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Percolation, definitions
Random bond percolation is the problem of occupying the edges of a
graph or of a lattice region D with probability p.

Nomenclature

1. The set of occupied
bonds is a graph G

2. Connected components
c ⊆ G are called clusters

Graphs have factorized probability measure

µ(G) = p# bonds(1− p)# empty bonds

By definition the percolative partition function

ZD =
∑
G⊆D

µ(G) = 1, in any domain D.
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Percolation as a critical phenomenon
Paradigm for geometric phase transitions (no sp. symmetry
breaking, no dynamical d.o.f.)

Order parameter

P =
#sites in the “infinite”cluster

# sites

∼ (p − pc)β, p → p+
c

A bit of history of the exact (universal) results obtained at the critical
point in two dimensions

80’s-90’s Critical exponents (Dotsenko-Fateev, Nienhuis, Duplantier-Saleur,. . . )

90’s-Present Crossing probabilities, SLE (Cardy, Bauer-Bernard, Schramm, Smirnov,. . . )

Last ten years Virasoro algebra rep. (Gurarie, Mathieu-Ridout, Pearce-Rasmussen-Zuber,. . . )
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Which elementary objects are/were left over for 2d
QFT?

Basically all the observables which depend on the process extended to
the whole plane R2...

Even at pc , n-point
connectivities for n ≥ 3

P(x1, . . . , xn) =Prob. {x1, . . . , xn}
are connected

Off-critical quantities, starting
from the universal ratio

Γ+

Γ−
=

size of finite cl. below pc

size of finite cl. above pc
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The Random Cluster Model (RCM)
A field theory description of Percolation is obtained through the
mapping with the ferromagnetic Sq invariant, q-color Potts model,

HPotts = −J
∑
〈x ,y〉

δs(x),s(y); s(x) = 1, . . . , q ∈ N.

Such mapping was proposed by Fortuin and Kasteleyn (FK 70’s)

ZPotts =
∑
{s(x)}

e−HPotts (expanding eJδ)

=
∑
{s(x)}

∏
〈x ,y〉

[
(eJ − 1)δs(x),s(y) + 1

]
(with p = 1− e−J)

= eNJ
∑
G⊆L

Graph prob. measure µ(q,G)︷ ︸︸ ︷
q#clustersp#bonds(1− p)#empty bonds ≡ ZRCM(q).

FK provides an analytic continuation of the Potts p.f. to q ∈ R and
the RCM measure defines (q > 0) a correlated percolation problem.
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Some comments on the analytic continuation. . .
(G. Delfino and JV, NPB 2011)

Observables in the RCM are
n-point connectivities
Pa1...an(x1, . . . , xn)

Their full number (p < pc) is
Bn, the number of partitions of
a set of n elements.

The Bn n-point connectivities Pa1,...,an(x1, . . . , xn) are not linearly
independent but satisfy sum rules

Examples

Paa(x1, x2) + Pab(x1, x2) = 1 n = 2

Paaa(x1, x2, x3) + Paab(x1, x2, x3) = Paa(x1, x2) n = 3
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Some comments on the analytic continuation. . .

Counting the number of linear relations we found that the number of
independent n-point connectivities is the number Fn of non-singleton
partitions of a set of n elements.

Remarkably, Fn is also the number of

1. Independent Potts spin n-point c.f. in the formal and unbroken Sq

symmetric Potts field theory

〈σα1(x1) . . . σαn(xn)〉,
q∑

α=1

σα(x) = 0

2. In 2d the number of independent c.f. of the disorder field µαβ,
creating a domain wall (α− β) in the Sq sp. broken phase

〈µα1α2(x1) . . . µαnα1(xn)〉 ≡ α1 α2 α3 . . . α1
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Applications to 2d percolation, the 3-point
connectivity (G. Delfino and JV, JPA 2011)

Consider the three-point connectivity in 2d percolation at the
percolation threshold p = pc

Paaa = lim
q→1

1

(q − 1)(q − 2)
〈σα(x1)σα(x2)σα(x3)〉T=Tc (FK mapping)

= lim
q→1
〈µαβ(x1)µβγ(x2)µγα(x3)〉T=Tc (Potts duality)

= lim
q→1

Cµ(q)
√

Paa(x1, x2)Paa(x1, x3)Paa(x2, x3) (Conformal inv.)

The structure constant Cµ(q) appears in the Sq symmetric OPE of
the Potts disorder fields

lim
x→y

µαβ(x)µβγ(y) ∼ δαγ

|x − y |2Xµ(q)
+ (1− δαγ)

Cµ(q) µαγ(y)

|x − y |Xµ(q)
+ . . . ,

Clearly to find Cµ an analytic continuation of some minimal model
structure constants is required.
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A conjecture for Cµ using Al. Zamolodchikov
conformal bootstrap

Trick: To reproduce the three-point function we can just consider
two operators µ and its charge conjugate µ̄ with Sq invariant OPE

µ · µ̄ ∼ I + . . .

µ · µ+ µ̄ · µ̄ ∼ Cµ(µ+ µ̄) + . . .

The symmetric combination φ = µ+µ̄√
2

, satisfies

φ · φ ∼ I +
Cµ√

2
φ+ . . .

φ is normalized to one in the identity channel and has multiplicity
one; since these are the hp under which Al. Zamolodchikov
(hep-th/0505063) rederived the structure constants for the A series of
minimal models we conjectured

Cµ(q) =
√

2CXφXφXφ(c) c(q) is the CFT central charge
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A numerical check of the conjecture
(R. Ziff, J.Simmons and P.Kleban JPA 2011)

Random percolation corresponds to c = 0 and Xφ = Xµ = 5
96 giving

lim
q→1

Cµ(q) = 1.022 . . .

A result which agrees with high-precision numerical simulations by
Ziff et al.

Figure: The universal ratio Cµ(q = 1), called R, obtained computing the
probability of three points on an equilateral triangle of side ∆ to be
connected. The lattice has p.b.c and size L× L.
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Applications to 2d percolation, the cluster size ratio
(G. Delfino, JV and J.Cardy, JPA 2010)

Again from the FK mapping

cluster size below pc

cluster size above pc
= lim

q→1

∫
d2x〈σα(x)σα(0)〉T>Tc∫
d2x〈σα(x)σα(0)〉T<Tc

σα(x) is the Potts spin field and, in the scaling limit, Potts field
theory is perturbed away from its critical point

APotts
Scaling = APotts

CFT +
T − Tc

Tc

∫
d2x

therm. def.︷︸︸︷
ε(x)

The resulting QFT is Sq invariant, massive and integrable (L. Chim
and A.B. Zamolodchikov, 1992).

Once the S matrix is known, correlation functions are usually
computed as spectral series through the form factor axioms.
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The end of a long history. . .
This is precisely what we did it (although it is NOT a standard form
factor computation) finding

Γ+

Γ−
≡ cluster size below pc

cluster size above pc
∼ 160.2

Numerical determinations (from a talk of R. Ziff)
year author system, method Γ+/Γ−

1976 Skyes, Gaunt, Glen lattice, series (12-20 order) 1.3-2.0
1976 Stauffer lattice, series analysis ∼ 100
1978 Nakanishi, Stanley lattice, MC 25
1978 Wolff, Stauffer lattice, series 180(36)
1979 Hoshen et al. lattice, MC 196(40)
1980 Nakanishi, Stanley lattice, MC(reanalyze) 219(25)
1981 Gawlinsky, Stanley overlapping disk, MC 50(26)
1985 Rushton, Familiy, Herrmann additive polymerization, MC 140(45)
1987 Kim, Herrmann, Landau continuum model, MC 14(10)
1987 Nakanishi AB percolation, MC 139(24)
1988 Balberg widthless sticks, MC ∼ 3
1989 Corsten, Jan, Jerrard lattice, MC 75(+40, -25)
1990 S.B. Lee, Torquato penetrable conc. shell 1050(32)
1990 S.B. Lee disks, MC 192(20)
1993 Zhang, De’Bell Penrose quasi-lattice, series 310(60)
1995 Conway, Guttman lattice, series (26-33 order) 45(+20, -10)
1996 S.B. Lee penetrable conc. shell, disks 175(50)
1997 S.B. Lee, Jeon kinetic gelation, MC 170(20)
2006 Jensen, Ziff lattice, MC, series 162.5 (2.0)
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A short summary of this talk

We predicted the exact formula for the three-point connectivity in
two-dimensional percolation at criticality.

We gave an accurate estimation for the off-critical cluster size ratio
and we also computed all the independent universal ratios in
two-dimensional percolation.

Our results which rely on techniques of Integrable and Conformal
Field Theory, agree with the best numerical simulations at disposal.

Thank you for your attention!
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