
- II) Si consideri una resistenza composta da un filo di rame (ρ_1 = 1.7 x $10^{\text{-8}}\,\Omega\text{m}$) in serie ad un filo di alluminio (ρ_2 = 2.8 x $10^{\text{-8}}\,\Omega\text{m}$). Ai capi della resistenza e' applicata una differenza di potenziale V = 20 V. Ciascun filo e' lungo l = 20 m ed ha una sezione S = 2 mm². Calcolare:
 - a) La resistenza R₁ del filo di rame e quella R₂ del filo di alluminio;
 - b) Le differenze di potenziale V₁ e V₂ ai capi di ciascun filo;
 - c) La densità di corrente J in ciascun filo.
- I2) Nel circuito in figura, la pila ha una f.e.m f=60~V e resistenza interna trascurabile. Le resistenze hanno i valori indicati in figura, dove $R=10~\Omega$; i condensatori hanno capacità $C_1=1~\mu F$ e $C_3=3~\mu F$. Determinare l'energia W_2 immagazzinata in C_2 .

I3) Sia dato il circuito in figura, dove $R_1 = 10 \ \Omega$, $R_2 = 20 \ \Omega$, $R_3 = 5 \ \Omega$. La d.d.p fra i punti A e B vale $V_{AB} = 13 \ V$. Calcolare la forza elettromotrice f della pila, trascurando la sua resistenza interna.

