
Fisica Generale B

Struttura della materia

Scuola di Ingegneria e Architettura
UNIBO – Cesena
Anno Accademico 2014 – 2015

Doppio strato di cariche

$$E = \frac{|\sigma|}{2\varepsilon_0}$$

$$\vec{E} = -2E\hat{i} = -\frac{|\sigma|}{\varepsilon_0}\hat{i}$$

Maurizio Piccinini A.A. 2014 - 2015

Esp. di Millikan: Moto delle particelle cariche

$$\vec{F} = m\vec{g} - \lambda \vec{v} = m\vec{a}$$
 \Longrightarrow $\vec{a} = \vec{g} - \frac{\lambda}{m}\vec{v}$

$$m\vec{g} + q\vec{E} - \lambda\vec{v} = m\vec{a}$$
 \Longrightarrow $\vec{a} = \vec{g}' - \frac{\lambda}{m}\vec{v}$ $\vec{g}' = \vec{g} + \frac{q\vec{E}}{m}$

$$\vec{a} = \vec{g} - \frac{\lambda}{m} \vec{v}$$

$$\vec{g}' = \vec{g} + \frac{q\vec{E}}{m}$$

$$z(t) = \frac{g'}{\beta}t - \frac{g'}{\beta^2}(1 - e^{-\beta t})$$

$$\dot{z}(t) = \frac{g'}{\beta}(1 - e^{-\beta t})$$

$$\ddot{z}(t) = g'e^{-\beta t}$$

$$(\beta = \frac{\lambda}{m})$$

$$\dot{z}(t) = \frac{g'}{\beta} (1 - e^{-\beta t})$$

$$\ddot{z}(t) = g'e^{-\beta t}$$
 $\left(\beta = \frac{\lambda}{m}\right)$

Esp. di Millikan: Moto delle particelle cariche

$$z(t) = \frac{g'}{\beta}t - \frac{g'}{\beta^2}(1 - e^{-\beta t})$$

$$\dot{z}(t) = \frac{g'}{\beta}(1 - e^{-\beta t})$$

$$\ddot{z}(t) = \frac{g'}{\beta}(1 - e^{-\beta t})$$

$$\dot{z}(t) = \frac{g'}{\beta} (1 - e^{-\beta t})$$

$$\ddot{z}(t) = g'e^{-\beta t}$$

Se
$$\beta = \frac{\lambda}{m}$$
 è molto grande ($\approx 10^3 \, \text{s}^{-1}$) $\Longrightarrow \left(z(t) = \frac{g'}{\beta}t\right)$ $\dot{z}(t) = \frac{g'}{\beta}$

$$z(t) = \frac{g'}{\beta}t$$

$$\dot{z}(t) = \frac{g'}{\beta}$$

$$\ddot{z}(t) = 0$$

NB:
$$g' = g + \frac{qE}{m} > = < 0$$
 in base all'orientamento di E e al valore di q

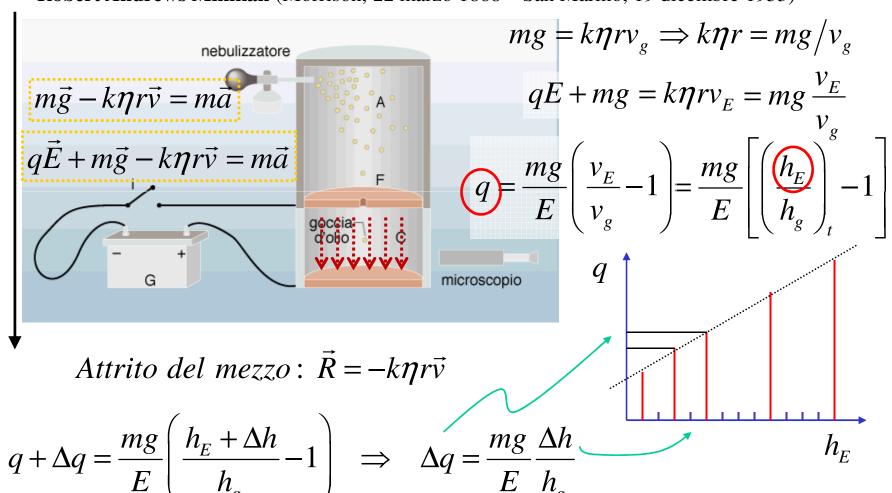
$$Se \ q\vec{E} + m\vec{g} = \vec{0} \implies -\lambda \vec{v} = m\vec{a}$$

$$\dot{z} = -\beta \left(z - z_0 \right) + v_0$$

$$z(t) = \frac{v_0}{\beta} \left(1 - e^{-\beta t} \right) + z_0$$

$$\dot{z}(t) = v_0 e^{-\beta t}$$

$$\ddot{z}(t) = -\beta v_0 e^{-\beta t}$$

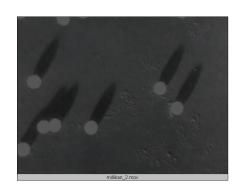

Se
$$\beta \gg 0$$
 $\Longrightarrow \left(z(t) = \frac{v_0'}{\beta} + z_0\right)$

$$\dot{z}(t) = 0$$

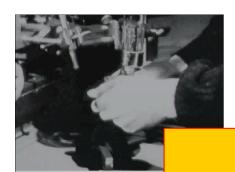
$$\ddot{z}(t) = 0$$

Apparato e "filosofia" dell'esperimento di Millikan

Robert Andrews Millikan (Morrison, 22 marzo 1868 – San Marino, 19 dicembre 1953)

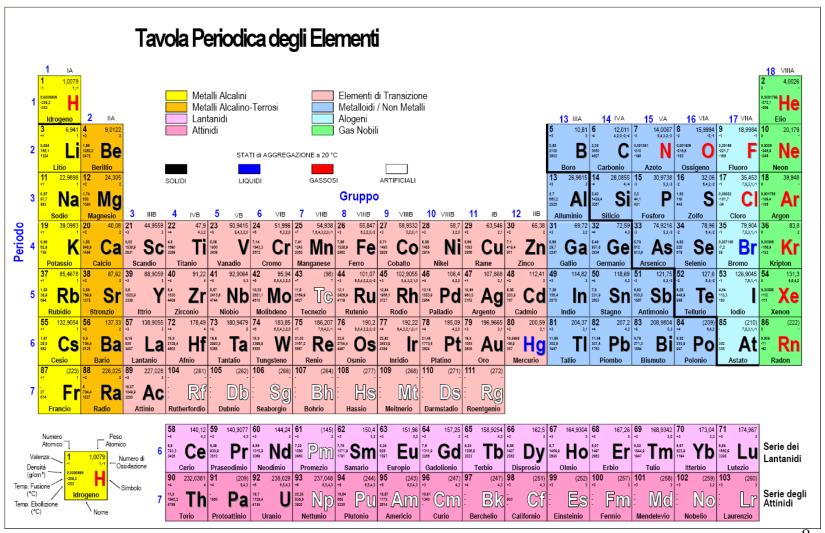


5

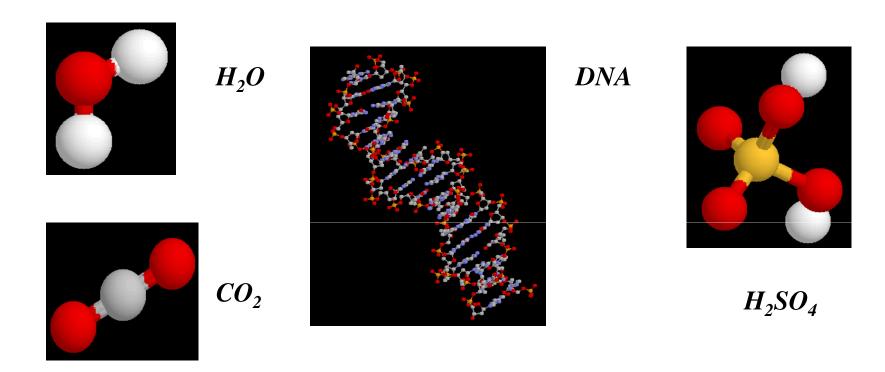

L'esperimento

$$\Delta q = \frac{mg}{E} \frac{\Delta h}{h_g}$$

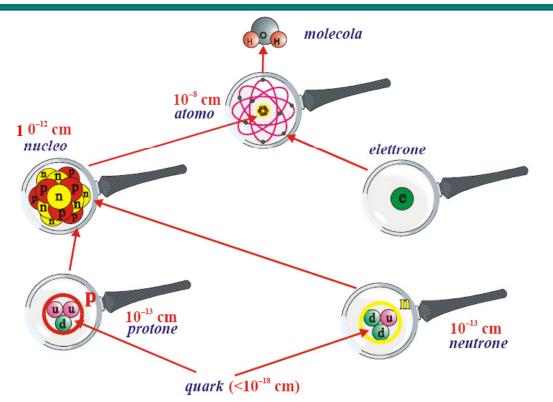

Risultato di Millikan (1909), $\Delta q = 1.5924 \pm 0.0017) \times 10^{-19} C$


Con tecniche moderne:

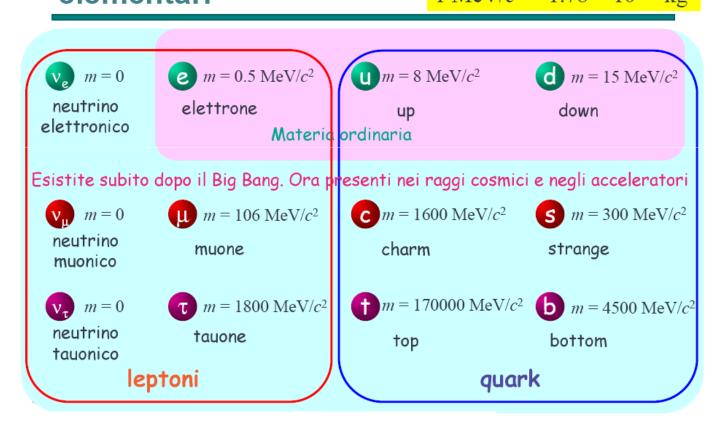
$$\Delta q = 1,602\ 176\ 53(14) \times 10^{-19}\ C$$


Composizione della materia

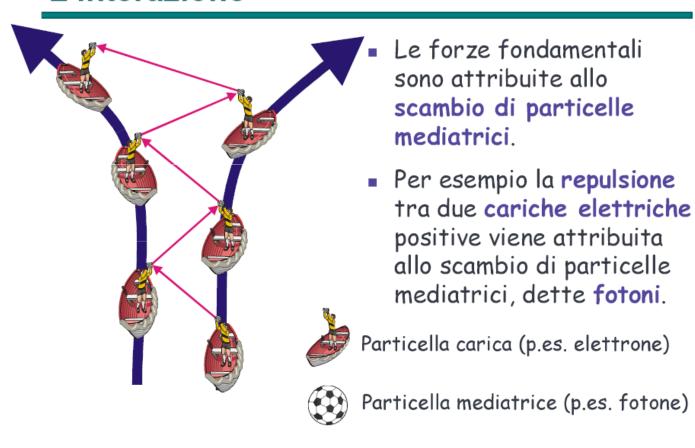
Composizione della materia


Composizione della materia

Il corpo dell'uomo è composto di Dna, di parecchie decine di migliaia di proteine diverse e di numerose altre molecole che contribuiscono a "costruire" le strutture dell'organismo e a mantenere le funzioni vitali


Forze fondamentali della natura

La composizione della materia

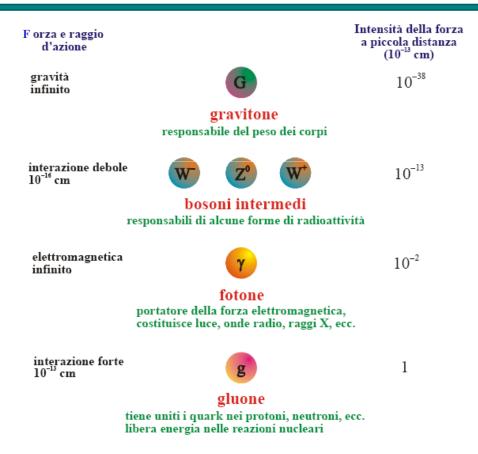

Forze fondamentali della natura

l costituenti della materia: le particelle elementari $1 \text{ MeV/}c^2 = 1.78 \times 10^{-30} \text{ kg}$

Forze fondamentali della natura

L'interazione

Forze fondamentali della natura


Forze fondamentali

■ Esistono in natura 4 forze fondamentali:

		forza grazitazionale	forza nucleare debole	forza elettromagnetica	forza nucleare forte
	particella scambiata	gravitone G	bosoni vettori intermedi W ⁺ , W ⁻ , Z ⁰	fotone γ	gluoni g
	raggio d'azione	∞	10 ⁻¹⁶ cm	∞	10 ⁻¹³ cm
	intensità a piccola distanza (10 ⁻¹³ cm)	10-38	10-13	10-2	1

Forze fondamentali della natura

Bosoni

