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Aim :
solve string theory iMdSs x S° from first principles

— conformal invariance, supersymmetry
and integrability

() find S-matrix and justify
Asymptotic Bethe Ansatz for the spectrum

(i) understand theory on cylinder (closed string): TBA



Quantum string theory iMdSs x S°:
: ~ PSU(2,2/4
GS superstring 0's0(1,4)(><s|o)<5)
analogy with exact solution @d(»n) model (Zamolodchikovs)

or principal chiral model (Polyakov-Wiegmann) ?
2d CFT — no mass generation (mass scale from gauge fixing)

problem of direct approach:

lack of manifest 2d Lorentz symmetry

S-matrix depends on two rapidities (not on difference)
symmetry constraints on it are not manifest, ...

An alternative approach?
Classically equivalent2d Lorentz invariant action
describing same physical degrees of freedom



“Pohlmeyer reduction’

reformulation of gauge-fixeddSs x S° superstring
In terms of current-type variables

preserving 2d Lorentz invariance

classically equivalent (equivalent integrable struckure
what about relation at the quantum level?

a way towards exact solution of quantutd.Ss x S° superstring?



Pohlmeyer-reduced theory:

Integrable + 2d scale-invariant (UV finite) model
a fermionic generalization of non-abelian Toda theory

e intimately related to (classicalldS; x S° GS model

e action quadratic in fermions witlstandard2d kinetic terms
(hidden 2d susy, ...)

e has 2d Lorentz invariant S-matrix

for an equivalentset of 8+8 physical massive excitations:
an alternative interacting generalization of same freerhe
e very special UV finite massive integrable model:
deserves study regardless question about equivalence

to AdSs x S° superstring at quantum level:

find its exact solution?



Some history

K. Pohlmeyer (1976):

Discovery of integrability (existence ob of conservation laws)
of classical O(3) sigma model via relation to sine-Gordon theory;
O(4) sigma model complex sine-Gordon theory.

Integrability of O(n) model: Backlund transformations

to generate solutions and higher conserved charges.

But why reduction relevant?
Assumed classical 2d conf. inv. which is broken at quantwalle

Quantum O(3) and sin-Gordon theories are different
but integrability itself extends to quantum level
[Polyakov (1977); Zamolodchikov, Zamolodchikov (1979)]



Pohlmeyer reduction was not used much in the next 20 years...
but came to light in the context odtring theory.

Technical tool classical solutions

e construction of classical string solutions in
constant-curvature spaces — de Sitter and anti de Sitter
[Barbashov, Nesterenko, 1981; de Vega, Sanchez, 1993]

e construction of classical string solutionsflSs x S°
representing semiclassical string states

[Hofman, Maldacena,2006; Dorey et al,2006; Jevicki et al,2007
Hoare, Iwashita, A.T., 2009; Hollowood, Miramontes, 2009; ...]

e construction of euclidean open-string world-surfaceates
to Wilson loops (SYM scattering amplitudes at strong caugp)i
[Alday, Maldacena, 2009; Alday, Gaiotto, Maldacena, 2009;
Dorn et al, 2009; Jevicki, Jin, 2009, ...]



More fundamental rolerelation to quantum string theory?
Pohlmeyer reduction afidSs x S° string:

reformulation in terms of integrable massive theory
[Grigoriev, A. T, 2007; Mikhailov, Schafer-Nameki, 2007]

string sigma model is UV finite:
PR may lead to an equivalent theory also at quantum level?
a way to exact solutionof AdSs x S° superstring?

e UV finiteness of reduced theory [Roiban, A.T., 2009]

e equivalence of 1-loop quantum partition functions of grin
and reduced theory [Hoare, lwashita, A.T., 2009]

e perturbative S-matrix of reduced theory:

similarity to AdSs x S° magnon S-matrix; gq-deformed susy
[Hoare and A.T., 2009-2011]

e comparison of soliton spectra and soliton S-matrices
[Hollowood and Miramontes, 2010, 2011; Hoare et al, 2011]
¢ hidden 2d susy [Grigoriev, A.T.; Schmidtt;

Hollowood, Miramontes, 2011; Goykhman, lvanov, 2011]



Pohlmeyer reduction
Original example: S?-sigma model— Sine-Gordon theory
L=0,X"9_X" - AX"X"-1), m=1,23
Equations of motion:
O 0_ X" +AX™ =0, A=0,XMo_X", X"X™=1
Stress tensoff' L4+ = 0L X0 X™
T, =0, 0,T__=0, 9_-T4y=0

impliesT, = f(oy), T—— =h(o_)
using the conformal transformations. — F. (o) can set

0L X™MOL X™ = p? O_XMO_X™=pu*, pu=const
3 unit vectors in 3-dimensional Euclidean space:

xm. X" =pto X", Xm =y, to_xm



X" is orthogonal taX* and X™ (X™0+ X™ = 0)
remainingSO(3) invariant quantity is scalar product

0L XMO_X™ = 1 cos 2y

then
2

01L0_p + % sin2p =0

following from sine-Gordon actior{Pohlmeyer, 1976]

L =0,00_p+ 5 €08 2

2d Lorentz invariant despite explicit constraints

Classical solutions and integrable structures

(Lax pair, Backlund transformations, etc) are directhated
e.g., SG soliton mapped into rotating folded string¥m
“giant magnon” in the/ = oo limit [Hofman, Maldacena 06]



Analogous construction fo$® model gives
Complex sine-Gordon moddgPohlmeyer; Lund, Regge 76)

_ 2
L = 0,00_p + cot? v 0,00_0 + % COS 2¢

@, 0 areSO(4)-invariants:

pu?cos2p = 0L Xmo_X™
12 sin? 0.0 = :F%emnlem&rX”f)’_Xk‘@in

In the case odd.S, or AdS5:
replacesin ¢ — sinh ¢, ...



String-theory interpretation: string ail; x S”

(i) conformal gauge
(i) t = p7 to fix conformal diff’s:

0 X™9L X™ = 12 are Virasoro constraints
e.g., reduced theory for string d®, x 53

_ 2
L = 0,00_p + cot® v 0,00_0 + % Cos 2

Similar construction fotdd.S,, case:
string on AdS,, x Sj, with ¢ = ur
e.g., reduced theory for string otdSs x S*

_ 2
L =0,¢0_¢ + coth® ¢ 4 xO_x — % cosh 2¢



Comments:

e Virasoro constraints are solved by a special choice of et
related nonlocally to original string coordinates

e Reduced and string theories: equivalent as classicalratbés
systems: Lax pairs are gauge-equivalent

e Although the reduction is not explicitly Lorentz invariattte
resulting Lagrangian turns out to be 2d Lorentz invariant

e Reduced theory is formulated in terms of manifesil§)(n)
iInvariant variables: “blind” to original global symmetry

e PR may be thought of as a formulation in terms of physical
d.o.f. — coset space analog of flat-space I.c. gauge with 2d
Lorentz symmetry unbroken



PR for bosonic string ok; x F'/G

F/G-coset sigma model:symmetric space

f=pég, g,g] Cg, 2, p] Cp, p,plCg
J=flf=A+P, A€g, Pe€p
L(f) = -Tr(PyP-), feF

GG gauge transformations: — fg, g € G
global F symmetry.f — uf, ue F
classical conformal invariance

CurrentsJ = A + P as fundamental variables:

EOM: D,P =0, D_P, =0, D =d+ [A, ]
Maurer-Cartan: D_P, — D+P_ + [Py, P ]+ ]—"+_
Virasoro : Tr(PyP.) = —p*, Tr(P_P_)=

Main idea: first solve Virasoro and EOM,;
then find reduced action giving egs. resulting from MC



gauge fixing that solve®r(P, P, ) = —u?

P, = uT = const, Tep=fog, Tr(TT) = —1
e choice of special elemerit’ : decomposition of
f=p®g, p=T®n, g=mah, [T,h]=0

e 7' determinesh , i.e. defines subgroufl C G
e Tr(P_P_) = —p?is solved by introducing € G

P_=pug 'Ty

D_P, =0issolvedbyd_ = (A_),=A_
D,P_=0issolvedbyd, =g 0, g+g 1A, g

e thus new “current” variables:

QEG, A—I—aA—Eha [TvA:I:]:O



Remarkably, remaining MC eqs an A follow from
G /H gauged WZW action with integrable potential:

L = —%Tr(g—lmgg—la_g) + WZ term
—Tr(Ay0_gg ' —A_g '049—g 'ALgA_+ A LA )
—p*Tr(Tg~'Ty)

Pohimeyer-reduced theory fét/G coset sigma model
[Bakas, Park, Shin 95; Grigoriev, A.T. 07; Miramontes 08]

equivalent eqgs of motion; equivalent integrable structure
special case of non-abelian Toda theory:
“symmetric space Sine-Gordon model”

[Hollowood, Miramontes et al 96]

potential term: equal to original coset sigma model action



Comments
e Reduced equations of motion in “on-shell” gaudge = 0:

0_(97'0yg) — p?[T,g~'Tg] =0

(97049 =0, (0—gg~ ) =0

o F/G=5"=5C0H0 G/H = 550"y
H = SO(n — 1) gauge fixing ory (Euler angles)
and integrating outl.: generalized SG model

2

L = 0.00_¢+ Gpylip, 0)0.070_07 + % Cos 2

metricG,,, In kinetic term forn = 2, 3,4, ...
ds3 = dp? , ds3 = dp? + cot? p db?

do3

sin? 04

ds? = dp? + cot? o (dfy + cot 07 tan Oadf)? + tan? ¢



String Theory inAdS; x S°

_50(2,4) _ SO(6) _ SU(2,2) _ SU(4
AdS5 x S° = SO(1,4) < SOE5§ = Sp((2,2)) X Sp((4))

GS supgrstring:

replaceg — S“pfgf;il?zcare in flat case by
F  PSU(2,2/4)
G Sp(2,2) x Sp(4)

basic superalgebra= psu(2,2|4)
bosonic part = su(2,2) @ su(4) = so(2,4) @ so(6)

f=fo®f ®fhdfy, i, £5] C fitimoda
fo =g =sp(2,2) ® sp(4), fo = AdS5 x S°

Ja:f_laaf:Aa+Q1a+Pa+Q2aa fEF
Acty, Qief;, Pefh, Qcfs



GS action: Igg = Z—f [ d?0 Las

Lags = STr(v/ =99 P, Py + £*°Q14Q2)

conformal gauge \/ngab — pab

Lgs = STr[PLP_ + %(Q1+Q2— — Q1-Q24)]

Virasoro: STr(P.P,) =0, STr(P_P_)=0

EOM: 0.P_+[A;, P_]+[Q24,Q2-]=0
O-Pp+[A_, Pi|+ [Q1-,Q14] =0
[Py, Q1-]=0,  [P_,Q2]=0

MC: 9. Jy =0 +[J . Ji] =0

now apply Pohlmeyer reduction




Pohlmeyer reduced theory

Bosons
Virasoro solved by fixing speci&F-gauge
and residual conformal diffs

P, = uT, P.= png 'Tg, u=const

g € G=Sp(2,2) x Sp(4)

e /= an arbitary scale parameter — remnant of fixing
residual conformal diffeomorphisms (aff in l.c. gauge)

o T —fixed constant matrix = didd, —1,1,—1), StrT? =0
e selectsH € G: [T,h| =0, he H

H=S5U(2) x SU(2) x SU(2) x SU(2)

e residualH gauge invariance of e.o.m. for A

e new bosonic variables
g€ G=5p(2,2) x Sp(4)
Ap € h = su(2) ® su(2) ® su(2) ® su(2)



Fermions:

Impose partiak-symmetry gauge

U, =Qi+ €1y, Uy =gQag ' ef;

residualk-symmetry fixed by demanding?V, 5,7} = 0
f=ft+1l, [+ 11=0, I, T}=0
new fermionic variables
_ 1l _ 1 gl
\IJR - \/E\Ijlﬂ \IJL — \/E\IJ2

VU, . expressed in terms of real Grassmann
2 x 2 matricest , , andn, ,: 8+8=16 components



Remarkably, exists localaction for g, A4, ¥,
reproducing remaining classical equations:

Gauged WZW modefor
G 5p(2,2) Sp(4)

H ™~ SU@2) xSU@2) " SU@2) x SU(2)

with integrable potential and fermionic terms:

~

L = Lgwzw(g, A) + p* Str(g~ T gT)
+Str (¢, 7DV, + U, TD_V, + png "W, g¥,)

o fieldsg, AL, ¥, , are8 x 8 supermatrices, e.g.

g = diag(a,b) , a € Sp(2,2), be Sp(4)

o T = idiag(1,1,-1,-1,1,1,—1, —1);

(T,h] =0, he H=[SU(2)*

oDj:\Ifzaj:\If—i—[Ai,\If], Ar eh

Invariance undeH gauge transformations

g = h_lgh, A/:I: = h_l(Aj: + 8i)h, \I’/L,R = h_l\IfL’Rh



Comments:

e integrable model classically equivalent to GS string

e 2d Lorentz invariant action witlv ., ¥, as 2d Majorana spinors
with standardkinetic terms; action quadratic in fermions
(cf. GS string)

e 8 real bosonic and 16 real fermionic independent variables;
fermions link bosons fronyp(2,2) x Sp(4)

e 2d supersymmetry: idldS,, x S™ with n = 2 (equivalent to
N = 2 super sine-Gordon); non-local in= 3, 5 cases

e 1-dependent interaction terms are equal to GS Lagrangian;
gWZW terms are to produce MC egs.
(path integral derivation?)

e linearisation of e.o.m. in the gaugé. = 0 aroundg = 1:
gives 8+8 bosonic and fermionic d.o.f. with mass
same as in string l.c. gauge action wjth~ J (BMN limit)

e Actionl,, = £ [d?0s L: meaning of:?



Equations of motion ild. = 0 gauge:
fermionic generalization of non-abelian Toda equations

O_(g71019) + 12l Ty, T+ plg ' ¥,9,¥,] =0

To, W, + 5u(g¥,g~ ") =0

(g 1a—|-g T %[[Ta \IJRL \IJR])h —

(ga_g—l o %[[Tv \IJLL \IJL])h =0
PR model:

resembles both WZW model based on a supergroup
and 2d supersymmetric WZW model
(fermions have standard 1-st order kinetic terms)

2d supersymmetry?
GS: target space susy + kappa-symmetry
l.c. gauge In flat space: fermions as 2d scalar@d spinors



Similar lower-dimensional models

AdSy x 5% :

PSU(1,1|2)
SO(1,1) x SO(2)
G =S50(1,1) x SO(2), H=trivial

F_
e

PR: [sin-Gordon + sinh-Gordon] + fermions

Ang x S§3
F  PS[U(1,12) x U(1,1]2)]
G U(1,1) x U(2)
G=U(L1)xU®2), H=[UW]

PR: [complex sin-Gordon + complex sinh-Gordon] + fermions



PR model for superstring aAd.S, x S?

PR Lagrangian: same as= 2 supersymmetric sine-Gordon

B 2
L=0,p0_p+0L00_¢+ %(COS 2 — cosh 2¢)

+ BO_B + vO_v+vosv+ pOyp
— 2 [cosh ¢ cos (Bv + vp) +sinh ¢ siny (Bp — V)]
equivalent to:
L =0,00_0" — [W/(®)]? + 9040, + 0501,
+ W @b ), + W (D*)E a7 |
bosonic part is 0fAd S, x S? bosonic reduced model if

2

W(®) = pcos®, W' (®)]* = %(COSh 2¢) — cos 2¢)

Y, =v+ip, VYp=—-0+1y
2d supersymmetry will be manifest in the S-matrix



2d susyin PR models forddS; x S3 andAdSs x S°?

non-standard 2d susy conjectured: remnam-sfymmetry
[Grigoriev, A.T. 97]

found recently: non-local susy

[Goykhman,lvanov; Hollowood, Miramontes 2011]

(4,4) susy inddS; x S3; (8,8) susy inddSs x S°
“left” (8,0) part:
5€L g = g([Ta [\IJRv GLH + 5“)
0, Vi =[(97'Dyg)l, er] + [¥r, du]
5€L \I,L — M[Tv geLg_l] ) 5€LAI|Z =0
du=pu(D_)""er, (g7 "V rg)"]
meaning of non-locality? need extra auxiliary d.o.f.?

implications for S-matrix?
find quantum-deformedupersymmetry in the S-matrix
[Hoare, A.T., 2011]



Global symmetries

e 2d Poincareo(1,1) € RY!
e in string theory: part of left after choosing matriy’
(cf. choice of BMN vacuum)

f=ftafl, [+ 7]=0
+=he {1}, h=hai ef, h=rf

hidden symmetry of PR theory?
¢ h= R-symmetry+fermionic part of 2d susy algebra:

s=s0(1,1) € (h x RY)

e 2d susy originates from target spacalsy of string theory
PR: target space sugy's become “charged” under 2d Lorentz
— become generators of 2-d susy of PR theory

¢ 2d susy not manifest in the action beyond quadratic level:
realized non-locally (locally imdS; x S? case)

appears as quantum-deformégls) symmetry

of the perturbative S-matrixq(= exp(—i7))



AdSy x S?:

b = psu(1|1)@psu(1]1)
s equivalent to (2,2) susy algebra in 2d
no quantum deformation

AdS3 x S :

h= u(l) & psu(l\l)@psu(l]lﬂ692 X u(1)
s like (4,4) susy algebra in 2d
guantum-deformed symmetry Stmatrix

AdSs x §°
b = psu(2|2)@psu(2[2)

s like (8,8) susy algebra in 2d
guantum-deformed symmetry Stmatrix



Quantum PR theory

Reduction procedure may work at quantum level
only in conformally invariant case (likddSs x S° string)
Consistency requires that reduced theory is also UV finite

gWZW + free fermions is finite;

due to fermiong: is not renormalized: remains arbitrary
conformal symmetry gauge fixing parameter at quantum level
[Roiban, A.T., 2009]

Thus reduced model i2d Lorentz invariant
and power counting renormalizable — in fahite
(cf. l.c. gauge fixed GS superstring)



Relation of reduced theory and string theory at quantum®eve
compare quantum partition functions
One-loop partition function:

semiclassical expansion near counterparts

of rigid strings inAdSs x S° leads to same
characteristic frequencies — same 1-loop partition funmcti
[lwashita, Hoare, A.T. 09]

one-loop matching is not too surprising

given classical equivalence but is still non-trivial:
due to standard kinetic terms in reduced theory, etc.
[not any two classically equivalent theories

will have same 1-loop partition functions]



Long folded(S, J) spinning string (m ~ In S, p ~ J)

Yy + Y5 = cosh(mo) €7, Y; +iYs = sinh(mo) e™*7

X1 4+ iXy = 7, k° =m? + u?
corresponding PR solution:
in AdSs x St
L = (0¢)% + coth® ¢ (0x)? — 2 cosh 2¢
¢ = In ’“J;m : = —2g
N AdS5 x S°
( 0 E’U —E’U 0 \
—gv* 0 0 y* e
7= oy 0 0 -y |0 U7
Iz p
\ 0 — =t 2t 0 )
' p H




same fluctuations as in string case —
same 1-loop partition function: Zl(Dl]ZZ — zW

string
1 — 0 limit (rescaled byk?):
MAas, =4 2 X Mg, =2
5xm?g5:O, 8><m%:1
String partition function: fior = VA + f)
'=—InZ= %f(x)ﬁﬁvz
) = ar+ 22 4 0(—~)
VA (VA)?



String theory 2-loop correction

as = aop +aop = K — 2K = —K

Catalan’s constant comes from sunset integrals
with AdSs; modes transverse t4dSs (i.e. m?% ;4. = 2)
[Roiban, Tirziu, A.T., 2007]

IIm?, mi, m?] = / d*p1d®pad®ps 61 (p1 + p2 + ps)
(pt + mi)(p3 +m3)(p3 + m3)

2

o

1[4,2,2] = K, 1I21,1]=-—

(4m)?

K-terms thus absent iMdSs x S® case
[lwashita, Roiban, A.T.]

AngXSSZ CL1:—21H2, as =0



Reduced theory 2-loop correction

similar 2-loop computation give% (@s coupling constant)

~ 1 ~

['=—1In ZPR — gf()\)H2V2
~ ~ 205 1
f()\) = a1 + 7 + O(ﬁ)
AdSs x S? case:
51 :—21n2, 52:—(11&2)2
if k& = 2v/) this implies
- S
ap = ay, a2 = a2 4a1

string and PR partition functions are closely related



AdSs x S° case:

51 = —3In2 = ay ,

- 9 1
as = —K — Z(IDQ)Q = Qg — Za%

K-terms match ife = 2v/\

same pattern o contributions as in string theory:
come from similar integrals

bosons— + K, fermions— —2K

again get )

~ 2
as? — A9 — Zal

nontrivial: no other structures lik&4, 4, 4], etc.
matching ofK -terms is remarkable
suggests close relation between two quantum theories

precise relation between quantum partition functions?

' 1 2
explanation for- — ;a7 ?



k=2VA?
compare classical actions:

A
Istring = :[/—7': d20' Str(P+P_ + )

k
I, = o /d20 Str{%(g_lf?g)Q + o4 pfg T + }

sinceP, = uT, P_=pug Tg
potential plus Yukawa terms = superstring action

suggests identificatioh = 2v/\
k should not be quantized?

[different boundary conditions/solitons in massive theor
as compared to standard massless gWZW model?]



S-matrix for elementary excitations

Step towards exact solution: S-matrix

Integrable theory — determined by 2-particle S-matrix
expand action around trivial vacuum

g=1, A, =0V, =V, =0

find two-particle scattering amplitude

for the 8+8 elementary massive excitations

g=¢€", neg
decompose into coset (“physical”) and subgroup (“gauge”) parts
n=X+¢, Xem, ¢e€b

A, = 0 gauge: preserves 2d Lorentz inv
Integrate overd _: delta-function constraint ofi

1

1
§[X7 a—i-X] o 5[67 a—i—‘f] +..=0

04§ —



solving for¢ gives action for physical d.o.f.X, ¥, ¥ )

~ Kk 1 ?
L= STr( 0. X0 x - M ox?
A 28+ J 2

+V, 70V, +V, . TO_V, +p¥, U,

1 p 2
51X 0L XX, 0-X] + O [X, [X, 7]

_i[\PLTﬂ \IJLHX7 a—i-X] o i[\IjR’ T\IJRHX7 a—X]

B e W) T, T, 4

remaining symmetry: global part o gauge gratdp

(X, ¥, , ¥ )—h X, U, ¥ )h



basicfieldsX =Y & Z, ¥ = (@ x Iin 8 x 8 matrix

( SU(2); Y 0 ¢ \
Y  SU©2); X 0
0 % SU(2), A

\ ¢ 0 Z SU(%)

Introduce bosonicd, a) and fermionic &, «) indices= 1,2:
SU(2)1:a  SU(2)2: o« SU(2)i: a SU(2)5: &

L=0,Y,,0_Y% — )?Y,, Y
+ 8—|-Zozda—Zda _ M2Zodeda
T iCL ada‘l'CL aa + iCRada— CR A 27:MCL aaCRda

F X1 004X T X a0 X ™™ — 200X, pa X n ™"
27T

- (YaaV 20, Y0 Y = Y0, Y4Y,,0 V) 4 .



combineY,., Zaa, Cacr Xaa INtO
D, i, A= (a,q)

S-matrix acting on 2-particle state:

S|P 4i(0h)Ppp(0)) = Sjj 55(9 k) |@ce (1)@ pp(02))

Lorentz invariance: two-particle S-matrix depends on
0 =19, — Vs, pio = pcoshd;,  p;1 = psinhv;

Remarkably, resulting S-matrigroup-factorizes

sjjjgg(e k) = (—1)PIAHPIC 59D (9 k)SSD (6, k)



e generic integrable theory witf; x G5 symmetry
and fields in bi-fundamental representation:
S-matrix should group-factorize

e happens in l.c. gaugédsSs x S° superstring S-matrix
Invariant under product supergrodpSU (2|2) x PSU(2|2)
[Kloze,MacLoughlin,Roiban,Zarembo 06;
Arutyunov,Frolov,Zamaklar 06]

e field contents of |.c. superstring and reduced theory
are identical w.r.t. bosonic symmetrjSU (2)]*
superstring: integrabilityand PSU (2|2) x PSU (2|2) symmetry

e PR model: integrability but no manifest supersymmetry;
perturbative factorization suggests hidden supergroumsgtry



S-matrix: 10 functionsKk,, (0, k)
[ K1(0,k) 6567 + Ko(0, k) 0307 ,

5(0,k) 0,
S (9 ]43) = < K5((9, k’) Eabefyé . K@(@, ]43) EQBECd
K7(0,k) 607,  Ks(0,k)056% ,
| Ko(0,k) 6505, K1o(0,k) 510¢,
K1(0,k) = K3(0, k)—1+—t h9+(’)(1)
10, 3 ok a1 -2
Ky(6,k) = K4(0, —k) = —% coth § + O(kQ)
VT 0 1
K5(0,k) = —Kg(0,—k) = —— sech— +0(53)
2k k
9 1
K7(0,k) = —Kg(0,—k) = —% cosecrk — O(kZ)

1

Ky(0,k) = Ki0(0, —k) = 1+ O(kz)



compare to I.c. gauge tree-levéllS; x S° string S-matrix

K, = (K,)swring depend separately on 2 rapidities
and: — —

VY
[_( -1 j; 2\/—7l(sinh191 — sinh95)? + O(ﬁ)
K24 — :I:\/_ sinh 19 sinh 9o + (9((\/—)2)
K56 = \/_smhﬁl sinh ¥ sinh 21592 + O( \/1X) )
I_(7 8 — Slnhﬁl Slﬂhlgg COSh 191 192 + O( 2)

\/_

\/X)
Kg 10 — =1 + \2/71(8111}12 191 + smh 192) + O(

7

3



Tree-level S-matrix ofAdSs x S° PR modet

e Unitary and crossing-symmetric
e satisfies group factorisation, buot Yang-Baxter equation:
clash between relativistic invariance, trigonometricisture
and manifestnon-abeliansymmetryH = [SU(2)]*

(string S-matrix is not Lorentz inv. but does satisfy YBE)

e K, are same as in g-deformeehi(2]2) x R?
R-matrix of quantum-deformed Hubbard model
[Beisert, Koroteev, 2008; Beisert, 2010]

e suggests tha¥U (2) x SU(2) symmetry
should bequantum-deformedather than manifest



One-loop correction to S-matrix

1-loop corrections to 2-particle scattering from quartsgkangian:
standard massive 2d Feynman graphs [Hoare, AAT, 2011]

K, = ®y(0,k) K;(0, k)

Ki(0,k) = K3(0, k) =1+ i—”tanh 0 g;;i — im0 4 O(k)
K2(0,k) = K4(0, —k) = coth9+ I+ im0 ok
K5(0,k) = —Ko(6, —k) = — 4% sechf + O()

K7(0,k) = —Ks(0, —k) = —@cosecré +O(3s)

Ko(8, k) = K19(0, —k) = 1 4+ O(%)

By =1+ T (12 4 (im — 20) coth ] — m cosectd) + O(2)
to get idea of how to interpret/generalize this S-matrixdgtu
special cases/truncations
PR models forddS, x S? and AdS; x S3



AdS, x S? case

PR model equivalent t&/ = 2 supersymmetric sine-Gordon
tree + 1-loop corrections agree with expansion of known
exact S-matrix of\' = 2 susy SG

[Kobayashi, Uematsu 91; Ahn 91; Shankar, Witten 78]

Ssg(ea k) ® Sl (‘97 k) ® Sl (‘97 k)

T

S _ sinh 641 sin %
Sg sinh 0 —1 sin =

sinh 6417 sin %

Sl N sinh 6 —1sin 7- Y((g k) Y(Z?T o 9,]{)
_l_

1 7

Y =[[° D —42+0) (= — & 41—1)r (- 42
=l p (ot ) r(— g — -3 r (-2 i—1)r (- £+

manifestly invariant under (2,2) susy
which in PR model framework is interpreted as

so(1,1) € (F- x RV, - = psu(1]1) @ psu(1|1)



AdS; x S? case

e herea, a, a, & are vectorSO(2) indices

4+4 ﬁeldSYaa, Zods Cacs Xaa (Wlth Y.o = eabedl')}/bl')’ etC.)
can again be packaged into singlg ;

e S-matrix again group-factorizes

SSL expressed in terms of 12 functiois (6, k)

with similar tree ¢) and 1-loop ¢-) terms

e H=U(1) x U(1) invariant S-matrix satisfies YBE

e Supersymmetry
by analogy withAdS, x S* case
conjecture that it is determined by

so(l,1) € (t@txu(l) x RY) . t=u(l) € psu(1|1)



susy: t x u(1) x RY!; should act on factor S-matrig§ 2

R, R =0, £, L£]=0,

R, Qix] = £, L, Qir| = FiQyr,

R, Gix] = £G4, £, Gpx| = FiG4g,
{Gi:':,ﬂiq:}z(), {Gj::':, Qq:i}zzt%(%%—ﬁ) = £,
{Qux, Qug} =0, {Qux, Qg = P+,

{6:|::Fa 6:I::|:} =0, {6:|::Fv 6:F:I:}‘ =P_

R andL: bosonicu(1l) ® u(1) generators
Qi+ /643 2+2 positive/negative chirality supercharges
Lo, PB.: 2 central extensions — 2-d momenta

This is not manifest symmetry of 1-loop S-matrix but
guantum-deformed

{Gxx, Qx) =[], q=e "

A -2 2
_ g o 2T o3
A, = pp—— = At s (A-A) +




Action of symmetry on 2-particle states:coproduct
should respect commutation relations — if deform the algeleed
replace standard Leibnitz rule

AJ) =IF+IxI1

by deformed one for action ofermionic generators
(abelian bosonic part not deformed):

A(Qiq:) — Q:l::F &) q_m +I® Q:l::F
A(Giz) =611+ ¢* ® Gix

Now use

(i) analogy with (2,2) supersymmetri€dS, x S*? case
(i) analogy with complex SG S-matrix

(i) explicit tree-level +1-loop data

to conjectureexact (in 1/k) S-matrix

for elementary excitations ofdS; x S° PR model



Exact S-matrix ofAdS; x S° PR model

e assume g-deformed (4,4) supersymmetry is exact symmetry
e fix phase factor from unitarity, crossing and 1-loop data

cosh ( £41ix sinh ( £ Fix
Lis=L[Py(6,F) co(sigk) + Py(6, k) SI(HZE’“>

cosh (€ +ir sinh ( 2 x iz
L2’4 - % P (9’ k) C0<82h s : ) P (9’ k> sithE : )
Ls7,Les = %{ (0, k) £ P(0, k)}

|
Lg10 = 5Py (6, k)% Liiie = — 3 P(0, k) 2ok

_ Jeot (8) e T2 - hP(Eed+d)
Pl\/cosh(gizr) Hl L r(—422 k-|-l—2)F( 1844 —I—l—l— )
D(- +l—§>r< 42 +1+3)

- DN 41+ D)

Py(0,k) = Py(im — 6, k)



What does this suggest about S-matrix4efSs x S° PR theory?

e perturbative tree + 1-loop S-matrix from Lagrangian theloag
bosonicH = [SU(2)]* symmetry: does not satisfy YBE

— some subtlety in how integrability is realised?

e this perturbative S-matrix closely related (by a rotatitm)
S-matrix satisfying YBE with”H broken/deformed ?

e analogy withAdS, x S? andAdSs x S° suggests to
expect quantum-deformed(8,8) supersymmetry related {o:

s0(1,1) € (psu(2]2) @ psu(2[2) x R?)

bosonic parfsu(2)]®4 is also quantum-deformed

e in similar bosonia&/ H theories with non-abeliaf/
conjectured soliton S-matrix has g-deformed symmetry
[Hollowood, Miramontes, 2009-11]

q = e ‘% -deformation appears in WZW-related contexts



Remarkably, existgelativistic S-matrix with such g-deformed
supersymmetry, and it satisfies YBE [Hoare, A.T. 2011]:

given by a trigonometric relativistic limit of 2-parameter
g-deformedpsu(2]2) @ psu(2|2) x R3 R-matrix constructed by
Beisert and Koroteev, 2008; Beisert 2010:

i
g — 00, q—=—e€ 'k

S-matrix depends oftand single parametér

relation to Lagrangian-theory-matrix supported by

close connection at tree level:

same coefficients, two S-matrices are related by a rotation

natural candidate for exact S-matrix.4flS; x S° PR theory



Exact S-matrix ofAdS; x S° PR model?

Structure similar to S-matrix iMldS; x S3 case
with 10 coefficient functiond,, (0, k) given by

J1.3 = Py(0,k) cos T sech? cosh (§ + &)

Jog = FiPy(0, k) {1 — Cos 1 + cosh 6 + cosh ((9 + ”)} Sslliﬁ’g

J5.6 = —iPy(0, k) cos E sin 2 sechf

J7 ] — —ZP()(Q k) SlIl COseCt‘g Jg,lo = P()(Q, k)
sinh 0 —14 sin

PO(H k> - \/smh@—l—zsm L Y<9 k) ( o 67 )

k
(ﬁ %H) (—ﬁ—%—kl—l)
VOB = e i )
XF(—%H——) O(—48+1+1)
F(—%H—l)r(—%ﬂ)
supported by relation via fusion/bootstrap procedure

to spectrum of solitons found by Hollowood and Miramontes
[Hoare, Hollowood, Miramontes 2011]




Conclusions

e PR model: special relativistic massive integrable finitedeio
closely related to1d S5 x S° superstring: classical equivalence
1-loop partition functions for classical solutions match;
2-loop partition function for infinite spin limit of foldedsng:
non-trivial — Catalan’s constant — part matches stringltesu
suggests relation between quantum PR and string theories

e S-matrix for perturbative excitations of PR theory:
relativistic “analog” of magnon S-matrix in string theory
PR AdS> x S?: equivalent tq2, 2) susy sine-Gordon theory
PR AdSs x S°: fermionic generalisazation of CSG + CShG
S-matrix has novel g-deformed (4,4) 2d susy
PR AdSs x S°: candidate for exact S-matrix with g-deformed
(8,8) susy: psu(2]2) @ psu(2]2) x R?



Open questions

deeper understanding of relation between string and PRytheo
at classical level: meaning of novel 2d susy? ...

precise relation of quantum string and quantum PR theory?
k ~+/\? relation between quantum partition functions?
relation between S-matrices?

origin of quantum deformation from Lagrangian point of vigw
g-deformed susy: relation to classical non-local 2d susy?
reason for g-deformation of glob&l = [SU(2)]* symmetry?

exact relation between perturbatife-symmetric S-matrix
and YBE-satisfying S-matrix with g-deformed symmetry?

How understanding of PR theory helps us
in solving quantumAd.Ss x S° string from first principles?



