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TIp scattering

Anderson, Fermi, Long, Nagle (1952)

Striking difference between 1t+p and 11-p observed at the Chicago
Cyclotron:

e TI-p Cross section: rising from few mb to ~60 mb at E,=180 MeV

* TI*P Cross section: about 3 times the 11-p cross section
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In a series of paper the 3 scattering
process were investigated:
A) T'p - 1*p (elastic scattering)

B) p - 1°n (charge exchange) + p

C) -p - 1-p (elastic scattering) TN R S——— e -
A has the largest cross section, T + g 2

C the smallest. r—l—mllll S 1

F1G. 1. Total cross sections of negative pions in hydrogen (sides of the
rectangle represent the error) and positive pions in hydrogen (arms of the
cross represent the error). The cross-hatched rectangle is the Columbia
result., The black square is the Brookhaven result and does not include the

charge exchange contribution,
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TIp scattering: Isospin

From the point of view of the strong interaction, the previous processes
can be considered as the same interaction between particles in
different isospin states.

1> =|1,+1> = |11+> |1,0> = |110> 11,-1> = |1t->
II,1,>=11/2,+1/2> = |p> 11/2,-1/2> = |n>

The N system can have 1=3/2, 1/2

Each state expressed as superposition of isospin states, obtained
using the Clebsch-Gordan coeff.

For example, for the 3 states of interest:

prti+> = |3/2,+3/2>
prt> = V(1/3) |3/2,-1/2> - V(2/3) |1/2,-1/2>
prto> = +/(2/3) |3/2,+1/2> - V(1/3) |1/2,+1/2>
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TIp scattering: Isospin

The cross section is proportional to the square of the amplitude between the initial
and final state:

ooc|(fIHIi)f

Where H is an isospin conserving operator, that can proceed to bot isospin 3/2
and % channels, so it can be expressed as:

H=H, ,+H,,

So for the 3 processes we obtain:

<ptt+|H|p1t+> = <3/2,+3/2|H,,|3/2,+3/2> = M,,,

<nTio|H|pmt-> = v2/3 <3/2,-1/2|H.,|3/2,-1/2> + V2/3 <1/2,-1/2|H,,,|1/2,-1/2>
=V2/3 M, + V2/3 My,

<ptt-|H|pmt-> = 1/3 <3/2,-1/2|H,,|3/2,-1/2> + 2/3 <1/2,-1/2|H,,,|1/2,-1/2>
=1/3 M, + 2/3 My,

Therefore an isospin=3/2 resonance would give cross sections for the 3
processes in the ratio A:B:C=9:2:1, while isospin=1/2 gives A:B:C=0:1:2
Measurement in agreement with isospin 3/2 resonance (the full shape of the
resonance could not be observed because of the pion beam energy)
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A broad resonance: A(1232)*"

Cross section values for 1tp scattering reveals the existence of a broad

resonance with 1=3/2.
Spin assignment 3/2 from the analysis of the angular distribution:

 s=1/2 - isotropic
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Non-relativistic Breit-Wigner for particles with spin: atb - R
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A family of resonances: A

We observed a peak in the 11-p process with approximately the same
mass and width of the A(1232)

Isospin symmetry implies for 1=3/2 the existence of 4 particles in
different I, state (with different electric charge)

A+ p T+ (I;=+3/2)
A+-p 1o or nti+ (I,=+1/2)
AonTo or prt- (1,=-1/2)
A--n T (1,=-3/2)
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Hadron scattering: wave approach

Consider a beam of particles with momentum k represented by a plane
wave:

kz
yi=e

A plane wave can be represented by a superposition of incoming and
outgoing spherical waves, whose angular dependence is given by the
Legendre polynomials P,(cosb).

At large distances from the scattering centre kr>>1 and the radial
dependence of the spherical wave is e+ki/kr.
For elastic scattering k=k,=k.

i

L _q\l ik ikr
=2k 2 (21+1)[(—=1) e ™ —e"] P,(cos O)

¥

e+ikl’
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Hadron scattering: wave approach

Adding a scattering potential, affecting the amplitude (0<n,<1) and the
phase (29, of the outgoing wave

l

= 3 (21 1) (1 e P, (cos )
[
ikr 219, ikr
e e '—1 e
Ysear= Yior— W= 2, (21+1)=———P;(cos 6)==—F (6)
l

F(6) is the elastic scattering amplitude. The elastic cross section is:

do_
dQ
The total elastic cross section is obtained integrating over the angle:

5,_12
Oe1:4?z <21+1)
1

k
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F(0)

nlezi
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The optical theorem

The optical theorem relates the total cross section with the imaginary
part of the forward scattering amplitude

The reaction cross section, for n<1, can be obtained as a difference
between the total cross section and the elastic one and is:

Or:k—JgZ (21+1)2(1—1n,c0os2 65,
[

Since the imaginary part of the scattering amplitude in the forward
direction (6=0) is:
3F(0)= Zlk > (21+1)(1-mc0s20)

The optical theorem follows:

k-
4 T tOt

IF(0)=
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Hadron scattering: wave approach

The maximum elastic cross section for the It partial wave occurs when
o,~=11/2 and n=1 (pure scattering without absorption) and Is:

max __ 4 JU
e
Similarly, the maximum reaction cross section is for n,=0:

aT“X:k—Jg(zlu)

(21+1)

The elastic scattering amplitude for the It partial wave f(l) is a complex
guantity that is included in a circle centered in i/2 in the complex plane

219, . Im(f) A Elasti .
_ . . 1 astic scattering
f(l): me 1 :L _ L1 82151 P on the circumference n=1
2i 2 2 NP
r] |/2 \
o)
INFN -1/2 +1/2 Re(f)



The Breit-Wigner formula

If the elastic scattering amplitude f(l) is at maximum for some given

momentum k and value of |, we have the formation of a resonance, that

IS therefore characterized by a mass and angular momentum (spin)

In this case the phase shift o, should pass through 1t/2.

For n=1 we can write:
eié,(eiél_e—iél) 5 . 1

)= 2i =¢ sing= cot §,—i
Taylor expansion around 0=r1/2 (cot 0=0), making the dependence on
of the center of mass energy E explicit:

dcot E
dE

Neglecting further terms justified if << E,,
The cross section can be described in terms of width (I") or life-time (1)
of the resonance

(NN "
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The Breit-Wigner formula

We can now obtain the elastic cross section close to the resonance as
a function of E:

_ 1 _ /2
flE)= cotd—i (E_,—E)—il'/2
4 r’/4 Breit-Wigner formula
O'el(E>_?<21+1) (E—Eres)2+rz/4 forrespinless particles
PEIA

The amplitude is just the Fourier
transform of the exponential decay.

The cross section can be described et
In terms of width (') or life-time of
the resonance (t=h/I")

-Ir/2 M r2 E

(NN ?



Parity

Parity operator P — inversion of the spatial coordinates: P y(x)= y(—x)
P Y(x)=+y(x) Even parity (P=+1)
Py(x)=—y(x) Odd parity (P=-1)
Py(x)#=+yw(x) No definite parity eigenvalue

For the spherical harmonic functions (angular momentum): P=(-1)

PYlm<6’ ¢>:Y71<7T_ 0, ﬂ+¢):(_1>IYT<9’ ¢)

Particles have an intrinsic parity +1 or -1
* Fermions: particles and antiparticles have opposite parity
* Bosons: particles and antiparticles have the same parity

Parity is a multiplicative quantum number (angular and intrinsic parts)

It iIs conserved by the strong and electromagnetic interactions and this
allows to determine the relative parity of particles

(NN 1



/\TT resonances

Alvarez et al. (1960)

The availability of K beams (Bevatron) allowed a second step forward

In the study of barionic resonances.

It was understood that A can be produced with 1 beams in association

with other strange particles (K).

Observation of the process
K-p - ATT+TT-
In hydrogen bubble chamber

Dalitz plot analysis show center of
mass kinetic energy of a particle
(equivalent to the invariant mass
of the two recolling particles)
Evidence of resonant ATt state
2(1385) with I=1 (charge triplet)
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Two Tt resonances: p mesons

Erwin et al. (1961)

Evidence of a p - TITT resonance using
T- beam at Cosmotron (Brookhaven)
on hydrogen bubble chamber

Analysis of different final state

suggest I=1 resonance (triplet)
(Analysis done for two ranges of A,
momentum transferred to the nucleon)
J=1: consistent with peak cross section
of the Breit Wigner

Table I. Ratios of final states.

Experiment
I=0 I=1 I=2 (A<400 Mev/c)

1 1" n 2 2 2/9 1.7/ 0.3
7% 0 1 il 1
7% 1 0 4/9 <0,25+0,25

B

RELATIVE INTENSITY (arbitrary units)

S

2007

150

100+

i
(=]

250

200

150

100

504

200

A £ 400 Mev/c
104 Events

O = One Event

Phase Space

A > 400 Mev/ic
274 Events
0O = One Event

400

T T T L T T T 1
600 800 1000 1200

m* IN MEV

15



Three 1T resonance: w meson

g el eI e s 7 Is 19200 22

100 _ ore triptet (A)++—,——+ L

Alvarez group (1961) a0l :

Antiproton beam on hydrogen sol- )
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The static quark model of hadrons

In the accumulation of data on baryon and meson resonances regularities
and patterns started to emerge.

Successful model by Gell-Mann and Ne’eman (“the eightfold way”).
Extension of isospin SU(2) - SU(3) flavor symmetry

Lead to the development of the quark model: three fundamental
constituents (quarks) u,d,s with s=1/2 and fractional electric charge.

u,d are 1=1/2 doublet and S=0, s have 1=0 and S=-1.
* Baryons are made of 3 quarks
* Mesons are made of 1 quark and 1 anti-quark

Under the SU(3) hypothesis we have the following multiplets:
 Baryons:3®3®3=1®8®8®10 (1 singlet, 2 octets, 1 decuplet)

 Mesons: 3®3=168 (1 singlet, 1 octet)
Spin-parity must be determined to assign resonances to the appropriate
multiplet

(NN 1



The known JrP=0- (pseudoscalar) meson resonances form an octet

The meson octet

s =1
s =120
s = —1

KU
ﬂ.(}
T .
n
-
q=—1
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The baryon octet

The known 8 baryon resonances with Jr=1/2+ form an octet
The A quadruplet has JP=3/2+ cannot be part of this multiplet

SZO n p Ig
ZU
s = —1 > . >
A
q=1
s = —2
- =V
qg=—1 q=>0
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Other baryons: 2" and =

Other resonances with spin 3/2 and S#0 observed with K beams in
hydrogen bubble chamber: 2*- S=-1 and =* - S=-2

Pjerrou et al. (UCLA group, 1962) 70 INABE LT e
=" =Tt resonance, m=1.53 GeV - dR | oo o0 i
S=-2 conserved in strong decay Eh : % 1 )
I=1/2 from cross sections ratios Rk gt g ) f/
of different isospin states 040} \%—J =
=* spin later determined to be 3/2 210 220 230 240 250 260 270
6 : = 1 ; M?E:-Ff {’Gevf
,:: —l | [] one even : 0.70 F ;*»J=ED I
% o - l'i % imﬁa?hﬁn ju 1 NE 060 | e *a" : \Q\
" _ < S |
3 i E os0f T Ceq /
3 1 | o e
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The baryon decuplet

Only 9 baryon resonances with Jr=3/2+ known at the time
Gell-Mann in 1962 at Rochester Conference assessed that, based on
SU(3) symmetry, a state with JP=3/2+, S=-3, m~1680 should exist MeV

A~ A0 A+ AT+ o
s =10 . 3

Expected mass of the
new state derived from
the mas differences of
the known states
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Observation of the QO

Brookhaven group (1964)
BNL hydrogen bubble chamber exposed to 5.0 GeV K- beam at BNL
Alteratlng Gradlent Synchrotron (AGS, today injector of RHIC)

K +p-Q +KT+K°

""0

+m"
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et +e” |=i— NG5 to BHIC
i | line (AtR)
. EBIS Booster . Cxperimental
# _ k Area
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