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Nucleus in the 50’s

Rutherford experiment: most of the nuclear mass is located in a the 
center of the atom → nucleus, composed by protons and neutrons

No information on the size and substructure of the nucleons

Electron is the ideal probe:
● electromagnetic interactions only
● interaction by single photon exchange

Start campaign of several e- p scattering experiments with increasing e- 
energy 

● proton size (elastic scattering - E<GeV)
● proton substructure (deep inelastic scattering - E>GeV)
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Elastic scattering of e- on nucleons

The scattering of relativistic e- (E>>me) by a charge distribution can be 
calculated using quantum mechanics.

For spinless e- with energy E on point charge the cross section is given 
by the Rutherford formula  

Taking into account the e- spin , the backscattering is supprssed to 
conserve the helicity and we get the Mott cross section  

If the e- is scattered by a static source (M→∞) its final energy E’=E.
For finite mass the nucleon recoils the energy and transferred four-
momentum are
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Elastic scattering of e- on nucleons

The elastic scattering of e- by a point-like massive particle is

These simple rules should be modified if the target has a spatial charge 
distribution ρ(r), the amplitude is modified by a form factor    

The cross section for relativistic e- p scattering is given by the 
Rosenbluth formula   

Two form factors F1,2(q2) for electric and magnetic coupling terms 
(κ=1.79 is the anomalous magnetic coupling of the proton in units of 
the nuclear magneton eh/2Mc) 
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F (q2
)=∫d3r ei q⃗⋅⃗r ρ(r) F(q2)→1 for small momentum transfer q→0 

q2>0 to observe deviations from point-like behavior
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The “size” of the proton

McAllister and Hofstadter (1956)

Elastic scattering of 188 MeV e- at 
Stanford LINAC on protons
Spectrometer can be rotated around 
the interaction region 

Sensitivity to the root mean 
square radius of the proton 
at low momentum transfers:

F (q2
) =∫d3 r ei q⃗⋅⃗rρ(r )

=∫d3rρ(r )[1+i q⃗⋅⃗r−1/2(q⃗⋅⃗r )2
+...]

=1−
q2

6
<r2

>+...

Robert
Hofstadter 
(1915-1990)
Nobel prize 
1961 for his 
studies
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The “size” of the proton
Measurements incompatible with point-like 
proton

Best description of data obtained for:

√<r2> = 0.74 ± 0.24 fm
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Larger e- energies open a new era

In the late 60’s SLAC can accelerate e- up to 18 GeV
At these energies a large fraction of the scattering is inelastic

The mass of X (W) recoiling against the electron can be inferred from 
the energy and the deflection of the outgoing electron

W 2
=( p+q)2

Q2
=−q2

=4EE ' sin2
θ/2

ν=E−E'

W 2
=M 2

+2M ν−Q2

The process can be described
in terms of fundamental quantities:

The invariant mass of the final
hadronic state is:

For the case of elastic scattering:

Q2
=2M ν
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Nuclear resonances in e-p scattering

SLAC-MIT team (1969)

e- with incident energies 7-17 GeV
Observed scattering angles 6°-10° 

Covered range Q2 up to 7.4 GeV2  

Data showed peaks in correspondence 
with the masses of the N (I=1/2, S=0) 
and Δ (I=3/2, S=0) baryons

before 
radiative 
corrections

after 
radiative 
corrections
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Deep inelastic e-p scattering

Full differential cross section extends Mott formula incorporating new 
effects in the structure functions W1(Q2,ν) and W2(Q2,ν)  

Hypothesis: scattering on pointlike 
constituents of the proton, carrying 
a fraction x of the proton momentum

At q2 larger than the mass scale M2:
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Scale invariance

Bjorken scale invariance (1967): in principle W1 and W2 depend on the 
values of Q2 and ν. Bjorken showed that, under the hypothesis of 
elastic scattering on pointlike quarks, W1 and νW2 should depend only 
on the quantity x=q2/2Mν  

Independently developed Feyman model: partons can be not only 
valence quarks and includes the possibility of quark-antiquark pairs.
The distribution functions for the varoius quarks are: u(x), d(x), u(x), …

The momenta should add to the total proton momentum: 

and the correct quantum number are obtained for:

∫dx x [u(x)+ ū(x)+d (x )+ d̄ (x )+...]=1

∫dx [u(x)+ū (x)]=2

∫dx [d (x)+d̄ (x)]=1

∫dx [s(x )+ s̄ (x)]=0
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SLAC-MIT experiment

SLAC-MIT group (1969) - Nobel prize 1990

Electron energy range 7-17 GeV
Spectrometers with heavy shielding
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SLAC-MIT experiment

Comparison of the observed 
cross sections for different 
values of the recoil mass W 
compared with elastic e-p 
scattering (computed for 10°)
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SLAC-MIT experiment

Observed behaviors consistent with Bjorken’s expectations for elastic 
scattering on partons

νW
2
 dependent on x (ω=x-1)

νW
2
 independent on q2 
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The Callan-Gross relation
The connection between the structure functions and the parton 
distributions can be obtained expressing the cross sections in terms of 
Lorentz invariant variables: s=2ME , x=q2/2Mν , y=ν/E  

Where F1(x,Q2)=MW1 and F2(x,Q2)=νW2 (should not be confused with 
the previous form factors of the elastic scattering)

The point-like expression for 
spin ½ particles is obtained for  
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Structure functions and parton distributions

In the parton model the nucleon in the e-N interaction can be 
considered as a the result of partonic currents, such as:

Assuming only u,d,s quarks in the proton this corresponds to:

The same formulas apply for the neutron, but with different parton 
distributions, allowing to derive relations between the e-p and e-n F1 
and F2 structure functions
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Inelastic ν-N scattering

The parton model also allows to write the ν-N cross sections
The structure functions should be rewritten (F→Fν) following V-A 
theory, resulting in an additional structure function Fν

3 and unique 
coupling GF (neutrinos not sensitive to electric charge)

For the interactions νμ p → μ- X and νμ p → μ+ X, ν can interact with d 
or u, while ν can interact with d or u, so the cross sections can be 
written as: 
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Gargamelle at CERN

ν and ν cross sections measured using the Gargamelle liquid bubble 
chamber, filled with heavy freon (CF3Br) exposed to ν and ν beams 
produced at the CERN PS.

CERN PS neutrino beamline

Detector

Shielding

π/μ decay line
p beam from
CERN PS

Be target
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Inelastic ν-N scattering

Fν are also functions of x

Data confirm that e and ν see 
the same internal structure of 
nucleons

F2
νN

(x)≤
18
5
F2
e N

(x)
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Proton PDF

For each parton in the proton there is 
one Parton Distribution Function (PDF): 
u(x,Q2), d(x,Q2), g(x,Q2), …

Interpretation: probability to finding a 
parton of a given flavor that carries a 
fraction x of the total proton’s 
momentum

The momentum sum rule (pag. 10) 
should be modified to include the gluon:

∫dx x [q (x)+ q̄ (x)+g (x)]=1
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