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• Understanding behavior of the masses of particles in IFT as the

functions of the parameters requires data about high-energy limit

of scattering amplitudes.

• The high-energy limit of elastic amplitude at small magnetic

field will be derived using relation of the zero-field IFT to classical

integrable system. Based on recent work of I.Ziyatdinov & AZ

• The result leads to a puzzle about behavior of the resonance

states in IFT.
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Ising Field Theory = scaling limit of the 2D Ising model near its

critical point T = Tc, H = 0. ⇒ Euclidean quantum field theory

AIFT = Ac=1/2 CFT −
m

2π

∫
ε(x) d2x + h

∫
σ(x) d2x ,

ε(x) with (∆, ∆̄) = (1/2,1/2) (”energy density”);

m ∼ Tc − T

σ(x) with (∆, ∆̄) = (1/16,1/16) (”spin density”);

h ∼ H
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• Statistical mechanics: IFT describes basic universality class in

2D phase transitions (e.g. critical point in liquid-vapor transition).

Thermodynamics is expressed through the IFT vacuum energy

density

F(m,h) =
m2

8π
logm2 + h

16
15 Φ(η) , η =

m

|h|
8
15

• Generally [i.e. except for (m,h) = (0,0), and the Yang-Lee point

h/(−m)15/16 = ±i (0.1893)] IFT is massive ⇒ Particle theory in

1 + 1 (mass spectrum, scattering amplitudes, etc) ⇒ Determines

the ”fine structure” of the scaling theory (amplitude ratios, cor-

relation functions, finite-size effects, etc).
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Qualitative understanding of the IFT particle theory - ”McCoy-
Wu scenario” (1978): The mass spectrum interpolates between
the infinite tower of ”mesons” at η → +∞ (low-T regime) and
one stable particle at η −∞ (high-T regime).

Numerical analysis (via TCSA of Al.Zamolodchikov, by Delfino,
Mussardo, Simonetti (1996), Fonseca, AZ (2001))

Particle masses (in the units |h|8/15) vs η = m/|h|8/15
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I will refer to the stable particle as An, and their masses (measured

in the units of |h|8/15) as Mn = Mn(η),

n = 1,2, ..., N

Questions:

What happens to the particle masses when they leave the spec-

trum of stable particles?

The resonance states may also disappear. How this happens?

What are the analytic properties of Mn(η) as the functions of η?
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Analyticity is (partly) understood for the free energy, i.e. Φ(η)

[P.Fonseca, AZ (2001)], and for M1(η).

YL*

η

YL
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For the higher masses the situation becomes somewhat more com-

plicated: Algebraic singularities (akin to ”level crossings”) emerge.

E.g.

YL*

M  (    )2 η

YL
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YL*

M  (    )3 η

YL
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It is useful to discuss in terms of the elastic A1 + A1 → A1 + A1

scattering amplitude S(θ), defined as usual

| A1(θ1)A1(θ2)⟩in = S(θ1 − θ2) | A1(θ1)A1(θ2)⟩out +
+ inelastic terms

S(θ):

• Is analytic in the θ-plane with the branching singularities at θ =

± θX + iπZ, associated with the inelastic thresholds A1 +A2 → X

• Satisfies (on the principle sheet)

S(θ)S(−θ) = 1 , S(θ) = S(iπ − θ)

and hence it is periodic, S(θ) = S(2πi+ θ).

• Has poles associated with bound states, virtual and resonance

states
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iα = −   θ
π−π 0

”Physical Strip”: 0 < ℑmθ < π; Poles here are associated with

bound states.

”Mirror strip”: −π < ℑmθ < 0; Here the virtual state and reso-

nance poles are located.
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A particle leaves the spectrum in a familiar way - by becoming a

virtual state (the poles moves from PS to MS)

π−π 0 −π π0
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Virtual states can turn to resonances (and vice versa) when poles

collide in the MS. This leads to ”level-crossing” square-root sin-

gularities of Mn(η)

−π0−π 0

−π0−π 0
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In turn, resonances can disappear, in two ways:

−π0−π 0

−π0−π 0
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The later scenario - departing of the resonance poles to infinity -

can be observed by looking at high-energy behavior of S(θ).

This was the motivation of the high-energy amplitude via pertur-

bation theory in h2 (in the high-T regime) below.

14



High-energy scattering in IFT by perturbation theory in h

(I. Ziyatdinov & AZ, 2011)

2 → 2 S-matrix element S(θ12) ≡ S2→2(θ1 − θ2) in

| θ1, θ2 ⟩in = S2→2(θ1, θ2) | θ1, θ2 ⟩out +
∞∑

n=3

∫
dβ1
2π

· · ·
dβn

2π
×

(2π)2

n!
δ(2)(Pin − Pout)S2→n(θ1, θ2|β1, · · · , βn) | β1, · · · , βn⟩out ,

At h = 0: S(θ12) = −1, S2→n = 0.

At h ̸= 0

S(θ12) δ(θ1 − θ′1)δ(θ2 − θ′2) =

−⟨θ1, θ2 | T exp
{
− ih

∫
σ(x) d2x

}
| θ′1, θ

′
2⟩conn

Complication: σ(x) is not local with respect to free field; no man-

ifestly covariant perturbation theory (i.e. Feynman diagrams) is

known.
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Leading correction

S(θ) = −
[
1+ h2

iA(θ)

sinh θ
+O(h4)

]
,

i A(θ12) = −
1

2

∫
d2x ⟨θ1, θ2 | Tσ(x)σ(0) | θ1, θ2⟩conn︸ ︷︷ ︸

⇑
The matrix element here is expressed in

terms of solutions of the linear problem associated with classical
sinh-Gordon equation

∂z∂z̄φ =
1

8
sinh(2φ) ,

(z = x − t and z̄ = x + t are the light-cone coordinates) The
relevant solution is Lorentz invariant, i.e.

φ = φ(ρ) , ρ = zz̄ = x2 − t2 .

φ(ρ) → −
1

2
log

ρ

4
− log

(
−

1

2
log

(
ρ e2γE

64

))
ρ → 0 ,

φ(ρ) →
2

π
K0

(√
ρ
)

ρ → ∞
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Wu, McCoy, Tracy, Barouch (1976):

G ≡ ⟨0 | Tσ(z, z̄)σ(0) | 0⟩ = eχ/2 sinh
(
φ/2

)
,

G̃ ≡ ⟨0 | Tµ(z, z̄)µ(0) | 0⟩ = eχ/2 cosh
(
φ/2

)
.

∂z∂z̄χ =
1

8

[
1− cosh(2φ)

]
.

The matrix elements are expressed in terms of Ψ±(z, z̄|β), the

solution of the associated Lax system,

∂z

(
Ψ+
Ψ−

)
=

1

4

(
−2 ∂zφ

eθeφ
−eθ e−φ

2 ∂zφ

) (
Ψ+
Ψ−

)
and

∂z̄

(
Ψ+
Ψ−

)
=

1

4

(
2 ∂z̄φ

e−θeφ
−e−θ e−φ

−2 ∂z̄φ

) (
Ψ+
Ψ−

)

with eθ being the ”spectral parameter [P.Finseca, AZ (2003)]
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By the Lorentz invariance, Ψ± depend on the combination

Z = z eθ , Z̄ = z̄ e−θ

(which are the light-cone coordinates in the rest frame of a particle

of the rapidity θ), and I will write

Ψ±(Z, Z̄) .

18



⟨θ1, θ2|σ(x/2)σ(−x/2)|θ1, θ2⟩conn =

G−1
[
G(θ2|θ1)G(θ1|θ2)− G(θ1|θ1)G(θ2|θ2) + G(θ1, θ2)G(θ1, θ2)

]
.

where

G(θ1, θ2) = −
i

2

[
G

eθ1 − eθ2

eθ1 + eθ2
Ψs(θ1, θ2)− G̃Ψa(θ1, θ2)

]
,

G(θ1|θ2) = −
1

2

[
G

eθ1 + eθ2

eθ1 − eθ2
Ψa(θ1, θ2)− G̃Ψs(θ1, θ2)

]
,

G = ⟨0 | Tσ(x/2)σ(−x/2) | 0⟩, G̃ = ⟨0 | Tµ(x/2)µ(−x/2) | 0⟩, and

Ψs(θ1, θ2) = Ψ+(Z1, Z̄1)Ψ−(Z2, Z̄2) +Ψ−(Z1, Z̄1)Ψ+(Z2, Z̄2) ,

Ψa(θ1, θ2) = Ψ+(Z1, Z̄1)Ψ−(Z2, Z̄2)−Ψ−(Z1, Z̄1)Ψ+(Z2, Z̄2) .

Here

(Z1, Z̄1) =
(
eθ1z, e−θ1z̄

)
, (Z2, Z̄2) =

(
eθ2z, e−θ2z̄

)
,
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In particular

G(θ|θ) = G̃ K(Z, Z̄)−G L(Z, Z̄)

where

K = Ψ+(Z, Z̄)Ψ−(Z, Z̄) ,

L = Ψ−(Z, Z̄)∂θΨ+(Z, Z̄)−Ψ+(Z, Z̄)∂θΨ−(Z, Z̄)

Still too complicated to be evaluated in a closed form ...

But simplifies in the high-energy limit θ12 = θ1 − θ2 → ∞:

• The rational factors eθ1+eθ2

eθ1−eθ2
can be dropped, so that

⟨θ1, θ2|σ(x/2)σ(−x/2)|θ1, θ2⟩conn →

G
[
L(Z1, Z̄1)L(Z2, Z̄2) +K(Z1, Z̄1)K(Z2, Z̄2)]−

G̃
[
L(Z1, Z̄1)K(Z2, Z̄2) +K(Z1, Z̄1)L(Z2, Z̄2)]
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• At large |Z + Z̄| >> m−1 Ψ±(Z, Z̄) become essentially ”dressed

plane waves”, e.g. at Z → +∞ and Z >> Z̄

Ψ+ → 2 eφ/2 cos

(
Z − Z̄

4
−

π

4

)
,

Ψ− → 2 e−φ/2 cos

(
Z − Z̄

4
+

π

4

)
.

It follows

K(Z, Z̄) → 2 cos

(
Z − Z̄

2

)
, L(Z, Z̄) → |Z + Z̄| .

The leading high-energy behavior is dominated by the term

GL(Z1, Z̄1)L(Z1, Z̄1)

in the matrix element (the rest of the terms are suppressed by at

least one factor e−θ12).

21



Therefore, one can write:

iA(θ12) = −
1

2

∫
d2x |UV |G(ρ+ i0) + 0(1) ,

d2x = dxdt =
1

2
dzdz̄ , ρ = zz̄ ,

U = Z1 + Z̄1 = eθ1 z + e−θ1 z̄ ,

V = Z2 + Z̄2 = eθ2 z + e−θ2 z̄ .

The integral is handled as follows: write

|UV | = UV − 2UV Θ(−UV )

with Θ being the usual step function. The first term is analytic in
the coordinates; it can be evaluated by the Wick rotation t → −iy,
yielding

−
1

2

∫
UV G(ρ+ i0) d2x = 2πiG3 cosh θ12 → iπ G3 e

θ12 ,

where

G3 =
1

2

∫ ∞

0
ρG(ρ) dρ =

∫ ∞

0
r3 ⟨σ(r)σ(0)⟩ dr .
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In ∫
Θ(−UV )UV G(ρ) d2x

the integration domain is limited to the domain UV < 0, laying

between the lines U = 0 and V = 0. For the part U < 0, V > 0

one can use the ”Lorentz polar coordinates”

z = −
√
−ρ e−ϕ , z̄ =

√
−ρ eϕ

with the integration over ϕ limited to the domain θ2 < ϕ < θ1. As

the result∫
U<0<V

UV G(ρ+ i0) d2x =

−θ12 e
θ12

∫ 0

−∞
ρG(ρ+ i0) dρ = θ12 e

θ12
∫ ∞

0
ρG(ρ) dρ

Finally

iA(θ12)

sinh θ12
= −4G3

[
θ12 − iπ/2+ θ0

]
+O

(
e−θ12

)
,

(COM energy E = 2 cosh(θ12/2)); θ0 is a constant whose evalu-

ation requires the knowledge about Ψ± at |Z + Z̄| ≤ m−1).
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By optical theorem

2ℑmA

sinh θ
= σ

(2)
tot

σtot ≡ probability of all inelastic processes in the

2-particle scattering = h2 σ
(2)
tot + h4 σ

(2)
tot + ...

σtot(E) ∼ 8G3 h
2 log(E2) +O(h4) E → ∞

Suggests that

σ
(n)
tot ∼ logn(E2)
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The E → ∞ asymptotic of A corresponds to ”quasi-classical”

approximation:

• The particles 1 and 2 are represented by classical trajectories

u ≡ eθ1 z + e−θ1 z̄ = 0 ,

v ≡ eθ2 z + e−θ2 z̄ = 0 .

• The 2 → 2 matrix elements are approximated as

⟨θ1, θ2 | Tσ(x1)σ(x2) | θ1, θ2⟩ ≃
sign(u1)sign(u2)sign(v1)sign(v2) ⟨0 | Tσ(x1)σ(x2) | 0⟩ ,

((ui, vi) are the (u, v) coordinates of the insertion points xi), as

long as x1, x2 are not too close to the trajectories
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2θ 1θ 2θ 1θ

+ _
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(i) Correlations between σ(x1) and σ(x2) is due to the exchanges

of odd numbers of particles

(ii) Intersections generate the minus sign, e.g.

+ _
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⟨θ1, θ2 | Tσ(x1)σ(x2) | θ1, θ2⟩conn =

⟨θ1, θ2 | Tσ(x1)σ(x2) | θ1, θ2⟩ − disconnected parts ,

disc. parts =[
1+

(
sign(u1)sign(u2)− 1

)
+
(
sign(v1)sign(v2)− 1

)]
×

⟨0 | Tσ(x1)σ(x2) | 0⟩

⟨θ1, θ2 | Tσ(x1)σ(x2) | θ1, θ2⟩conn =

4Θ(−u1v1)Θ(−u2v2) ⟨0 | Tσ(x1)σ(x2) | 0⟩ ,
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2θ 1θ 2θ 1θ
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Since ⟨0 | Tσ(x1)σ(x2) | 0⟩ depends on x1 − x2

−
1

2

∫
d2x1 d

2x2 ⟨θ1, θ2 | Tσ(x1)σ(x2) | θ1, θ2⟩conn =

−
1

2 sinh θ12

∫
d2x |UV | ⟨0 | Tσ(x/2)σ(−x/2) | 0⟩ ∼ log(E2)

(U = u1 − u2, V = v1 − v2 are the (u, v) coordinates associated

with the separation x = x1 − x2).

Origin of the log(E) behavior: If θ1 → +∞, θ2 → −∞

U = eθ1 z + e−θ1 z̄ ≃ eθ1 z ,

V = eθ2 z + e−θ2 z̄ ≃ e−θ2 z̄ ,

unless z (or z̄) is too small. If one replaces |UV | → eθ12 |zz̄| the

integrand would be Lorentz invariant ⇒ infinite volume of the

lorentz group. At finite θ12 it is ∼ θ12 ∼ log(E2).
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1θ 2

x  − x1 2
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Higher orders in h2:

S(θ12) = −⟨θ1, θ2 | T exp
{
− ih

∫
σ(x) d2x

}
| θ1, θ2⟩conn

At θ12 → ∞

⟨θ1, θ2 | Tσ(x1)σ(x2)...σ(x2n) | θ1, θ2⟩ ≈[ 2n∏
i=1

sign(ui)sign(vi)

]
⟨0 | Tσ(x1)σ(x2)...σ(x2n) | 0⟩ .

The corr. function is Lorentz invariant ⇒ integration over
∏2n
i=1 d

2xi
produces the factor θ12 from the Lorentz boost.

The corr. function contains disconnected parts

⟨0 | Tσ(x1)σ(x2) | 0⟩⟨0 | Tσ(x3)σ(x4) | 0⟩...⟨0 | Tσ(x2n−1)σ(x2n) | 0⟩+
permutations ,

which are invariant w.r.t. n copies of the Lorentz group ⇒ θn12.

Exponential series ⇒

S(θ) ∼ − exp

{
− 4G3 h

2
(
θ − iπ/2

)}
ℜe θ → +∞
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Summary and Remarx:

• At h2/m15/4 << 1 the 2 → 2 elastic scattering amplitude has
the power-like asymptotic at E → ∞,

S2→2(E) → −
(
e−

iπ
4 E

E0

)−8G3 h
2

with G3 - third moment of the spin-spin corr. function.

• In principle, using this approach, one can collect the ”subleading
logarithms” like h2n+2 logn(E2), yielding

S2→2(E) → −
(
e−

iπ
4 E

E0

)−α(h2)

,

with α(h2) = 8G3 h
2 + G5 h

4 + ..., where e.g. G5 is expressed
in terms of certain 5-th moment of connected 4-spin correlation
function, etc.

The power-like asymptotic suggests that there is no resonance
whose energy grows to infinity as h2 → 0. This is puzzling: seems
to violate ”resonance number parity” in the IFT.
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IFT is integrable in two special cases:

• m = 0, h ̸= 0 ⇒ 8 stable particles (and no resonances), non-

trivial factorizable scattering theory with ”E8 structure”.

• m ̸= 0, h = 0 ⇒ one stable particle (and no resonances), with

trivial scattering: S(θ) = −1.
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η = 0:

Re α

Im α

α1α2α3
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η = −0.08:

Re α

Im α

α1α2α3
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η = −0.27:

Re α

Im α

α1α2α3
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η = −0.49:

Re α

Im α

α1α2α3
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η = −0.94:

Re α

Im α

α1α2

α3

α3*
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η = −1.87

Re α

Im α

α2 α1
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η = −2.29

Re α

Im α

α2
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η = −4.35

Re α

Im α

α2
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