module (3 states out of 5 by symmetry reasons)

H
g,1−g we have simply:

P
1/(1−g),b
λ (z) = F

(g,+)
λ (z)

�

1≤i<j≤N

z
g−1
ij . (C.17)

In order to simplify the notation, we indicate |Id ⊗ Id >≡ |0 >, |e
iN
√

g/2ϕ
⊗ Id >≡ |N > and

|P
+
([ne],[no])(g)� ≡ |[ne], [no] >

One can then show the validity of (C.15) by the following procedure:

• Find the basis |[ne], [no]� which diagonalizes the operator I
+
3 (g)(5.47). Each state |[ne], [no]� is then

found as a given combination Oλ({L−n}, {a−n}) of Virasoro modes L−n and of u(1) current modes an

acting on e
iN
√

g/2ϕ
⊗ Id state:

• From the relations (A.12), one can write the action of the algebra modes in terms of differential operator

acting on the correlation function F
(g,+)
([∅],[∅])(z) =< N |V (z1)V (z2) · · ·V (zN )|0�b:

F
(g,+)
([ne],[no])(z) = O

�
([ne],[no])[F

(g,+)
([∅],[∅])(z)] (C.18)

where O�
([ne],[no])[f(z)] will be particular symmetric combination of differential operators, associated

to the descendant |aλ >, acting on a function f(z).

• The differential operator defined in (C.15) is then

O([ne],[no]) =




�

1≤i<j≤N

z
1−g
ij



O
�
([ne],[no])




�

1≤i<j≤N

z
g−1
ij



 (C.19)

We illustrate the above procedure by considering the basis |[ne], [no] > which diagonalizes I
g
3 , see (A.33),

at the first and at the second level in the module |N >.

Descendants level one

At the first level there is only one descendant.

|[1], [∅] >= O
�
|[1],[∅]({L−n}, {a−n})|0 >= a−1|N > (C.20)

Using (A.17) one has:

�[1], [∅]|V (z1)V (z2) · · ·V (zN )|0�b =

�
�

i

zi

�
�N |V (z1)V (z2) · · ·V (zN )|0 > . (C.21)

This means that the operator O�
|[1],[∅][f(z)] simply multiplies the function f(z) by the monomial m[1](z):

O
�
|[1],[∅][f(z)] =

�

i

zif(z) = m[1](z)f(z). (C.22)

Descendants level two

We have three descendants at level two. In the basis a−2|0 > and
√

2ga
2
−1|0 > and

√
2gL−2|0 >, the

operator I
+
3 (g), reads

I
+
3 (g) =




8(1− g) 2g g c(g)

1 4(1− g) 0

2 0 0





The correspondent eigenvectors are:

|[2], [∅] > =

�
(2− 3g)a−2 +

�
3

2
−

1

g

� �
2ga

2
−1 +

�
2gL−2

�
|N >

|[1, 1], [∅] > =

�
(3− 2g)a−2 +

�
3

2
− g

� �
2ga

2
−1 +

�
2gL−2

�
|N > (C.23)

|[1], [1] > =

�
(1− g)a−2 −

1

2

�
2ga

2
−1 +

�
2gL−2

�
|N > (C.24)
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WAk-1 algebras 

The same construction extends to WAk-1 algebras

k-1 bosons x u(1) component:  k- component CS Hamiltonian

We obtained the following relation for Fa,b = �a|V (z1)V (z2) · · ·V (zN )|b�

H
g
2Fa,b =




−−→
I
(−)
3 (g) +

←−−
I
(+)
3 (g) + 4(g − 1)

�

m≥1

m
←−
am
−→
am + E



Fa,b (A.32)

with

I
(±)
3 (g) = 2(1−g)

�

m≥1

ma−mam±
�

2g

�

m≥1

(a−mLm + L−mam)±
�

g

2




�

m,k≥1

a−m−kamak + a−ma−kam+k





(A.33)

The extra term
�

m≥1 m
←−
am
−→
am vanishes identically whenever a or b is primary, and E is simply a constant:

EFa,b =

�
g(N − 1) + (1− g) + 2

�
g

2

−→
a0

��
�

i

zi∂i

�
Fa,b (A.34)

+

�
gN
−→
T0 + (g − 1)N

�
g

2

−→
a0 − g

�
g

�
N

3

�
+ (1− g)

�
N

2

�
+ 2

�
g

2

−→
a0

�
N

2

�
+ N

−→
a0

2

��
Fa,b (A.35)

A.2.3 Correspondence at level 3

It is quite natural to expect that a relation involving the order 3 CS Hamiltonian

H
g
3 =

N�

i=1

�
zi

∂

∂zi

�3

+
3

2
g(1− g)

�

i �=j

zizj

z
2
ij

(zi∂i − zj∂j) (A.36)

can be obtained from a degeneracy at level 3 of V = Φ(1|2) : e
i
√

g
2 ϕ

:. However there are two such null states:

• L−1

�
L

2
−1 − gL−2

�
V = 0

• a−1

�
L

2
−1 − gL−2

�
V = 0

and taking a generic linear combination of them will not work: the corresponding relation will not separate

into a differential operator on one side and an operator acting in the conformal Hilbert space on the other

side. It turns our that demanding this separability amounts to consider the degeneracy:

�
L−1 + 3

�
g

2
a−1

� �
L

2
−1 − gL−2

�
V = 0 (A.37)

i.e.

T
3
−1−gT−1T−2 +(g−3)

�
g

2
a−2T−1−ga

2
−1T−1−g

�
2ga−1T−2 +(g−1)

�
2ga−3 +g(g+1)a−1a−2 +g

�
2ga

3
−1

(A.38)

Using the same techniques as for the level 2 degeneracy we obtained the expression

I
±
4 (g) = −g

�

m>0

L−mLm (A.39)

− 3

2
g
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�
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(g − 1)
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a−mam
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Let us now consider the u(1) current J(z) which we identify with the diagonal field J(z) = i
√

k∂φ0(z),

We dress the fundamental fields Φ1,...,1|2,1,...1(z) and Φ1,...,1,2|1,...1(w) by vertex operators, defining

V (z) ≡ Φ1,...,1|2,1,...1(z) : ei
√

gφ0(z)
: , �V (w) ≡ Φ1,...,1,2|1,...1(w) : ei 1√

g φ0(w)
: . (6.27)

Choosing appropriately the bosonic representative for the fundamental fields, we can write

V (z) ∼: ei
√

gφ1(z)ei
√

gφ0(z)
: = : ei

√
gφ1(z)

: , �V (w) ∼: ei 1√
g φk(w)ei 1√

g φ0(w)
: = : ei 1√

g φk(w)
: , (6.28)

and which again can justify the mutual separation of the action of the Calogero-Sutherland Hamiltonians on

the u(1) dressed conformal blocks (6.1). A similar basis of bosonic fields was used recently in [44] to study

the appearance of the W1+∞ algebra in the context of the su(3) AGT relationship.

6.2 The WAk−1 theories at g = 1

The action of the Calogero-Sutherland Hamiltonians on the conformal blocks can be again transfered to an

action on the Hilbert space of the u(1)×WAk−1 as it does in the case of minimal models, cf. section (5.2).

When g = 1 the first non-trivial conserved quantity I3 has the expression

I±3 (1) = ± 1√
k



2

�

m�=0

a−mLm +

�

m,k≥1

(a−m−kamak + a−ma−kam+k)



± �W0 (6.29)

and can be written as a sum of k independent bosonic Calogero-Sutherland Hamiltonians. The new ingredient

�W0 is the zero mode of the operator �W (z)

i�W (z) =
1

3

k�

j=1

: (∂φj)
3

:=

k�

j=1

�
1

3
: (∂φj

)
3

: − : (∂φj
)
2
(∂φ0) :

�
+

2k

3
: (∂φ0)

3
: , (6.30)

while the Virasoro generators Lm are the Fourier modes of the stress-energy tensor

T (z) = −1

2

k�

j=1

: (∂φj
)
2

: +
k

2
: (∂φ0)

2
: . (6.31)

Let us now identify the u(1) current with the diagonal bosonic field J = i
√

k∂φ0(z), with Fourier modes

am =
1√
k

�k
j=1 cj

m. It is now straightforward to show that I3 can be written as a sum of k decoupled

Hamiltonians depending on the k independent bosons cj
m

I±3 (1) = ±
k�

j=1

I3(c
j
)±

k�

j=1

�
cj
0 −

1√
k

a0

� �
2L0(c

j
)− (cj

0)
2
�

, (6.32)

with the only coupling between the k bosonic copies being realized by the zero modes cj
0 in the second term.

This decomposition generalizes the result of Belavin and Belavin [26] to the case of W algebras with g = 1,

and it justifies the structure of the eigenenergies of the intermediate states (6.12) as a sum over k Young

tableaux.

6.3 Arbitrary g

When g �= 1, the integral of motion I3 of the W theories conserves the same triangular structure as the one

described in section 5.4. Its expression is given by

I±3 (g) = k(1− g)

�

m≥1

ma−mam ± 2

�
g

k

�

m�=0

a−mLm ±
�

g

k

�

m,k≥1

(a−m−kamak + a−ma−kam+k)±√g �W0

(6.33)
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additive spectrum depending on k partitions (~ AGT conjecture for U(k) theories )
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and which again can justify the mutual separation of the action of the Calogero-Sutherland Hamiltonians on

the u(1) dressed conformal blocks (6.1). A similar basis of bosonic fields was used recently in [44] to study

the appearance of the W1+∞ algebra in the context of the su(3) AGT relationship.

6.2 The WAk−1 theories at g = 1

The action of the Calogero-Sutherland Hamiltonians on the conformal blocks can be again transfered to an

action on the Hilbert space of the u(1)×WAk−1 as it does in the case of minimal models, cf. section (5.2).

When g = 1 the first non-trivial conserved quantity I3 has the expression
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and can be written as a sum of k independent bosonic Calogero-Sutherland Hamiltonians. The new ingredient

�W0 is the zero mode of the operator �W (z)
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while the Virasoro generators Lm are the Fourier modes of the stress-energy tensor
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Let us now identify the u(1) current with the diagonal bosonic field J = i
√

k∂φ0(z), with Fourier modes
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1√
k
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j=1 cj

m. It is now straightforward to show that I3 can be written as a sum of k decoupled

Hamiltonians depending on the k independent bosons cj
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with the only coupling between the k bosonic copies being realized by the zero modes cj
0 in the second term.

This decomposition generalizes the result of Belavin and Belavin [26] to the case of W algebras with g = 1,

and it justifies the structure of the eigenenergies of the intermediate states (6.12) as a sum over k Young

tableaux.

6.3 Arbitrary g

When g �= 1, the integral of motion I3 of the W theories conserves the same triangular structure as the one

described in section 5.4. Its expression is given by

I±3 (g) = k(1− g)

�

m≥1

ma−mam ± 2

�
g
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m�=0

a−mLm ±
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(6.33)
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:  k copies of mutually commuting  bosonsAfter expressing the zero mode of the W current in terms of the bosonic fields, one finds
that

I+
3 (g) =

k∑

j=1

I±(cj; g) + 2(1 − g)
∑

j<l

∑

m≥1

m : cj
−mcl

m : +(1 − g)
∑

j

djL0(c
j) + zero modes
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Conclusions

• We have learned how to characterize the states of the Vir x H CFT, or WAk-1 x H, in terms of  CS 
integrals of motion

• AFLT: this basis gives an efficient way to compute matrix elements of the fields (representation 
of the conformal blocks)

• Similar structure in the FQHE (different physics)

• Theory of non-polynomial CS eigenfunctions?

• How to systematically generate the integrals of motion (transfer matrix?) in CFT?         
[Maulik, Okounkov, unpublished] in 4d gauge theory context

• Relation with the integrable structure uncovered by [Bazhanov, Lukyanov, Zamolodchikov, 94-98] 

(no Heisenberg factor)?

...

open questions
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