High Energy Scattering in IFT

Bologna, September 2011

- Understanding behavior of the masses of particles in IFT as the functions of the parameters requires data about high-energy limit of scattering amplitudes.
- The high-energy limit of elastic amplitude at small magnetic field will be derived using relation of the zero-field IFT to classical integrable system. Based on recent work of I.Ziyatdinov & AZ
- The result leads to a puzzle about behavior of the resonance states in IFT.

Ising Field Theory = scaling limit of the 2D Ising model near its critical point $T = T_c$, H = 0. \Rightarrow Euclidean quantum field theory

$$A_{\rm IFT} = A_{\rm C=1/2\ CFT} - \frac{m}{2\pi} \int \varepsilon(x) d^2x + h \int \sigma(x) d^2x ,$$

 $\varepsilon(x)$ with $(\Delta, \bar{\Delta}) = (1/2, 1/2)$ ("energy density");

$$m \sim T_c - T$$

 $\sigma(x)$ with $(\Delta, \bar{\Delta}) = (1/16, 1/16)$ ("spin density");

$$h \sim H$$

• Statistical mechanics: IFT describes basic universality class in 2D phase transitions (e.g. critical point in liquid-vapor transition). Thermodynamics is expressed through the IFT vacuum energy density

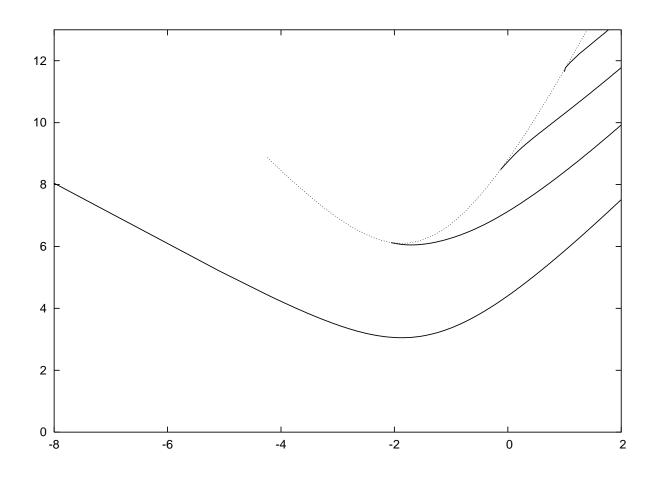
$$\mathcal{F}(m,h) = \frac{m^2}{8\pi} \log m^2 + h^{\frac{16}{15}} \Phi(\eta), \qquad \eta = \frac{m}{|h|^{\frac{8}{15}}}$$

• Generally [i.e. except for (m,h)=(0,0), and the Yang-Lee point $h/(-m)^{15/16}=\pm i\,(0.1893)$] IFT is massive \Rightarrow Particle theory in 1+1 (mass spectrum, scattering amplitudes, etc) \Rightarrow Determines the "fine structure" of the scaling theory (amplitude ratios, correlation functions, finite-size effects, etc).

Qualitative understanding of the IFT particle theory - "McCoy-Wu scenario" (1978): The mass spectrum interpolates between the infinite tower of "mesons" at $\eta \to +\infty$ (low-T regime) and one stable particle at $\eta - \infty$ (high-T regime).

Numerical analysis (via TCSA of Al.Zamolodchikov, by Delfino, Mussardo, Simonetti (1996), Fonseca, AZ (2001))

Particle masses (in the units $|h|^{8/15}$) vs $\eta = m/|h|^{8/15}$



I will refer to the stable particle as A_n , and their masses (measured in the units of $|h|^{8/15}$) as $M_n = M_n(\eta)$,

$$n = 1, 2, ..., N$$

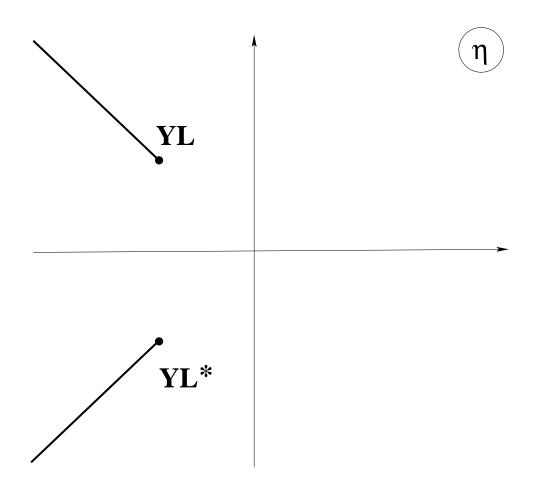
Questions:

What happens to the particle masses when they leave the spectrum of stable particles?

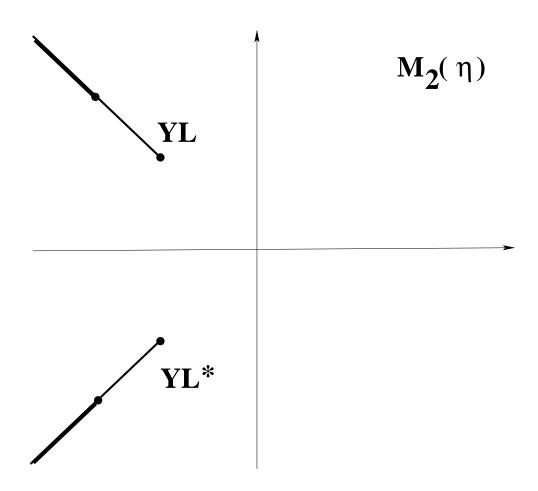
The resonance states may also disappear. How this happens?

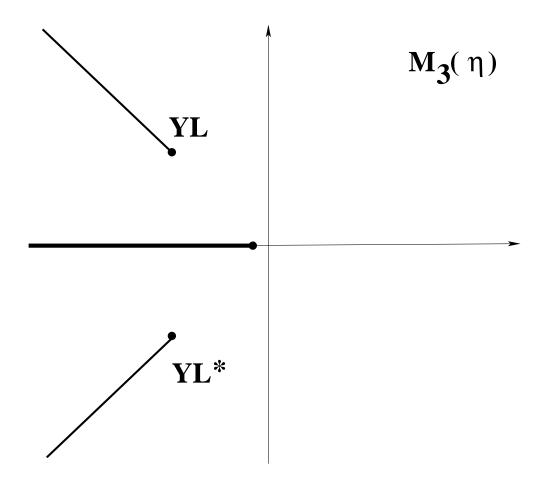
What are the analytic properties of $M_n(\eta)$ as the functions of η ?

Analyticity is (partly) understood for the free energy, i.e. $\Phi(\eta)$ [P.Fonseca, AZ (2001)], and for $M_1(\eta)$.



For the higher masses the situation becomes somewhat more complicated: Algebraic singularities (akin to "level crossings") emerge. E.g.





It is useful to discuss in terms of the elastic $A_1 + A_1 \rightarrow A_1 + A_1$ scattering amplitude $S(\theta)$, defined as usual

$$|A_1(\theta_1)A_1(\theta_2)\rangle_{in} = S(\theta_1 - \theta_2) |A_1(\theta_1)A_1(\theta_2)\rangle_{out} +$$

+ inelastic terms

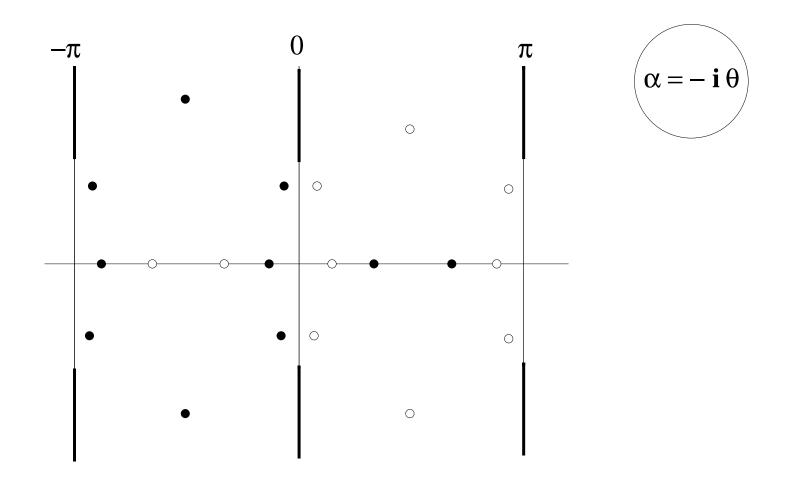
 $S(\theta)$:

- Is analytic in the θ -plane with the branching singularities at $\theta = \pm \theta_X + i\pi \mathbb{Z}$, associated with the inelastic thresholds $A_1 + A_2 \to X$
- Satisfies (on the principle sheet)

$$S(\theta)S(-\theta) = 1$$
, $S(\theta) = S(i\pi - \theta)$

and hence it is periodic, $S(\theta) = S(2\pi i + \theta)$.

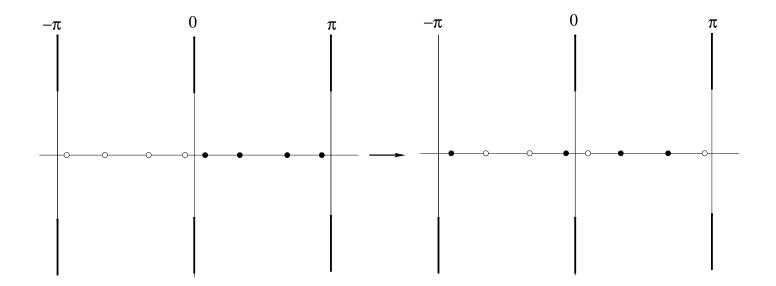
 Has poles associated with bound states, virtual and resonance states



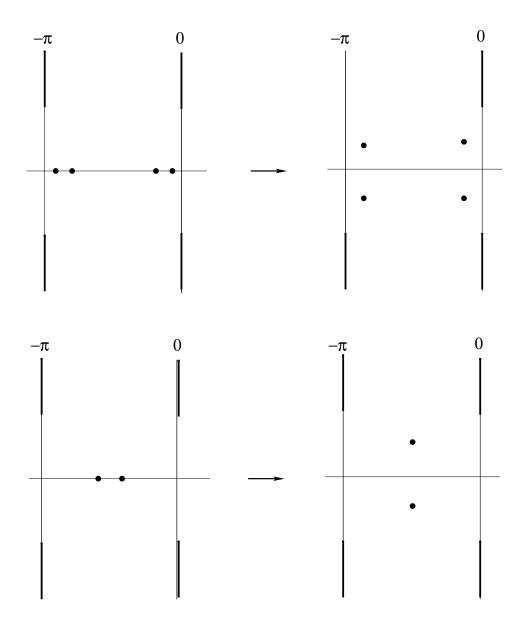
"Physical Strip": $0 < \Im m \theta < \pi$; Poles here are associated with bound states.

"Mirror strip": $-\pi < \Im m\, \theta <$ 0; Here the virtual state and resonance poles are located.

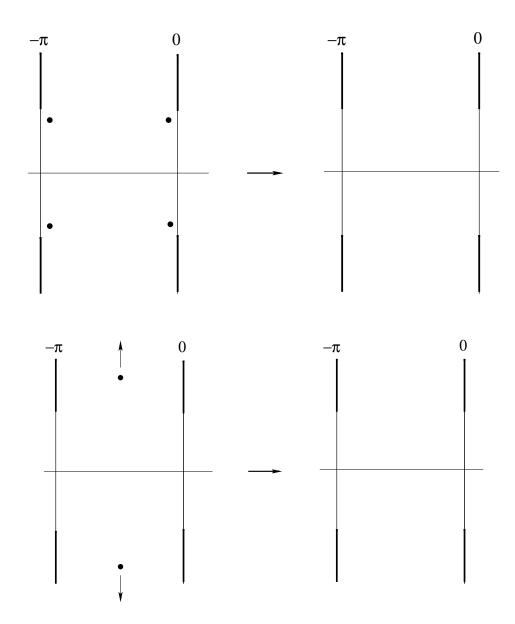
A particle leaves the spectrum in a familiar way - by becoming a virtual state (the poles moves from PS to MS)



Virtual states can turn to resonances (and vice versa) when poles collide in the MS. This leads to "level-crossing" square-root singularities of $M_n(\eta)$



In turn, resonances can disappear, in two ways:



The later scenario - departing of the resonance poles to infinity - can be observed by looking at high-energy behavior of $S(\theta)$.

This was the motivation of the high-energy amplitude via perturbation theory in h^2 (in the high-T regime) below.

High-energy scattering in IFT by perturbation theory in h

(I. Ziyatdinov & AZ, 2011)

 $2 \rightarrow 2$ S-matrix element $S(\theta_{12}) \equiv S_{2\rightarrow 2}(\theta_1 - \theta_2)$ in

$$|\theta_{1},\theta_{2}\rangle_{in} = S_{2\to 2}(\theta_{1},\theta_{2}) |\theta_{1},\theta_{2}\rangle_{out} + \sum_{n=3}^{\infty} \int \frac{d\beta_{1}}{2\pi} \cdots \frac{d\beta_{n}}{2\pi} \times \frac{(2\pi)^{2}}{n!} \delta^{(2)}(P_{in} - P_{out})S_{2\to n}(\theta_{1},\theta_{2}|\beta_{1},\cdots,\beta_{n}) |\beta_{1},\cdots,\beta_{n}\rangle_{out},$$

At
$$h = 0$$
: $S(\theta_{12}) = -1$, $S_{2 \to n} = 0$.

At $h \neq 0$

$$S(\theta_{12}) \, \delta(\theta_1 - \theta_1') \delta(\theta_2 - \theta_2') =$$

$$- \langle \theta_1, \theta_2 \mid T \exp\left\{-ih \int \sigma(x) \, d^2x\right\} \mid \theta_1', \theta_2' \rangle_{\text{conn}}$$

Complication: $\sigma(x)$ is not local with respect to free field; no manifestly covariant perturbation theory (i.e. Feynman diagrams) is known.

Leading correction

$$S(\theta) = -\left[1 + h^2 \frac{iA(\theta)}{\sinh \theta} + O(h^4)\right],$$

$$i A(\theta_{12}) = -\frac{1}{2} \int d^2x \, \underbrace{\langle \theta_1, \theta_2 \mid T\sigma(x)\sigma(0) \mid \theta_1, \theta_2 \rangle_{\text{conn}}}_{\uparrow \uparrow}$$

The matrix element here is expressed in terms of solutions of the linear problem associated with classical sinh-Gordon equation

$$\partial_{\mathsf{Z}}\partial_{\bar{\mathsf{Z}}}\varphi=\frac{1}{8}\sinh(2\varphi)\,,$$

 $(z = x - t \text{ and } \bar{z} = x + t \text{ are the light-cone coordinates})$ The relevant solution is Lorentz invariant, i.e.

$$\varphi = \varphi(\rho) , \qquad \rho = z\overline{z} = x^2 - t^2 .$$

$$\varphi(\rho) \to -\frac{1}{2} \log \frac{\rho}{4} - \log \left(-\frac{1}{2} \log \left(\frac{\rho e^{2\gamma_E}}{64} \right) \right) \qquad \rho \to 0 ,$$

$$\varphi(\rho) \to \frac{2}{\pi} K_0 \left(\sqrt{\rho} \right) \qquad \rho \to \infty$$

Wu, McCoy, Tracy, Barouch (1976):

$$G \equiv \langle 0 \mid T\sigma(\mathbf{z}, \overline{\mathbf{z}})\sigma(0) \mid 0 \rangle = e^{\chi/2} \sinh\left(\varphi/2\right),$$

$$\tilde{G} \equiv \langle 0 \mid T\mu(\mathbf{z}, \overline{\mathbf{z}})\mu(0) \mid 0 \rangle = e^{\chi/2} \cosh\left(\varphi/2\right).$$

$$\partial_{\mathsf{Z}}\partial_{\overline{\mathsf{Z}}}\chi=rac{1}{8}\left[1-\cosh(2arphi)
ight].$$

The matrix elements are expressed in terms of $\Psi_{\pm}(z,\bar{z}|\beta)$, the solution of the associated Lax system,

$$\partial_{\mathsf{Z}} \begin{pmatrix} \Psi_{+} \\ \Psi_{-} \end{pmatrix} = \frac{1}{4} \begin{pmatrix} -2 \, \partial_{\mathsf{Z}} \varphi & -e^{\theta} \, e^{-\varphi} \\ e^{\theta} e^{\varphi} & 2 \, \partial_{\mathsf{Z}} \varphi \end{pmatrix} \begin{pmatrix} \Psi_{+} \\ \Psi_{-} \end{pmatrix}$$

and

$$\partial_{\overline{z}} \begin{pmatrix} \Psi_{+} \\ \Psi_{-} \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 2 \partial_{\overline{z}} \varphi & -e^{-\theta} e^{-\varphi} \\ e^{-\theta} e^{\varphi} & -2 \partial_{\overline{z}} \varphi \end{pmatrix} \begin{pmatrix} \Psi_{+} \\ \Psi_{-} \end{pmatrix}$$

with e^{θ} being the "spectral parameter [P.Finseca, AZ (2003)]

By the Lorentz invariance, Ψ_{\pm} depend on the combination

$$Z = z e^{\theta}, \qquad \bar{Z} = \bar{z} e^{-\theta}$$

(which are the light-cone coordinates in the rest frame of a particle of the rapidity θ), and I will write

$$\Psi_{\pm}(Z,\bar{Z})$$
.

$$\langle \theta_1, \theta_2 | \sigma(x/2) \sigma(-x/2) | \theta_1, \theta_2 \rangle_{conn} =$$

$$G^{-1}\Big[\mathcal{G}(\theta_2|\theta_1)\mathcal{G}(\theta_1|\theta_2)-\mathcal{G}(\theta_1|\theta_1)\mathcal{G}(\theta_2|\theta_2)+\mathcal{G}(\theta_1,\theta_2)\mathcal{G}(\theta_1,\theta_2)\Big].$$

where

$$\mathcal{G}(\theta_{1}, \theta_{2}) = -\frac{i}{2} \left[G \frac{e^{\theta_{1}} - e^{\theta_{2}}}{e^{\theta_{1}} + e^{\theta_{2}}} \Psi_{s}(\theta_{1}, \theta_{2}) - \tilde{G} \Psi_{a}(\theta_{1}, \theta_{2}) \right],
\mathcal{G}(\theta_{1}|\theta_{2}) = -\frac{1}{2} \left[G \frac{e^{\theta_{1}} + e^{\theta_{2}}}{e^{\theta_{1}} - e^{\theta_{2}}} \Psi_{a}(\theta_{1}, \theta_{2}) - \tilde{G} \Psi_{s}(\theta_{1}, \theta_{2}) \right],$$

$$G = \langle 0 \mid T\sigma(x/2)\sigma(-x/2) \mid 0 \rangle$$
, $\tilde{G} = \langle 0 \mid T\mu(x/2)\mu(-x/2) \mid 0 \rangle$, and $\Psi_s(\theta_1, \theta_2) = \Psi_+(Z_1, \bar{Z}_1)\Psi_-(Z_2, \bar{Z}_2) + \Psi_-(Z_1, \bar{Z}_1)\Psi_+(Z_2, \bar{Z}_2)$, $\Psi_a(\theta_1, \theta_2) = \Psi_+(Z_1, \bar{Z}_1)\Psi_-(Z_2, \bar{Z}_2) - \Psi_-(Z_1, \bar{Z}_1)\Psi_+(Z_2, \bar{Z}_2)$.

Here

$$(Z_1, \bar{Z}_1) = \left(e^{\theta_1} \mathsf{z}, e^{-\theta_1} \bar{\mathsf{z}}\right), \qquad (Z_2, \bar{Z}_2) = \left(e^{\theta_2} \mathsf{z}, e^{-\theta_2} \bar{\mathsf{z}}\right),$$

In particular

$$G(\theta|\theta) = \tilde{G} K(Z,\bar{Z}) - G L(Z,\bar{Z})$$

where

$$K = \Psi_{+}(Z, \bar{Z})\Psi_{-}(Z, \bar{Z}),$$

$$L = \Psi_{-}(Z, \bar{Z})\partial_{\theta}\Psi_{+}(Z, \bar{Z}) - \Psi_{+}(Z, \bar{Z})\partial_{\theta}\Psi_{-}(Z, \bar{Z})$$

Still too complicated to be evaluated in a closed form ...

But simplifies in the high-energy limit $\theta_{12} = \theta_1 - \theta_2 \to \infty$:

 \bullet The rational factors $\frac{e^{\theta_1}+e^{\theta_2}}{e^{\theta_1}-e^{\theta_2}}$ can be dropped, so that

$$\langle \theta_1, \theta_2 | \sigma(x/2) \sigma(-x/2) | \theta_1, \theta_2 \rangle_{conn} \rightarrow$$

$$G\left[L(Z_{1},\bar{Z}_{1})L(Z_{2},\bar{Z}_{2})+K(Z_{1},\bar{Z}_{1})K(Z_{2},\bar{Z}_{2})\right]-$$

$$\tilde{G}\left[L(Z_{1},\bar{Z}_{1})K(Z_{2},\bar{Z}_{2})+K(Z_{1},\bar{Z}_{1})L(Z_{2},\bar{Z}_{2})\right]$$

• At large $|Z+\bar{Z}|>>m^{-1}$ $\Psi_{\pm}(Z,\bar{Z})$ become essentially "dressed plane waves", e.g. at $Z\to +\infty$ and $Z>>\bar{Z}$

$$\Psi_{+} \rightarrow 2 e^{\varphi/2} \cos \left(\frac{Z - \bar{Z}}{4} - \frac{\pi}{4}\right),$$

$$\Psi_{-} \rightarrow 2 e^{-\varphi/2} \cos \left(\frac{Z - \bar{Z}}{4} + \frac{\pi}{4}\right).$$

It follows

$$K(Z, \bar{Z}) o 2 \cos\left(rac{Z-\bar{Z}}{2}
ight), \qquad L(Z, \bar{Z}) o |Z+\bar{Z}|.$$

The leading high-energy behavior is dominated by the term

$$GL(Z_1,\bar{Z}_1)L(Z_1,\bar{Z}_1)$$

in the matrix element (the rest of the terms are suppressed by at least one factor $e^{-\theta_{12}}$).

Therefore, one can write:

$$iA(\theta_{12}) = -\frac{1}{2} \int d^2x |UV| G(\rho + i0) + O(1),$$

$$d^{2}x = dxdt = \frac{1}{2}dzd\bar{z}, \quad \rho = z\bar{z},$$

$$U = Z_{1} + \bar{Z}_{1} = e^{\theta_{1}}z + e^{-\theta_{1}}\bar{z},$$

$$V = Z_{2} + \bar{Z}_{2} = e^{\theta_{2}}z + e^{-\theta_{2}}\bar{z}.$$

The integral is handled as follows: write

$$|UV| = UV - 2UV \Theta(-UV)$$

with Θ being the usual step function. The first term is analytic in the coordinates; it can be evaluated by the Wick rotation t $\to -iy$, yielding

$$-\frac{1}{2} \int UV G(\rho + i0) d^2x = 2\pi i G_3 \cosh \theta_{12} \to i\pi G_3 e^{\theta_{12}},$$

where

$$G_3 = \frac{1}{2} \int_0^\infty \rho G(\rho) d\rho = \int_0^\infty r^3 \langle \sigma(r) \sigma(0) \rangle dr.$$

In

$$\int \Theta(-UV) \, UV \, G(\rho) \, d^2x$$

the integration domain is limited to the domain UV < 0, laying between the lines U=0 and V=0. For the part U<0, V>0 one can use the "Lorentz polar coordinates"

$$z = -\sqrt{-\rho} e^{-\phi}, \quad \bar{z} = \sqrt{-\rho} e^{\phi}$$

with the integration over ϕ limited to the domain $\theta_2 < \phi < \theta_1.$ As the result

$$\int_{U<0< V} UV G(\rho + i0) d^2x =$$

$$-\theta_{12} e^{\theta_{12}} \int_{-\infty}^{0} \rho G(\rho + i0) d\rho = \theta_{12} e^{\theta_{12}} \int_{0}^{\infty} \rho G(\rho) d\rho$$

Finally

$$\frac{iA(\theta_{12})}{\sinh \theta_{12}} = -4 G_3 \left[\theta_{12} - i\pi/2 + \theta_0 \right] + O(e^{-\theta_{12}}),$$

(COM energy $E=2 \cosh(\theta_{12}/2)$); θ_0 is a constant whose evaluation requires the knowledge about Ψ_{\pm} at $|Z+\bar{Z}| \leq m^{-1}$).

By optical theorem

$$\frac{2\Im m A}{\sinh \theta} = \sigma_{\text{tot}}^{(2)}$$

$$\sigma_{\rm tot} \equiv$$
 probability of all inelastic processes in the 2-particle scattering $= h^2 \, \sigma_{\rm tot}^{(2)} + h^4 \, \sigma_{\rm tot}^{(2)} + ...$

$$\sigma_{\text{tot}}(E) \sim 8 G_3 h^2 \log(E^2) + O(h^4)$$
 $E \to \infty$

Suggests that

$$\sigma_{\mathrm{tot}}^{(n)} \sim \log^n(E^2)$$

The $E \to \infty$ asymptotic of A corresponds to "quasi-classical" approximation:

• The particles 1 and 2 are represented by classical trajectories

$$u \equiv e^{\theta_1} z + e^{-\theta_1} \overline{z} = 0,$$

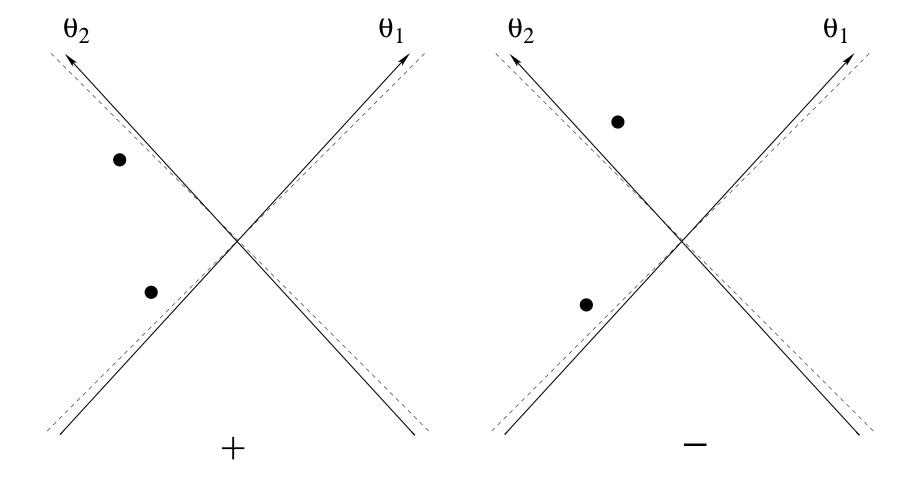
$$v \equiv e^{\theta_2} z + e^{-\theta_2} \overline{z} = 0.$$

 \bullet The 2 \rightarrow 2 matrix elements are approximated as

$$\langle \theta_1, \theta_2 \mid T\sigma(x_1)\sigma(x_2) \mid \theta_1, \theta_2 \rangle \simeq$$

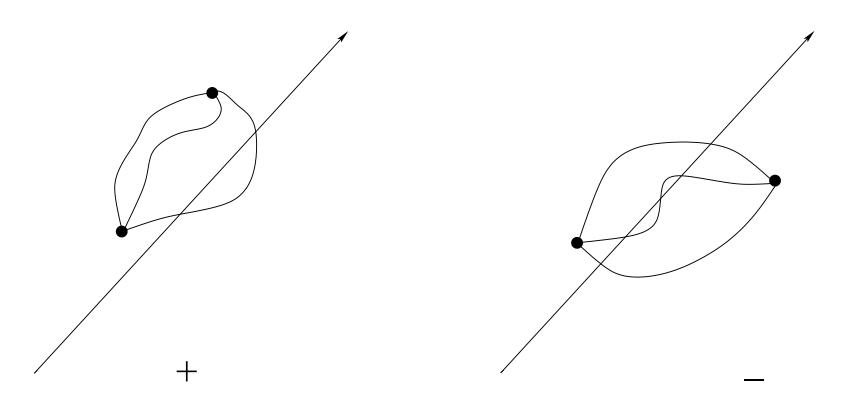
 $\operatorname{sign}(u_1)\operatorname{sign}(u_2)\operatorname{sign}(v_1)\operatorname{sign}(v_2) \langle 0 \mid T\sigma(x_1)\sigma(x_2) \mid 0 \rangle,$

 $((u_i, v_i))$ are the (u, v) coordinates of the insertion points x_i), as long as x_1 , x_2 are not too close to the trajectories



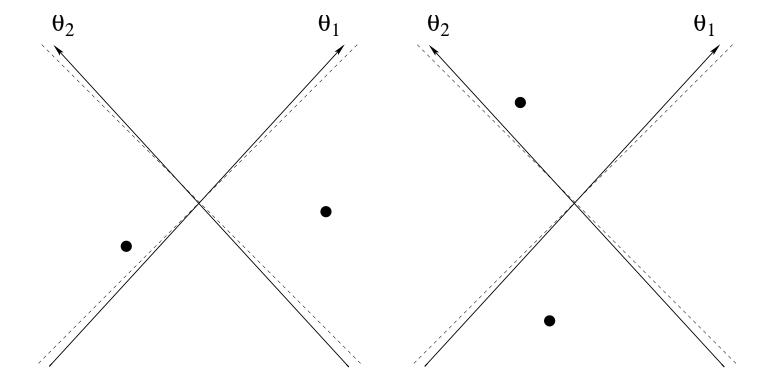
(i) Correlations between $\sigma(x_1)$ and $\sigma(x_2)$ is due to the exchanges of odd numbers of particles

(ii) Intersections generate the minus sign, e.g.



$$\langle \theta_1, \theta_2 \mid T\sigma(x_1)\sigma(x_2) \mid \theta_1, \theta_2 \rangle_{\mathsf{conn}} = \\ \langle \theta_1, \theta_2 \mid T\sigma(x_1)\sigma(x_2) \mid \theta_1, \theta_2 \rangle - \mathsf{disconnected parts}\,,$$
 disc. parts =
$$\left[1 + \left(\mathsf{sign}(u_1)\mathsf{sign}(u_2) - 1 \right) + \left(\mathsf{sign}(v_1)\mathsf{sign}(v_2) - 1 \right) \right] \times \\ \langle 0 \mid T\sigma(x_1)\sigma(x_2) \mid 0 \rangle$$

$$\langle \theta_1, \theta_2 \mid T\sigma(x_1)\sigma(x_2) \mid \theta_1, \theta_2 \rangle_{\mathsf{conn}} = 4 \Theta(-u_1v_1)\Theta(-u_2v_2) \langle 0 \mid T\sigma(x_1)\sigma(x_2) \mid 0 \rangle,$$



Since $\langle 0 \mid T\sigma(x_1)\sigma(x_2) \mid 0 \rangle$ depends on $x_1 - x_2$

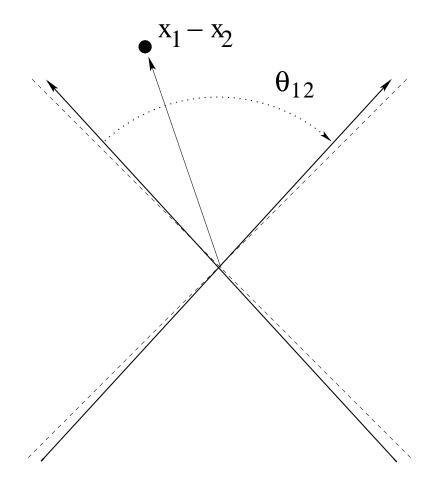
$$-\frac{1}{2} \int d^2x_1 d^2x_2 \langle \theta_1, \theta_2 \mid T\sigma(x_1)\sigma(x_2) \mid \theta_1, \theta_2 \rangle_{conn} =$$

$$-\frac{1}{2\sinh\theta_{12}}\int d^2x |UV| \langle 0 | T\sigma(x/2)\sigma(-x/2) | 0 \rangle \sim \log(E^2)$$

 $(U = u_1 - u_2, V = v_1 - v_2 \text{ are the } (u, v) \text{ coordinates associated}$ with the separation $x = x_1 - x_2$).

Origin of the log(E) behavior: If $\theta_1 \to +\infty$, $\theta_2 \to -\infty$ $U = e^{\theta_1} z + e^{-\theta_1} \, \overline{z} \simeq e^{\theta_1} \, z \,,$ $V = e^{\theta_2} z + e^{-\theta_2} \, \overline{z} \simeq e^{-\theta_2} \, \overline{z} \,.$

unless z (or \bar{z}) is too small. If one replaces $|UV| \to e^{\theta_{12}} |z\bar{z}|$ the integrand would be Lorentz invariant \Rightarrow infinite volume of the lorentz group. At finite θ_{12} it is $\sim \theta_{12} \sim \log(E^2)$.



Higher orders in h^2 :

$$S(\theta_{12}) = -\langle \theta_1, \theta_2 \mid T \exp\left\{-ih \int \sigma(x) d^2x\right\} \mid \theta_1, \theta_2 \rangle_{\text{conn}}$$

At
$$\theta_{12} \to \infty$$

$$\langle \theta_1, \theta_2 \mid T\sigma(x_1)\sigma(x_2)...\sigma(x_{2n}) \mid \theta_1, \theta_2 \rangle \approx$$

$$\left[\prod_{i=1}^{2n} \operatorname{sign}(u_i) \operatorname{sign}(v_i) \right] \langle 0 \mid T\sigma(x_1)\sigma(x_2)...\sigma(x_{2n}) \mid 0 \rangle.$$

The corr. function is Lorentz invariant \Rightarrow integration over $\prod_{i=1}^{2n} d^2x_i$ produces the factor θ_{12} from the Lorentz boost.

The corr. function contains disconnected parts

$$\langle 0 \mid T\sigma(x_1)\sigma(x_2) \mid 0 \rangle \langle 0 \mid T\sigma(x_3)\sigma(x_4) \mid 0 \rangle... \langle 0 \mid T\sigma(x_{2n-1})\sigma(x_{2n}) \mid 0 \rangle +$$
 permutations,

which are invariant w.r.t. n copies of the Lorentz group $\Rightarrow \theta_{12}^n$.

Exponential series \Rightarrow

$$S(\theta) \sim -\exp\left\{-4G_3 h^2 \left(\theta - i\pi/2\right)\right\}$$
 $\Re e \, \theta \to +\infty$

Summary and Remarx:

• At $h^2/m^{15/4} << 1$ the 2 \to 2 elastic scattering amplitude has the power-like asymptotic at $E \to \infty$,

$$S_{2\to 2}(E) \to -\left(\frac{e^{-\frac{i\pi}{4}}E}{E_0}\right)^{-8G_3h^2}$$

with G_3 - third moment of the spin-spin corr. function.

• In principle, using this approach, one can collect the "subleading logarithms" like $h^{2n+2} \log^n(E^2)$, yielding

$$S_{2\to 2}(E) \to -\left(\frac{e^{-\frac{i\pi}{4}}E}{E_0}\right)^{-\alpha(h^2)},$$

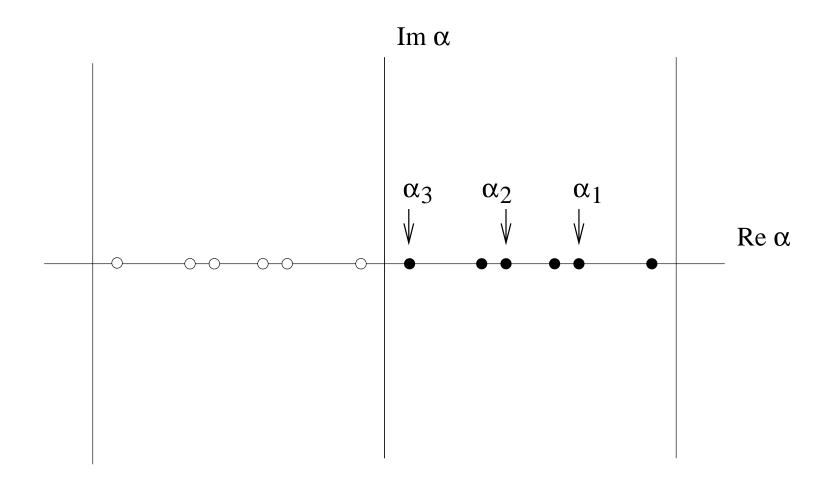
with $\alpha(h^2) = 8G_3 h^2 + G_5 h^4 + ...$, where e.g. G_5 is expressed in terms of certain 5-th moment of *connected* 4-spin correlation function, etc.

The power-like asymptotic suggests that there is no resonance whose energy grows to infinity as $h^2 \to 0$. This is puzzling: seems to violate "resonance number parity" in the IFT.

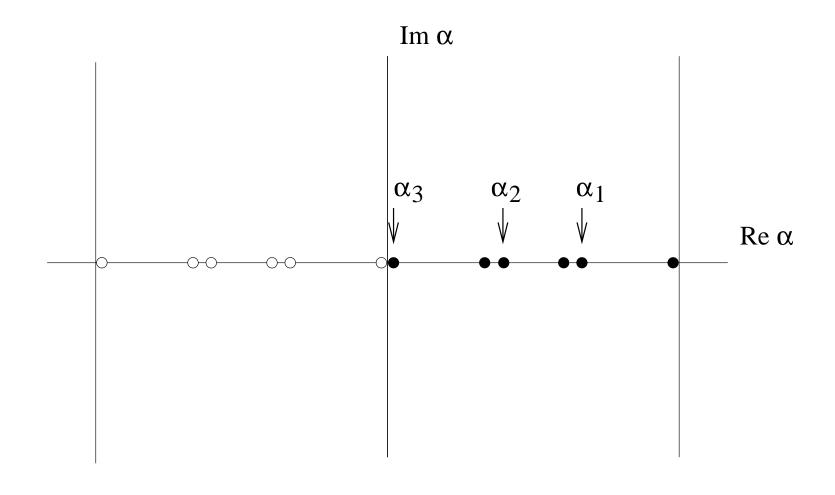
IFT is integrable in two special cases:

- $m=0,\ h\neq 0\Rightarrow 8$ stable particles (and no resonances), non-trivial factorizable scattering theory with "E8 structure".
- $m \neq 0$, $h = 0 \Rightarrow$ one stable particle (and no resonances), with trivial scattering: $S(\theta) = -1$.

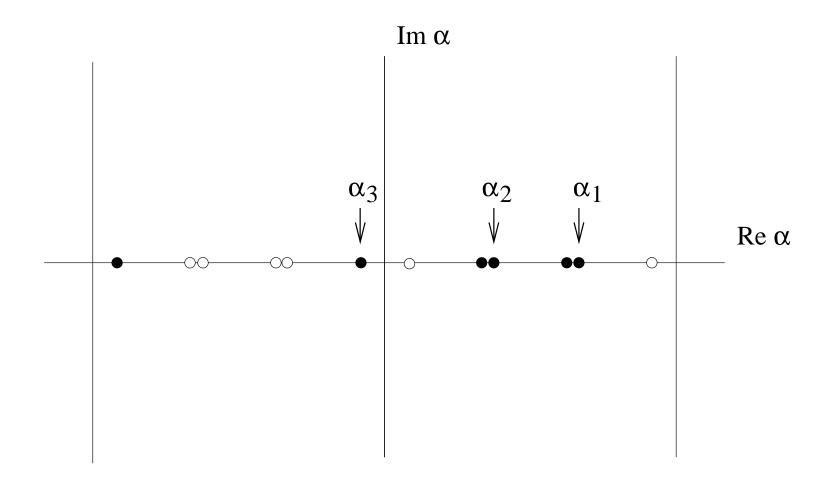
 $\eta = 0$:



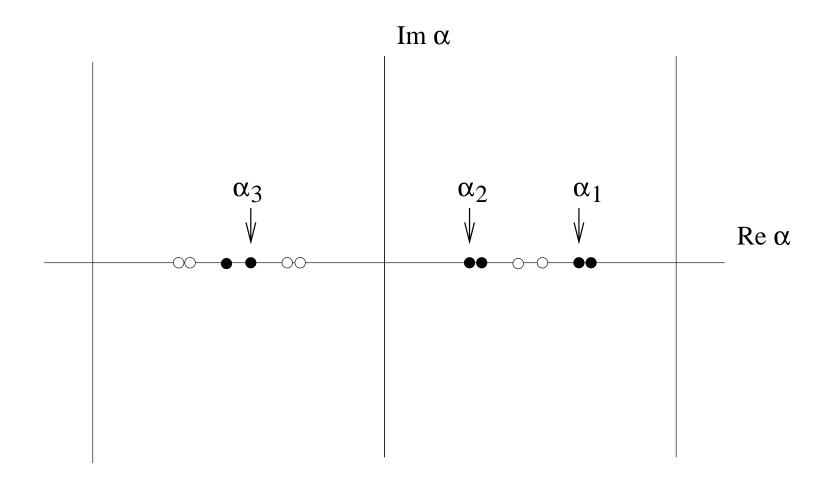
 $\eta = -0.08$:



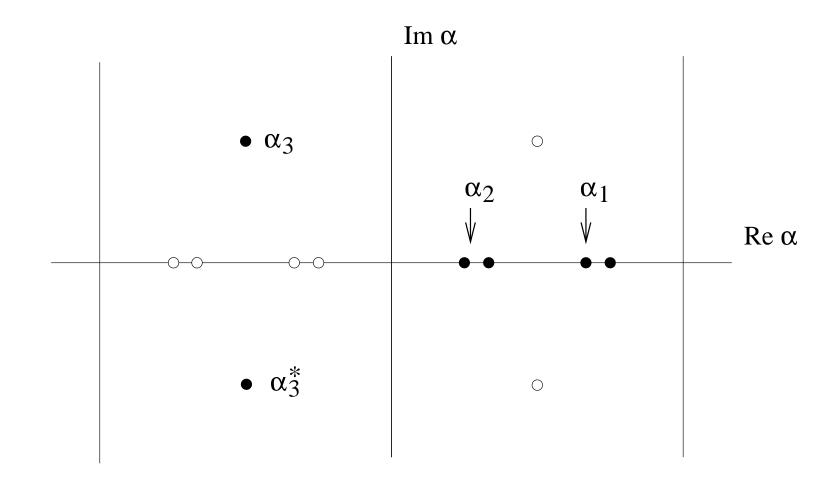
 $\eta = -0.27$:



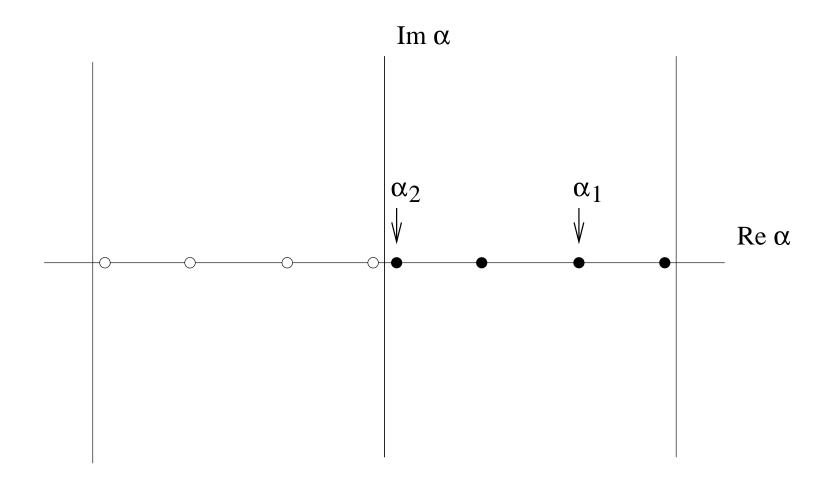
 $\eta = -0.49$:



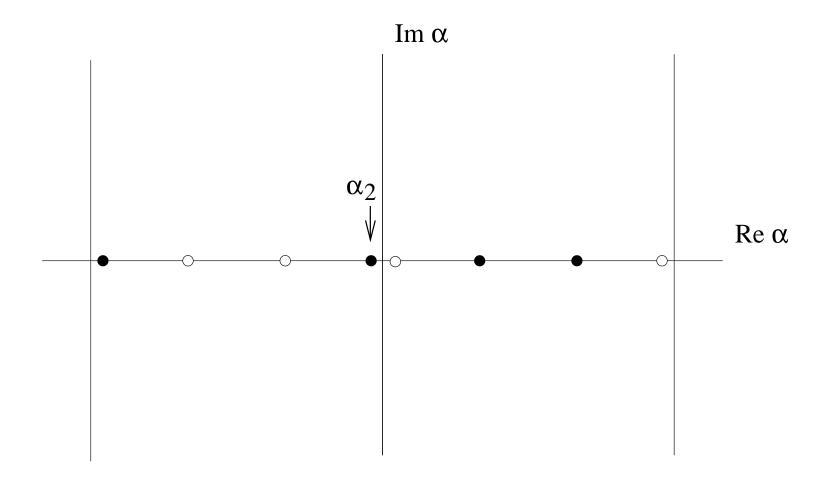
 $\eta = -0.94$:



$$\eta = -1.87$$



$$\eta = -2.29$$



$$\eta = -4.35$$

