

Montpellier, April 2002

Conformal blocks and the Calogero-Sutherland model

D. Serban Institut de Physique Théorique, Saclay

with B. Estienne, V. Pasquier and R. Santachiara arXiv:1109.xxxx

8th Bologna CFT and IM & AIZ3 Conference, September 15, 2011

Calogero-Sutherland model and 2d CFT's

- Laughlin wavefunction, c=1 CFT and CS model [Haldane 90's, ... Haldane, Bernevig 07]
- Matrix models and collective field representation for CS model [Jevicki, 92,...]
- Spinons in su(2)_{k=1} WZW model [Bernard, Pasquier, DS, 94]
- CS and singular vectors of Virasoro algebra [Awata, Matsuo, Odake, Shiraisi, 95; Arnaudon, Avan, Frappat, Ragoucy, Shiraishi, 06]
- Quantum hydrodynamics, CS and Benjamin-Ono [Abanov, Wiegmann, 05; this morning's talk]
- SLE, CFT and CS model [Cardy, 04; Cardy, Doyon, 07; Dubedat, 06]
- FQHE with pairing properties, CFT's and CS model [Nayak, Wilczek, 96; Haldane, Bernevig 07; Estienne, Bernevig, Santachiara, 10]
- AGT conjecture and CS model [Alba, Fateev, Litvinov, Tarnopolsky 10; V. Fateev's talk; Belavin, Belavin 11, ...]

. . .

Conformal blocks of some 2d CFT's

$$\langle \Phi_{12}(z_1) \cdots \Phi_{12}(z_N) \Phi_{21}(w_1) \cdots \Phi_{21}(w_M) \rangle$$

$$= \sum_{\lambda} \langle 0 | \Phi_{12}(z_1) \cdots \Phi_{12}(z_N) | \lambda \rangle \langle \lambda | \Phi_{21}(w_1) \cdots \Phi_{21}(w_M) | 0 \rangle$$

FQHE states with nonabelian statistics

$$\begin{array}{ccc} g & \rightarrow & -g \\ b & \rightarrow & ib \end{array}$$

AGT conjecture

(Nekrasov's partition function ~ Liouville conformal blocks)

[Estienne, Bernevig, Santachiara, 10]

[Alba, Fateev, Litvinov, Tarnopolsky 10] V. Fateev's talk

Integrable structure of the CS model

Summary

- CS Hamiltonian and the degenerate fields in CFT
- duality of the conformal blocks
- Ising CFT and FQHE states
- AFLT Hamiltonians for generic Virasoro models
- WA_{k-1} models

Calogero-Sutherland Hamiltonian

Trigonometric CS model: set of N commuting Hamiltonians for N particles on a circle:

$$H_{1}^{g} = \mathcal{P} = \sum_{i=1}^{N} z_{i} \partial_{i}$$

$$H_{2}^{g} = H^{g} = \sum_{i=1}^{N} (z_{i} \partial_{i})^{2} - g(g-1) \sum_{i \neq j} \frac{z_{i} z_{j}}{z_{ij}^{2}}$$

$$z_{j} = e^{2i\pi x_{j}/L}$$

$$H_{3}^{g} = \sum_{i=1}^{N} (z_{i} \partial_{i})^{3} + \frac{3}{2}g(1-g) \sum_{i \neq j} \frac{z_{i} z_{j}}{z_{ij}^{2}} (z_{i} \partial_{i} - z_{j} \partial_{j}).$$

Two different **boundary conditions** for the wave functions:

$$\Psi^{+}(z) = \Delta^{g}(z)F^{+}(z)$$
 or $\Psi^{-}(z) = \Delta^{1-g}(z)F^{-}(z)$ $\Delta^{\gamma}(z) = \prod_{i < j} (z_{i} - z_{j})^{\gamma}$

Polynomial eigenfunctions (Jack symmetric polynomials) \longleftrightarrow abelian statistics

$$\Psi_{\lambda}^{+}(z) = \Delta^{g}(z)J_{\lambda}^{1/g}(z) \qquad \qquad \Psi_{\lambda}^{-}(z) = \Delta^{1-g}(z)J_{\lambda}^{1/(1-g)}(z)$$

Jack polynomials: eigenfunctions of the Hamiltonian

$$\mathcal{H}^{\alpha} = \sum_{i=1}^{N} (z_i \partial_i)^2 + \frac{1}{\alpha} \sum_{i < j}^{N} \frac{z_i + z_j}{z_{ij}} (z_i \partial_i - z_j \partial_j)$$

$$\alpha^{-1} = g \quad \text{or} \quad 1 - g$$

$$\mathcal{E}^{\alpha}_{\lambda} = \sum_{i}^{N} \lambda_i \left[\lambda_i + \frac{1}{\alpha} (N + 1 - 2i) \right]$$

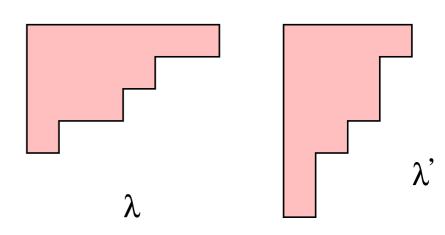
characterized by **partitions** λ with λ_i integers: $\lambda_1 \geq ... \geq \lambda_N \geq 0$

Duality $g \rightarrow 1/g$: [Stanley 89; Macdonald 88; Gaudin 92]

$$\left[\mathcal{H}^{1/g} + g\,\mathcal{H}^g + C(N,M)\right] \prod_{i=1}^N \prod_{i=1}^M (1 + z_i w_i) = 0$$

$$\prod_{i,j} (1 + z_i w_j) = \sum_{\lambda} J_{\lambda}^{1/g}(z) J_{\lambda'}^g(w)$$

Dual partitions:



Degenerate fields in CFT

Virasoro models with central charge : $c = 1 - 6\frac{(g-1)^2}{g}$

Degenerate field with dimensions : $\Delta_{(r|s)} = \frac{1}{4} \left(\frac{r^2 - 1}{g} + (s^2 - 1)g + 2(1 - rs) \right)$

Two second-level degenerate fields : $\left(L_{-1}^2 - gL_{-2}\right)\Phi_{(1|2)} = 0$, $\left(L_{-1}^2 - \frac{1}{g}L_{-2}\right)\Phi_{(2|1)} = 0$

When inserted in correlation function, the null-vector conditions translate into differential equations:

$$\mathcal{O}^g(z)\langle\Phi_{(1|2)}(z)\Phi_{\Delta_1}(z_1)\dots\Phi_{\Delta_N}(z_N)\rangle=0$$

with

$$\mathcal{O}^{g}(z) = \frac{\partial^{2}}{\partial z^{2}} - g \left(\sum_{j=1}^{N} \frac{\Delta_{i}}{(z - z_{j})^{2}} + \frac{1}{z - z_{j}} \frac{\partial}{\partial z_{j}} \right)$$

Conformal blocks and the duality

Consider the dressed conformal blocks:

$$\mathcal{F}_{M,N}^{a,b}(w;z) \equiv \langle \Phi_{21}(w_1) \cdots \Phi_{21}(w_M) \Phi_{12}(z_1) \cdots \Phi_{12}(z_N) \rangle_{a,b} \prod_{1 \leq i < j}^{M} w_{ij}^{2\tilde{h}} \prod_{i,j} (w_i - z_j)^{1/2} \prod_{1 \leq i < j}^{N} z_{ij}^{2h}$$

$$h = \Delta_{12} = \frac{3g}{4} - \frac{1}{2}$$
, $\widetilde{h} = \Delta_{21} = \frac{3}{4g} - \frac{1}{2}$

CS action on the conformal blocks (M=0 case: [Cardy 04])

Duality:

$$\label{eq:final_equation} \left[h^{\alpha}(z) + g \ h^{\widetilde{\alpha}}(w)\right] \mathcal{F}_{M,N}^{a,b}(w;z) = 0$$

with dual CS Hamiltonians

$$h^{\alpha}(z) \equiv \mathcal{H}^{\alpha}(z) - \mathcal{E}_{0}^{\alpha} + \left(\frac{N-2}{\alpha} - 1\right) \left[\mathcal{P}(z) - \mathcal{P}_{0}\right] - \frac{NM(M-2)}{4} ,$$

$$h^{\widetilde{\alpha}}(w) \equiv \mathcal{H}^{\widetilde{\alpha}}(w) - \mathcal{E}_{0}^{\widetilde{\alpha}} + \left(\frac{M-2}{\widetilde{\alpha}} - 1\right) \left[\mathcal{P}(w) - \mathcal{P}_{0}'\right] - \frac{NM(N-2)}{4} ,$$

and dual coupling constants

$$\alpha^{-1} = 1 - g$$
, $\widetilde{\alpha}^{-1} = 1 - g^{-1}$

non-abelian generalization of the Stanley-Macdonald-Gaudin duality

$$\mathcal{F}_{M,N}^{a,b}(w;z) = \sum_{\lambda} P_{\lambda'}^{\widetilde{\alpha},a}(w) P_{\lambda}^{\alpha,b}(z)$$

[Estienne, Bernevig, Santachiara 10] for Z_k parafermionic CFTs

Ising CFT and the Moore-Read FQHE wave-function

[Moore, Read, 91]

$$\Psi = \Phi_{12}$$
 electron

$$\sigma = \Phi_{21}$$
 quasihole

$$g = 4/3$$

$$\alpha = 1/(1-g) = -3$$

The electron eigenfunction is **monovalued**:

$$\sim \prod_{i < j} z_{ij}^2 \langle \Psi(z_1) \dots \Psi(z_N) \rangle = \prod_{i < j} z_{ij}^2 \operatorname{Pf} \left(\frac{1}{z_{ij}} \right) = \prod_{i < j} z_{ij} J_{\lambda_0}^{-3}(z)$$

$$\lambda_0 = [N-2, N-2, N-4, N-4, \cdots, 0, 0]$$

with **clustering properties** (it vanishes when a cluster of 3 particles come together):

eigenfunction of a threebody Hamiltonian

$$H = \sum_{i \neq j \neq k} \delta^{(2)}(x_i - x_j) \delta^{(2)}(x_j - x_k)$$

Generic (k, r) clustering properties of Jack polynomials for coupling constant $\alpha = -(k+1)/(r-1)$

$$\alpha = -(k+1)/(r-1)$$

[Feigin, Miwa, Jimbo, Mukhin, 02]

- the coefficients of the Jack polynomials diverge except for admissible partitions

$$(k, r, N)$$
-admissible partition λ :

$$\lambda_i - \lambda_{i+k} \ge r \quad (1 \le i \le N - k)$$

$$J_{\lambda}^{-(k+1)/(r-1)}(z_1, \dots, z_n)$$
 vanishes when $z_1 = z_2 = \dots = z_{k+1}$

Ising CFT and the Moore-Read FQHE wave-function

quasihole wave-function:
$$\sim \Psi(z)_a \equiv \prod_{i < j} z_{ij}^{3/8} \langle \sigma(z_1) \dots \sigma(z_M) \rangle_a$$

[Nayak, Wilczek, 96]

it is **multivalued**, with the $2^{M/2-1}$ conformal blocks corresponding to the different fusion channels

$$\sigma(z2) \quad \sigma(z3) \quad \sigma(z4) \quad \sigma(z5)$$

$$\sigma(z1) \quad \sigma(z6) \quad X = I \text{ or } X = \Psi.$$

wave-function with non-abelian braiding properties

$$\Psi(z)_{a} = \prod_{i < j} z_{ij}^{1/4} F(z)_{a} = \prod_{i < j} z_{ij}^{1-g} F(z)_{a}$$
with $F(z)_{a} \sim c_{a1} + c_{a2} \sqrt{z_{ij}}$ for $z_{i} \to z_{j}$.

- non-polynomial eigenfunctions of the CS Hamiltonian with non-abelian monodromy
- symmetric generalization of hypergeometric functions ~ [Kaneko, 93; Forrester, 92]
- can be represented as Coulomb integrals [Dotsenko, Fateev, 84]

Duality and the non-poynomial wave-functions

How to characterize an arbitrary excited "partition" λ (λ_i generically not integers) ?

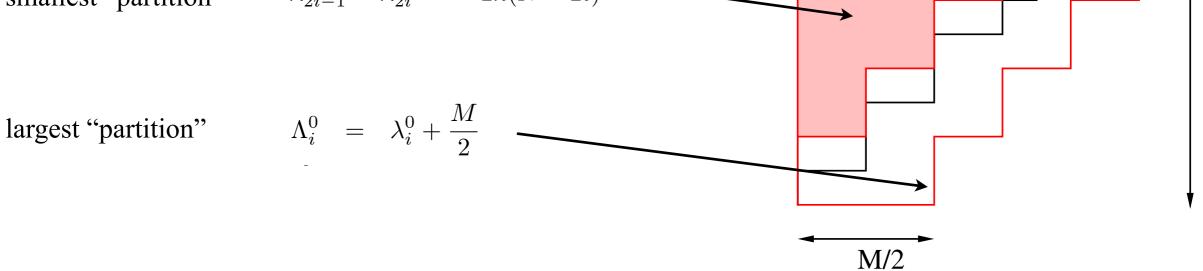
$$\mathcal{F}_{M,N}^{a,b}(w;z) = \sum_{\lambda} P_{\lambda'}^{\tilde{\alpha},a}(w) P_{\lambda}^{\alpha,b}(z)$$

ground state (M=0): $\langle \Phi_{12}(z_1) \cdots \Phi_{12}(z_N) \rangle_a \prod_{i < i} z_{ij}^{2h}$ smallest "partition"

$$\text{special conformal block with X=I:} \qquad z_1^{2h(N-2)} z_2^{2h(N-2)} z_3^{2h(N-4)} z_4^{2h(N-4)} \dots \ z_{N-1}^0 z_N^0 \ + \dots$$

smallest "partition"
$$\lambda_{2i-1}^0 = \lambda_{2i}^0 = 2h(N-2i)$$

$$\Lambda_i^0 = \lambda_i^0 + \frac{M}{2}$$

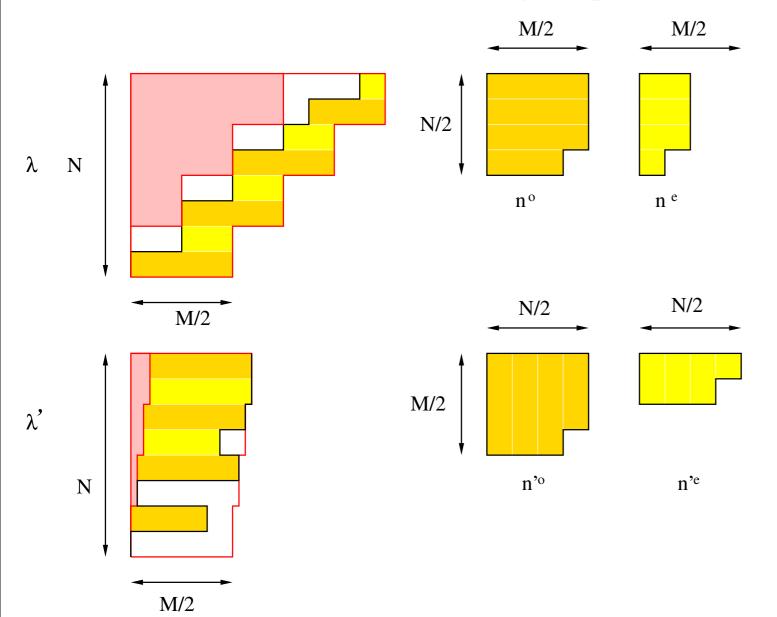


Ising: 2h=1

 λ is a partition satisfying the (2,2) admissibility condition $\lambda_i - \lambda_{i+2} \geq 2$

Duality and the non-poynomial wave-functions

An excited state λ is characterized by **two partitions** n_e and n_o (reminiscent of AGT conjecture):



for the partition n' dual to n:

$$b(n) \equiv 2\sum_{i} (i-1)n_i = \sum_{i} n'_j (n'_j - 1)$$
$$|n| \equiv \sum_{i} n_i = |n'|$$

$$\mathcal{E}_{\lambda}^{\alpha} = \sum_{i=1}^{N} \lambda_i [\lambda_i + (1-g)(N+1-2i)]$$

$$\mathcal{E}_{\lambda'}^{\tilde{\alpha}} = \sum_{j=1}^{M} \lambda'_{j} [\lambda'_{j} + (1 - g^{-1})(M + 1 - 2j)]$$

$$\mathcal{E}^{\alpha}_{\lambda} = [b(n'^{o}) + b(n'^{e})] - g[b(n^{o}) + b(n^{e})] + ((1-g)N - M + g)(|n^{o}| + |n^{e}|) + 2(g-1)|n^{e}| + \mathcal{E}^{\alpha}_{(M/2)^{N}}$$

$$\mathcal{E}_{\lambda'}^{\widetilde{\alpha}} = \left[b(n^o) + b(n^e)\right] - \frac{1}{g}\left[b(n'^o) + b(n'^e)\right] + \frac{(2-g)M + 2g - 3}{g}(|n'^e| + |n'^o|) + \frac{2(g-1)}{g}|n'^o| + \mathcal{E}_0^{\widetilde{\alpha}}$$

additive spectrum??

u(1) x Virasoro models

introduce a u(1) component \longrightarrow electromagnetic current for FQHE $J(z) = i\partial\phi(z)$

Heisenberg algebra : $[a_n, a_m] = n\delta_{n+m,0}$

Virasoro algebra : $[L_n, L_m] = (n - m)L_{n+m} + \frac{c}{12}n(n^2 - 1)\delta_{n+m,0}$

Feigin-Fuchs representation: $L_n = \frac{1}{2} \sum_{m \in \mathbb{Z}} : b_{n-m} b_m : -\alpha_0(n+1) b_n \qquad \qquad 2\alpha_0 = \sqrt{\frac{2}{g}} - \sqrt{2g} \qquad \qquad c = 1 - 12\alpha_0^2$

Degenerate fields dressed by u(1) vertex operators :

$$V(z) \equiv \Phi_{12}(z) e^{i\sqrt{\frac{g}{2}}\phi(z)} , \qquad \widetilde{V}(w) \equiv \Phi_{21}(w) e^{i\frac{1}{\sqrt{2g}}\phi(w)}$$

Consider generic correlation functions:

$$f_{\mu}^{+}(z_{1}, z_{2}, \cdots, z_{N}) = \langle \mu | V(z_{1})V(z_{2}) \cdots V(z_{N}) | P \rangle$$
 $|\mu\rangle$: generic state (primary or descendant) $f_{\mu}^{-}(z_{1}, z_{2}, \cdots, z_{N}) = \langle P | V(z_{1})V(z_{2}) \cdots V(z_{N}) | \mu \rangle$ $|P\rangle$: primary state

Translate the CS action on states:

$$H_n^g f_\mu^{\pm}(z_1, z_2, \cdots, z_N) = \sum_{\nu} \left[I_{n+1}^{\pm}(g) \right]_{\mu, \nu} f_\nu^{\pm}(z_1, z_2, \cdots, z_N)$$

CS integrals of motions and the Hilbert space of u(1) x Virasoro

- second-order null vector condition: $(L_{-1}^2 gL_{-2})V = 0$
 - second order CS hamiltonian:

$$I_3^{(\pm)}(g) = 2(1-g) \sum_{m \ge 1} m a_{-m} a_m \pm \sqrt{2g} \sum_{m \ne 0} a_{-m} L_m \pm \sqrt{\frac{g}{2}} \left(\sum_{m,k \ge 1} a_{-m-k} a_m a_k + a_{-m} a_{-k} a_{m+k} \right)$$

- null vector condition at **level 3**: $(L_{-1} + 3\sqrt{g/2}a_{-1}) (L_{-1}^2 gL_{-2}) V = 0$
 - third order CS hamiltonian:

$$I_n^{(\pm)}(g) \propto I_n^{(\mp)}(1/g)$$

$$\begin{split} I_4^\pm(g) &= -g \sum_{m>0} L_{-m} L_m \\ &- \frac{3}{2} g \sum_{m,p>0} \left(2 L_{-p} a_{-m} a_{p+m} + 2 a_{-m-p} a_m L_p + a_{-m} a_{-p} L_{p+m} + L_{-m-p} a_m a_p \right) \\ &\pm \frac{3}{2} \sqrt{2g} (g-1) \sum_{m>0} m (a_{-m} L_m + L_{-m} a_m) \pm 3 \sqrt{2g} (g-1) \sum_{m,p>0} m (a_{-m} a_{-p} a_{m+p} + a_{-m-p} a_m a_p) \\ &- \frac{1}{2} g L_0^2 - 3g L_0 \sum_{m>0} a_{-m} a_m + \sum_{m\geq 1} \left[\frac{1}{2} (9g-5-5g^2) m^2 - \frac{1}{2} (g-1)^2 \right] a_{-m} a_m \\ &- \frac{g}{8} \sum_{m_1+m_2+m_3+m_4=0} : a_{m_1} a_{m_2} a_{m_3} a_{m_4} : \end{split}$$
 [Alba, Fateev, Lityinov, Tar

[Alba, Fateev, Litvinov, Tarnopolsky,10] for Liouville $g \rightarrow -g$

Jack polynomials and the Hilbert space of u(1) x Virasoro

• rotate the boson basis: $c_m = \frac{1}{\sqrt{2}} \left(a_m + b_m \right)$, $\widetilde{c}_m = \frac{1}{\sqrt{2}} \left(a_m - b_m \right)$ [AFLT, 10; Belavin and Belavin, 11]

• introduce the one-component bosonised CS Hamiltonians:

$$\mathcal{I}_{3}^{\pm}(c;g) = (1-g) \sum_{m>0} mc_{-m}c_{m} \pm \sqrt{g} \sum_{m,k>0} (c_{-m-k}c_{m}c_{k} + c_{-m}c_{-k}c_{m+k})$$
 [Jevicki, 91] [Awata, Matsuo, Odake, Shiraishi, 95]

$$\mathcal{I}_{4}^{\pm}(c;g) = \pm \left(\frac{3g}{2} - g^{2} - 1\right) \sum_{m>0} m^{2} c_{-m} c_{m} - \frac{g}{4} \sum_{\substack{m_{1} + m_{2} + m_{3} + m_{4} = 0 \\ m_{i} \neq 0}} : c_{m_{1}} c_{m_{2}} c_{m_{3}} c_{m_{4}} : \pm 3\sqrt{g}(g-1) \sum_{m,l>0} m(c_{-m-l} c_{m} c_{l} + c_{-m} c_{-l} c_{m+l}).$$

• classical limit $g \to 0$, $v = \sqrt{g} \partial \phi$ and $\mathcal{I}_n \to g \mathcal{I}_n$ Benjamin-Ono hierarchy:

$$\mathcal{I}_2 = \int dx \, \frac{1}{2} v^2 ,$$

$$\mathcal{I}_3 = \int dx \left(\frac{1}{3} v^3 + \frac{1}{2} v H(v_x) \right) ,$$

$$\mathcal{I}_4 = \int dx \left(\frac{1}{4} v^4 + \frac{1}{4} v_x^2 + \frac{3}{4} v^2 H(v_x) \right)$$

H(f) is the Hilbert transform of the function f

$$v_x = \partial_x v$$

CS ←→ BO: [Abanov, Wiegmann, 05]

Jack polynomials and the Hilbert space of u(1) x Virasoro

At g=1 the CS Hamiltonian is a sum of two copies of one-component CS models [Belavin and Belavin, 11] (up to zero modes):

$$I_3^+(1) = \mathcal{I}_3(c) + \mathcal{I}_3(\widetilde{c}) + \sqrt{2}b_0(L_0(c) - L_0(\widetilde{c}) - a_0b_0)$$
$$I_4^+(1) = \mathcal{I}_4(c) + \mathcal{I}_4(\widetilde{c}) - b_0D(c, \widetilde{c}, b_0)$$

The states can be constructed with the help of Schur polynomials:

$$|n^{o}, n'^{e}; q\rangle = S_{n^{o}}(c)S_{n^{e}}(\widetilde{c})|q\rangle + S_{n^{o}}(\widetilde{c})S_{n^{e}}(c)|-q\rangle$$

$$c_{-n} \sim p_n = \sum_i x_i^n$$

$$b_0|q\rangle = q|q\rangle$$

At arbitrary g there is an interacting term with triangular structure:

$$I_3^+(g) = \mathcal{I}_3^+(c;g) + \mathcal{I}_3^+(\widetilde{c};g) + (\sqrt{2g}b_0 + g - 1)(L_0(c) - L_0(\widetilde{c})) + 2(1-g)\sum_{m>0} mc_{-m}\widetilde{c}_m$$

also

[Maulik, Okounkov, unpublished]

[Shou, Wu, Yu, 11]

additive spectrum!:
$$E_{3;n^o,n^e}^{\pm}(g) = e_{3,n^o}^{\pm}(g) + e_{3,n^e}^{\pm}(g) \pm (g-1)(|n^o| - |n^e|)$$

triangular structure: $|n^o, n^e; q\rangle = J_{n^o}^{1/g}(c) J_{n^e}^{1/g}(\widetilde{c}) |q\rangle + \dots$

• example: states at level 2 in the identity module (3 states out of 5 by symmetry reasons)

$$|n^o, n^e; q\rangle = |n^e, n^o; -q\rangle$$
 \rightarrow $|n^o, n^e; 0\rangle = |n^e, n^o; 0\rangle$

$$|[2], [\emptyset] > = \left[(2 - 3g)a_{-2} + \left(\frac{3}{2} - \frac{1}{g}\right)\sqrt{2g}a_{-1}^2 + \sqrt{2g}L_{-2} \right] |N >$$

$$|[1, 1], [\emptyset] > = \left[(3 - 2g)a_{-2} + \left(\frac{3}{2} - g\right)\sqrt{2g}a_{-1}^2 + \sqrt{2g}L_{-2} \right] |N >$$

$$|[1], [1] > = \left[(1 - g)a_{-2} - \frac{1}{2}\sqrt{2g}a_{-1}^2 + \sqrt{2g}L_{-2} \right] |N >$$

WA_{k-1} algebras

The same construction extends to WA_{k-1} algebras

k-1 bosons x u(1) component: k- component CS Hamiltonian

$$I_3^{(\pm)}(g) = 2(1-g) \sum_{m \ge 1} m a_{-m} a_m \pm \sqrt{2g} \sum_{m \ge 1} (a_{-m} L_m + L_{-m} a_m) \pm \sqrt{\frac{g}{2}} \left(\sum_{m,k \ge 1} a_{-m-k} a_m a_k + a_{-m} a_{-k} a_{m+k} \right) \pm \widetilde{W_0}$$

 c_m^j : k copies of mutually commuting bosons

$$I_3^+(g) = \sum_{j=1}^k \mathcal{I}^{\pm}(c^j; g) + 2(1-g) \sum_{j < l} \sum_{m \ge 1} m : c_{-m}^j c_m^l : +(1-g) \sum_j d_j L_0(c^j) + \text{zero modes}$$

additive spectrum depending on k partitions (~ AGT conjecture for U(k) theories)

Conclusions

- We have learned how to characterize the states of the Vir x H CFT, or WA_{k-1} x H, in terms of CS integrals of motion
- AFLT: this basis gives an efficient way to compute matrix elements of the fields (representation of the conformal blocks)
- Similar structure in the FQHE (different physics)

open questions

- Theory of non-polynomial CS eigenfunctions?
- How to systematically generate the integrals of motion (transfer matrix?) in CFT?
 [Maulik, Okounkov, unpublished] in 4d gauge theory context
- Relation with the integrable structure uncovered by [Bazhanov, Lukyanov, Zamolodchikov, 94-98] (no Heisenberg factor)?

• •

20