The structure of the nucleon

Matteo Negrini INFN-Bologna

Nucleus in the 50's

Rutherford experiment: most of the nuclear mass is located in a the center of the atom \rightarrow nucleus, composed by protons and neutrons

No information on the size and substructure of the nucleons

Electron is the ideal probe:

- electromagnetic interactions only
- interaction by single photon exchange

Start campaign of several e-p scattering experiments with increasing e-energy

- proton size (elastic scattering E<GeV)
- proton substructure (deep inelastic scattering E>GeV)

Elastic scattering of e⁻ on nucleons

The scattering of relativistic e^{-} (E>> m_e) by a charge distribution can be calculated using quantum mechanics.

For spinless e- with energy E on point charge the cross section is given by the Rutherford formula

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4E^2\sin^4\theta/2}$$

Taking into account the e-spin, the backscattering is supprssed to conserve the helicity and we get the Mott cross section

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \cos^2 \theta / 2}{4 E^2 \sin^4 \theta / 2}$$

If the e- is scattered by a static source (M $\rightarrow \infty$) its final energy E'=E. For finite mass the nucleon recoils the energy and transferred fourmomentum are

$$E' = \frac{E}{1 + 2E/M\sin^2\theta/2}$$
 $q^2 = -4EE'\sin^2\theta/2$

Elastic scattering of e⁻ on nucleons

The elastic scattering of e- by a point-like massive particle is

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \cos^2 \theta / 2}{4 E^2 \sin^4 \theta / 2} \frac{E'}{E} \left[1 - \frac{q^2}{2M^2} \tan^2 \theta / 2 \right]$$

These simple rules should be modified if the target has a spatial charge distribution $\rho(r)$, the amplitude is modified by a form factor

$$F(q^2) = \int d^3 r \, e^{i\vec{q}\cdot\vec{r}} \, \rho(r)$$
 $F(q^2) \rightarrow 1$ for small momentum transfer $q \rightarrow 0$ $q^2 > 0$ to observe deviations from point-like behavior

The cross section for relativistic e- p scattering is given by the Rosenbluth formula

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \cos^2 \theta / 2}{4 E^2 \sin^4 \theta / 2} \frac{E'}{E} \left[\left(F_1^2 + \frac{\kappa^2 Q^2}{4 M^2} F_2^2 \right) + \frac{Q^2}{2 M^2} (F_1 + \kappa F_2)^2 \tan^2 \theta / 2 \right] \qquad Q^2 = -q$$

Two form factors $F_{1,2}(q^2)$ for electric and magnetic coupling terms (κ =1.79 is the anomalous magnetic coupling of the proton in units of the nuclear magneton eh/2Mc)

The "size" of the proton

McAllister and Hofstadter (1956)

Elastic scattering of 188 MeV e- at Stanford LINAC on protons Spectrometer can be rotated around the interaction region Robert Hofstadter (1915-1990) Nobel prize 1961 for his studies

Sensitivity to the root mean square radius of the proton at low momentum transfers:

$$F(q^{2}) = \int d^{3}r e^{i\vec{q}\cdot\vec{r}} \rho(r)$$

$$= \int d^{3}r \rho(r) [1+i\vec{q}\cdot\vec{r}-1/2(\vec{q}\cdot\vec{r})^{2}+...]$$

$$= 1-\frac{q^{2}}{6} < r^{2} > +...$$

The "size" of the proton

Measurements incompatible with point-like proton

Best description of data obtained for:

$$\sqrt{\langle r^2 \rangle} = 0.74 \pm 0.24 \text{ fm}$$

Larger e energies open a new era

In the late 60's SLAC can accelerate e- up to 18 GeV At these energies a large fraction of the scattering is inelastic

The mass of X (W) recoiling against the electron can be inferred from the energy and the deflection of the outgoing electron

The process can be described in terms of fundamental quantities:

$$Q^2 = -q^2 = 4EE'\sin^2\theta/2$$

$$\nu = E - E'$$

The invariant mass of the final hadronic state is:

$$W^2 = (p+q)^2$$

$$W^2 = M^2 + 2 M v - Q^2$$

For the case of elastic scattering:

$$Q^2 = 2M v$$

Nuclear resonances in e-p scattering

SLAC-MIT team (1969)

e- with incident energies 7-17 GeV Observed scattering angles 6°-10°

Covered range Q² up to 7.4 GeV²

Data showed peaks in correspondence with the masses of the N (I=1/2, S=0) and Δ (I=3/2, S=0) baryons

Deep inelastic e-p scattering

Full differential cross section extends Mott formula incorporating new effects in the structure functions $W_1(Q^2, v)$ and $W_2(Q^2, v)$

$$\frac{d\sigma}{d\Omega dE'} = \frac{\alpha^2 \cos^2 \theta / 2}{4 E^2 \sin^4 \theta / 2 E} \left[W_2(Q^2, \nu) - 2 W_1(Q^2, \nu) \tan^2 \theta / 2 \right]$$

Hypothesis: scattering on pointlike constituents of the proton, carrying a fraction x of the proton momentum

$$(xp+q)^2 = m^2$$

 $x^2 p^2 + q^2 + 2 xp \cdot q = m^2$

At q² larger than the mass scale M²:

$$|x^2 p^2| = x^2 M^2 \ll q^2$$
 $m^2 \ll q^2$

$$x = \frac{Q^2}{2M v} \qquad 0 < x < 1$$

Scale invariance

Bjorken scale invariance (1967): in principle W_1 and W_2 depend on the values of Q^2 and v. Bjorken showed that, under the hypothesis of elastic scattering on pointlike quarks, W_1 and vW_2 should depend only on the quantity $x=q^2/2Mv$

Independently developed Feyman model: partons can be not only valence quarks and includes the possibility of quark-antiquark pairs. The distribution functions for the varoius quarks are: u(x), d(x), u(x), ...

The momenta should add to the total proton momentum:

$$\int dx \, x [u(x) + \overline{u}(x) + d(x) + \overline{d}(x) + \dots] = 1$$

and the correct quantum number are obtained for:

$$\int dx [u(x) + \overline{u}(x)] = 2$$

$$\int dx [d(x) + \overline{d}(x)] = 1$$

$$\int dx [s(x) + \overline{s}(x)] = 0$$

SLAC-MIT experiment

SLAC-MIT group (1969) - Nobel prize 1990

Electron energy range 7-17 GeV Spectrometers with heavy shielding

Fig. 1 — The two magnetic spectrometers used for the SLAC-MIT experiment. The 8 GeV spectrometer is in the foreground and the 20 GeV unit is to the rear. The bulk of the detectors comprise shielding (weighing 450 tons for the 8 GeV device).

SLAC-MIT experiment

Comparison of the observed cross sections for different values of the recoil mass W compared with elastic e-p scattering (computed for 10°)

SLAC-MIT experiment

Observed behaviors consistent with Bjorken's expectations for elastic scattering on partons

 vW_2 dependent on x ($\omega = x^{-1}$)

νW₂ independent on q²

The Callan-Gross relation

The connection between the structure functions and the parton distributions can be obtained expressing the cross sections in terms of Lorentz invariant variables: s=2ME, $x=q^2/2M\nu$, $y=\nu/E$

$$\frac{d\sigma}{dx\,dy} = \frac{4\pi\alpha^2 s}{Q^4} \left[\frac{1}{2} (1 + (1 - y)^2) 2xF_1 + (1 - y)(F_2 - 2xF_1) - \frac{M}{2E} xyF_2 \right]$$

Where $F_1(x,Q^2)=MW_1$ and $F_2(x,Q^2)=\nu W_2$ (should not be confused with the previous form factors of the elastic scattering)

The point-like expression for spin ½ particles is obtained for

$$\frac{2xF_1(x)}{F_2(x)} = 1$$

Callan-Gross relation

Structure functions and parton distributions

In the parton model the nucleon in the e-N interaction can be considered as a the result of partonic currents, such as:

$$J_{u,\mu} = -\frac{2i}{3}\overline{u}(x) \gamma_{\mu} u(x)$$
$$J_{d,\mu} = \frac{i}{3}\overline{d}(x) \gamma_{\mu} d(x)$$

Assuming only u,d,s quarks in the proton this corresponds to:

$$F_{1} = \frac{1}{2} \left[\left(\frac{2}{3} \right)^{2} (u(x) + \overline{u}(x)) + 2 \left(\frac{1}{3} \right)^{2} (d(x) + \overline{d}(x)) + \left(\frac{1}{3} \right)^{2} (s(x) + \overline{s}(x)) \right]$$

$$F_{2} = x \left[\left(\frac{2}{3} \right)^{2} (u(x) + \overline{u}(x)) + 2 \left(\frac{1}{3} \right)^{2} (d(x) + \overline{d}(x)) + \left(\frac{1}{3} \right)^{2} (s(x) + \overline{s}(x)) \right]$$

The same formulas apply for the neutron, but with different parton distributions, allowing to derive relations between the e-p and e-n F_1 and F_2 structure functions

Inelastic v-N scattering

The parton model also allows to write the v-N cross sections. The structure functions should be rewritten ($F \rightarrow F^{\nu}$) following V-A theory, resulting in an additional structure function F^{ν}_{3} and unique coupling G_{F} (neutrinos not sensitive to electric charge)

$$\frac{d\sigma^{v}}{dx\,dy} = \frac{G_{F}^{2}ME}{\pi} \Big[(1-y)F_{2}^{v} + y^{2}xF_{1}^{v} + (y-y^{2}/2)xF_{3}^{v} \Big]$$

$$\frac{d\sigma^{\bar{v}}}{dx\,dy} = \frac{G_{F}^{2}ME}{\pi} \Big[(1-y)F_{2}^{v} + y^{2}xF_{1}^{\bar{v}} - (y-y^{2}/2)xF_{3}^{\bar{v}} \Big]$$

For the interactions $v_{\mu} p \rightarrow \mu^{-} X$ and $\overline{v}_{\mu} p \rightarrow \mu^{+} X$, ν can interact with \overline{d} or u, while $\overline{\nu}$ can interact with \overline{d} or u, so the cross sections can be written as:

$$\frac{d\sigma^{v}}{dx\,dy} = \frac{2G_F^2 M E}{\pi} x \left[d(x) + (1-y)^2 \overline{u}(x) \right]$$

$$\frac{d\sigma^{\bar{v}}}{dx\,dy} = \frac{2G_F^2 M E}{\pi} x \left[\overline{d}(x) + (1-y)^2 u(x) \right]$$

Gargamelle at CERN

 ν and $\overline{\nu}$ cross sections measured using the Gargamelle liquid bubble chamber, filled with heavy freon (CF₃Br) exposed to ν and $\overline{\nu}$ beams produced at the CERN PS.

CERN PS neutrino beamline

Inelastic v-N scattering

 F^{ν} are also functions of x

Data confirm that e and v see the same internal structure of nucleons

$$F_2^{\nu N}(x) \le \frac{18}{5} F_2^{eN}(x)$$

Proton PDF

For each parton in the proton there is one Parton Distribution Function (PDF): $u(x,Q^2)$, $d(x,Q^2)$, $g(x,Q^2)$, ...

Interpretation: probability to finding a parton of a given flavor that carries a fraction x of the total proton's momentum

The momentum sum rule (pag. 10) should be modified to include the gluon: $\int dx \, x [q(x) + \overline{q}(x) + g(x)] = 1$

