ELEMENTI DI FISICA NUCLEARE E SUBNUCLEARE - Modulo I e Modulo II ISTITUZIONI DI FISICA NUCLEARE E SUBNUCLEARE PROVA SCRITTA DI SUBNUCLEARE - 10 Novembre 2006

- 1. Una particella A di massa M_A decade in due particelle B e C di masse m_B e m_C (A \rightarrow B + C). Trovare le espressioni delle energie totali e degli impulsi delle particelle B e C (E_B ; E_C ; p_B ; p_C), in funzione delle masse, nel sistema di riferimento nel quale la particella A è a riposo. (6 punti).
- 2. Rispondere sinteticamente alle seguenti domande (Mod. I le prime 4; 1.5 punti/domanda Mod. II le ultime 4; 1.5 punti/domanda Annuale tutte; 1 punto/domanda)
 - In un esperimento ad un collisionatore e^+e^- con luminositá $L=2\cdot 10^{31}cm^{-2}sec^{-1}$ vengono rivelati, con una efficienza del 90%, 2500 eventi del tipo $e^++e^-\to \mu^++\mu^-$ in dieci ore. Qual'é la sezione d'urto in nb corrispondente ?
 - Quali sono le antiparticelle di π^+ , π^o , n, Δ^+ , Σ^- , Λ ?
 - Che energia totale deve avere un protone per far si che la sua energia cinetica sia tre volte maggiore della energia equivalente alla sua massa a riposo ?
 - Dimostrare che la massima energia cinetica imprimibile da un ciclotrone ha una dipendenza quadratica dall'intensitá del campo magnetico fra le due espansioni polari.
 - Perché i mesoni π carichi possono decadere solo debolmente mentre il mesone π neutro decade quasi esclusivamente elettromagneticamente ?
 - Elencare i possibili decadimenti dei bosoni vettori W^- e Z^o quando sono prodotti come particelle reali.
- 3. Fra i seguenti stati finali prodotti in reazioni di alta energia o in decadimenti, indicare quelli permessi all'interno del Modello Standard. Per quelli proibiti motivare la risposta (Mod. 1 i primi 4; 1.5 punti/domanda Mod. 2 gli ultimi 4; 1.5 punti/domanda Annuale tutti; 1 punto/domanda).
 - $\bullet \ \mu^+ \to \pi^+ + \bar{\nu}_\mu$
 - $\pi^+ + \bar{p} \rightarrow \pi^o + \bar{n}$
 - $\bullet \ \tau^- \to \pi^- + \bar{\nu}_\tau$
 - $\tau^+ + \tau^- \rightarrow \gamma + \gamma$
 - $t \rightarrow s + \mu^+ + \nu_\mu$
 - \bullet $e^+ + e^- \rightarrow Z^o + Z^o$
- 4. Disegnare i diagrammi di Feynman, all'ordine più basso, relativi ai seguenti processi (Mod. I i primi 4; 1.5 punti/domanda Mod II gli ultimi 4; 1.5 punti/domanda Annuale tutti; 1 punto/domanda):
 - $\tau^{+} + \tau^{-} \to \tau^{+} + \tau^{-}$
 - $d + \bar{d} \rightarrow s + \bar{s}$
 - $\gamma + \gamma \rightarrow \gamma + \gamma$
 - \bullet $e^- + c \rightarrow e^- + c$
 - $u + s \rightarrow u + s$
 - $\bullet \ \nu_e + \mu^- \to \nu_e + \mu^-$
- 5. Un fascio di particelle identiche, elettricamente cariche, con impulso P_0 GeV/c, attraversa un sistema formato da due contatori C_1 e C_2 distanti fra loro L metri. Il tempo impiegato da ogni singola particella per attraversare il sistema è di T secondi. A causa dei decadimenti in volo, l'intensità del fascio nel percorso da C_1 a C_2 si riduce di un fattore 3. Determinare la massa e la vita media della particella del fascio in funzione di P_0 , L e T. (6 punti).