High Energy Scattering in IFT

Bologna, September 2011



e Understanding behavior of the masses of particles in IFT as the
functions of the parameters requires data about high-energy limit
of scattering amplitudes.

e T he high-energy limit of elastic amplitude at small magnetic
field will be derived using relation of the zero-field IFT to classical
integrable system. Based on recent work of I.Ziyatdinov & AZ

e [ he result leads to a puzzle about behavior of the resonance
states in IFT.



Ising Field Theory = scaling limit of the 2D Ising model near its
critical point T'="1,, H = 0. = Euclidean quantum field theory

AlFT = Ac=1/2 cFT — Qﬂ e(z) d°z + h/O(fL‘) d°z
T
e(z) with (A, A) = (1/2,1/2) (" energy density");
m v TC - T
o(x) with (A, A) =(1/16,1/16) ("spin density");

h ~H



e Statistical mechanics: IFT describes basic universality class in
2D phase transitions (e.g. critical point in liquid-vapor transition).
Thermodynamics is expressed through the IFT vacuum energy
density
m2 2 16
F(m,h) = — logm* + h15 ®(n), n = 5
8 |h|15

m

e Generally [i.e. except for (m,h) = (0,0), and the Yang-Lee point
h/(—m)15/16 = +4(0.1893)] IFT is massive = Particle theory in
1+ 1 (mass spectrum, scattering amplitudes, etc) = Determines
the " fine structure” of the scaling theory (amplitude ratios, cor-
relation functions, finite-size effects, etc).




Qualitative understanding of the IFT particle theory - " McCoy-
Wu scenario” (1978): The mass spectrum interpolates between
the infinite tower of "mesons” at n — 4+oo (low-T regime) and
one stable particle at n — oo (high-T regime).

Numerical analysis (via TCSA of Al.Zamolodchikov, by Delfino,
Mussardo, Simonetti (1996), Fonseca, AZ (2001))

Particle masses (in the units |h|8/1%) vs n = m/|h|8/15
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I will refer to the stable particle as Ay, and their masses (measured
in the units of |k|8/15) as M, = M,(n),

n=12,....N
Questions:

What happens to the particle masses when they leave the spec-
trum of stable particles?

The resonance states may also disappear. How this happens?

What are the analytic properties of M, (n) as the functions of n?



Analyticity is (partly) understood for the free energy, i.e. P(n)
[P.Fonseca, AZ (2001)], and for M1(n).
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For the higher masses the situation becomes somewhat more com-
plicated: Algebraic singularities (akin to " level crossings” ) emerge.
E.g.

Mo(n)
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It is useful to discuss in terms of the elastic A1 + A1 — A1 4+ A4
scattering amplitude S(0), defined as usual

| A1(01)A1(02))in, = S(01—062) | A1(01)A1(62))out +
-+ inelastic terms

S(0):

e Is analytic in the 0-plane with the branching singularities at 0 =
+ 0y + iwZ, associated with the inelastic thresholds A1 + A> — X

e Satisfies (on the principle sheet)

S(0)S(—0) =1, S(0) = S(imr—0)
and hence it is periodic, S(0) = S(2ni 4+ 0).

e Has poles associated with bound states, virtual and resonance
states



"Physical Strip”: 0 < Sm6 < m; Poles here are associated with
bound states.

"Mirror strip”’: —m < Sm60 < 0; Here the virtual state and reso-
nance poles are located.
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A particle leaves the spectrum in a familiar way - by becoming a
virtual state (the poles moves from PS to MS)

—TI 0 T -1t 0 T
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Virtual states can turn to resonances (and vice versa) when poles
collide in the MS. This leads to " level-crossing” square-root sin-
gularities of My (n)
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In turn, resonances

can disappear, in two ways:

Tt
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The later scenario - departing of the resonance poles to infinity -
can be observed by looking at high-energy behavior of S(6).

T his was the motivation of the high-energy amplitude via pertur-
bation theory in A2 (in the high-T regime) below.
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High-energy scattering in IFT by perturbation theory in h
(I. Ziyatdinov & AZ, 2011)

2 — 2 S-matrix element S(615) = So_o(601 — 6>) in

dsy  dB
101,02)in = S252(01,02) [ 01,02 )out + Z / : 2—; X
n=3
27)2
( n,) 52 (Pyy, — Pout) S2—3n (01,0218, Bn) | B1, -+, Brdout

At h = O: 3(912) = —1, 52_>n = 0.

At h # 0

S(612) 6(61 — 01)6(62 — 65) =
— (61,65 | Texp — ih / o(x) dzﬂ?} | 07, 60%)conn

Complication: o(x) is not local with respect to free field; no man-
ifestly covariant perturbation theory (i.e. Feynman diagrams) is

known.
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Leading correction

S(6) = — [1 + p2tA0)
sinh

o+ O(h™")|,

1
1 A(012) = —5 / dz (01,02 | To(2)a(0) | 01,02)conn
i

The matrix element here is expressed in

terms of solutions of the linear problem associated with classical
sinh-Gordon equation

1
828290 — é Slnh(QSO) )

(z =x—1t and Z = x + t are the light-cone coordinates) The
relevant solution is Lorentz invariant, i.e

v = o(p), p=2Z=x%—1t7.
1 J 1 p e2VE
— ——log=——log | — =lo — 0,
w(p) > 94 9( > 9( 61 )) P
2

w(p)%;Ko(\/ﬁ) p — 00
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Wu, McCoy, Tracy, Barouch (1976):

G = (0| To(z,2)0(0) | 0) = eX/2 sinh (p/2),
G = (0| Tp(z,2)p(0) | 0) = eX/2 cosh (¢/2) .

1
0705 x = 3 [1 — COSh(ng)] :

The matrix elements are expressed in terms of Wi(z Z|B), the
solution of the associated Lax system,

o, (V) 212020 —eF [wy
“\w_ 4 efep 200 W

85 W :1 205p —e Pe¥ Wy
W_ 4\ etepr —2050 W_

with e being the "spectral parameter [P.Finseca, AZ (2003)]

and
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By the Lorentz invariance, W depend on the combination

Z=Zee, 7 =7z "?

(which are the light-cone coordinates in the rest frame of a particle
of the rapidity 6), and I will write

Vi (Z, 2).
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(01,02|0(x/2)0(—2/2)|01,02)conn =

G |G(02161)9(611602) — G(61161)G(62162) + G(61,62)G(61,62) .

where
i [ et — ef2 ~ ]
G01,02) = —5 |G 5 > Ws(01,02) — GWa(b1,02)]
1 : ef1 4 02 ~ :
G(01102) = —5 |G 55 Val01,02) — G Ws(01,02)|

G =(0|To(z/2)o(—2/2)|0), G=(0|Tu(z/2)u(-=/2) | 0), and

Ws(01,02) =V (Z1,21)V_(Zp,Zp) +V_(Z1,Z1)V 1 (Z2, Z3) ,
Wo(01,02) =V (Z1,21)V _(Z2,42) =V _(Z1,21)V (22, Z2) .

Here

(74, Zl) = (6012, 6_912> , (Zo, ZQ) = <€922, 6_922> ,
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In particular
G(00) =G K(Z,Z2) -G L(Z,7)
where

K=W_(2,2)V_(2Z2),
L=V_(Z,2)0V1(2,2) =V (Z,2)8pV_(Z,Z)

Still too complicated to be evaluated in a closed form ...

But simplifies in the high-energy limit 610 = 61 — 6> — oc:

. 01 1 0
e The rational factors &-t€?2
ef1_ef2

(01,02|0(x/2)0(—2/2)|01,02)conn —

can be dropped, so that

G [L(Zl, Z1) L(Z2, Zy) + K(Z1,21) K(Z3, Z3)] —
G [L(Zl, Z1) K(Z,Z3) + K(Z1,21) L(Z>, Z5)]
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o At large |Z+ Z| >>m~! Wi (Z,Z) become essentially " dressed
plane waves”’, e.g. at Z — +oo and Z >> 7

Z -7
\If_|_—>2690/2 cos( —%),
Z -7
\If_—>2€_90/2cos< —|—%>
It follows
_ Z -7 _ _
K(Z,7) — 2 cos ] L(Z,2) - |Z+ Z|.

The leading high-energy behavior is dominated by the term
G L(Zy,Z1)L(Z1, Z1)

in the matrix element (the rest of the terms are suppressed by at
least one factor e %12).
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T herefore, one can write:

1
iA(012) = = [ P |UV|G(p+i0) +0(1),

1
d2x=dxdt:§dzdz, p =277,

U:Z:L—|—21:€912—|—6_912,
V=004 Z,=c%2z+e%27.

The integral is handled as follows: write
V| =UV —2UV e(-UV)

with © being the usual step function. The first term is analytic in
the coordinates; it can be evaluated by the Wick rotation t — —uy,
yielding

1
- / UV G(p + i0) d?z = 2mi G5 cosh 015 — i Gz 12
where

Gs=5 [ pG@do= [ 13 (o(r)o(0)) dr.
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In
/ O(—UV)UV G(p) %z

the integration domain is limited to the domain UV < 0, laying
between the lines U =0 and V = 0. For the part U <0, V >0
one can use the " Lorentz polar coordinates”

zZ = — —pe_¢, 2=\/—pe¢
with the integration over ¢ limited to the domain 6>, < ¢ < 1. AS
the result

UV G 0) d°z =
/U<O<V (p+1i0)d°z
615 [© . 615 [
—012 €712 / pG(p+1i0)dp = 015e"12 /o pG(p)dp
— 00

Finally

iA(012) . —0

sinh 614 = —4(G3 [912 — /2 + 90} + O<€ 12) :

(COM energy E = 2 cosh(612/2)); 6g is a constant whose evalu-
ation requires the knowledge about W4 at |Z 4+ Z| < m™1).

23



By optical theorem

23mA (2)
YT,
sinh 6 tot

Otot = probability of all inelastic processes in the
2-particle scattering = h? Ut(c2>t) + pt agt) 4+ ..

oot (E) ~ 8 Gs h? 1og(E?) + O(h?) E — 00
Suggests that

Ut(gt) ~ log™(E?)
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The EF — oo asymptotic of A corresponds to "quasi-classical”

approximation:

e [ he particles 1 and 2 are represented by classical trajectories

6912—|-6_912=O,
eeQZ—I-e_@QZzO.

Uu

e [he 2 — 2 matrix elements are approximated as

(01,02 | To(x1)o(x2) | 01,02) ~
sign(uy)sign(uz)sign(vy)sign(ve) (0 | To(x1)o(x2) | 0),

((u;,v;) are the (u,v) coordinates of the insertion points xz;), as
long as x1, x> are not too close to the trajectories
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(i) Correlations between o(x1) and o(xz5) is due to the exchanges
of odd numbers of particles

(ii) Intersections generate the minus sign, e.g.
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(01,02 | To(x1)o(x2) | 01,02)conn =
(01,00 | To(x1)o(xo) | 01,05) — disconnected parts,

disc. parts =
[1 + (sign(ul)sign(ug) — 1) + (sign(vl)sign(vg) — 1)] X
(0| To(zy)o(x2) | O)

<‘91»92 | TU(ﬂfl)U(xQ) | 91,92>conn =
40 (~u1v1)O(~uzv2) (0 | To(xy)o(xz2) | 0),
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Since (0 | To(x1)o(xp) | O) depends on x1 — x5

1
- / d?z1 d°zs (01,05 | To(x1)o(x) | 01,602)conn =

g 2
2 sinh 012 / d“z |UV|{0 | To(z/2)o(~x/2) | 0) ~10g(E?)

(U =u1 —u>, V = v1 —vo are the (u,v) coordinates associated
with the separation x = x1 — z5).

Origin of the log(E) behavior: If 81 — 400, 65 — —0
Uzeelz—l—e_elize‘glz,
V = 692Z—|—€_922’:€_922,

unless z (or Z) is too small. If one replaces |[UV| — e12|zZ| the
integrand would be Lorentz invariant = infinite volume of the
lorentz group. At finite 015 it is ~ 815 ~ log(E?).
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Higher orders in h2:

S(012) = — (01,02 | Texp{ —ih / o(x) dzx} | 61, 62)conn

At (912 — OO
(01,02 | To(x1)o(x2)...0(xoy) | 01,02) =

2n
11 Sigﬂ(uz')sigﬂ(vz')] (0| To(z1)o(x2)...0(z2,) | 0).
1=1

The corr. function is Lorentz invariant = integration over [[#%, d?x;
produces the factor 1o from the Lorentz boost.

The corr. function contains disconnected parts

(O To(z1)o(z2) [ 0)(0 | To(zz)o(xa) | 0)..(0 | To(z2n-1)0(x2,) | O) +
permutations,

which are invariant w.r.t. n copies of the Lorentz group = 67,.
Exponential series =

S(6) ~ —exp{ — 4G3 h? (e—m/z)} Re § — +oo
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Summary and Remarx:

e At h?2/ml5%/% << 1 the 2 — 2 elastic scattering amplitude has
the power-like asymptotic at £ — oo,

Eq
with G3 - third moment of the spin-spin corr. function.

e In principle, using this approach, one can collect the "subleading
logarithms” like h2" 12 |og™(E?), yielding

VI 2
e 4 F —a(h?)
S2s2(E) - —( ks ) ,
0
with a(h?) = 8G3h? 4+ Gsh* 4+ ..., where e.g. Gs is expressed
in terms of certain 5-th moment of connected 4-spin correlation
function, etc.

The power-like asymptotic suggests that there is no resonance
whose energy grows to infinity as h2 — 0. This is puzzling: seems
to violate "resonance number parity” in the IFT.
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IFT is integrable in two special cases:

e m =0, h # 0 = 8 stable particles (and no resonances), non-
trivial factorizable scattering theory with " E8 structure’.

e m = 0, h = 0 = one stable particle (and no resonances), with
trivial scattering: S(6) = —1.
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Rea
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n = —0.08:

Rea
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n = —0.27:

OO

e

Rea
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n = —0.49:

Ima
a3 ao a1
v Voo
0O—e—0—00 o0 o0

Rea
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n = —0.94:

Ima
e (I3
ao a1
v v
oe oo oo

Rea
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n=—1.87

O

O

O

Rea
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n = —2.29

O

O

o ——

O

Rea
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n = —4.35

} <o
N

Rea
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