Measurements of level densities in hot nuclei

Letter of Intent

Measurements of level densities from compound nuclear reactions

<u>A.V. Voinov¹</u>, S.M. Grimes¹, C.R. Brune¹, T. Massey¹, A. Schiller¹,
 <u>V.L. Kravchuk^{2.3}</u>, F. Gramegna², M. Cinausero², G. Prete², T. Marchi², M. Degerlier², S. Sambi^{2,3},
 M. Bruno³, M. D'Agostino³, L. Morelli³, G. Baiocco³, G. Guastalla³, G. Vannini³,
 G. Casini⁴, S. Barlini⁴, L. Bardelli⁴, N. Gelli⁴, S. Carboni⁴, M. Bini⁴, G. Pasquali⁴, G. Poggi⁴,
 G. La Rana⁵, E. Vardaci⁵, A. Brondi⁵, R. Moro⁵, A. Ordine⁵, A. Di Nitto⁵,
 A.C. Larsen⁶, M. Guttormsen⁶, S. Siem⁶, M. Barbui⁷, D. Fabris⁸

¹Physics and Astronomy Department, Ohio University, Athens OH, USA
 ²Laboratori Nazionali di Legnaro, Legnaro (PD), Italy
 ³Dipartimento di Fisica, Universita' di Bologna and INFN sezione di Bologna, Bologna, Italy
 ⁴Dipartimento di Fisica, Universita' di Firenze and INFN sezione di Firenze, Firenze, Italy
 ⁵Dipartimento di Fisica, Universita' di Napoli and INFN sezione di Napoli, Napoli, Italy
 ⁶Department of Physics, University of Oslo, Oslo, Norway
 ⁷Cyclotron Institute, Texas A&M University, College Station TX, USA
 ⁸Dipartimento di Fisica, Universita' di Padova and INFN sezione di Padova, Padova, Italy

Submitted to the LNL PAC

Level density and CN population

$$\sigma_{b}(\varepsilon_{a},\varepsilon_{b}) = \sum_{J\Pi} \sigma_{a}^{CN}(\varepsilon_{a}) \frac{\Gamma_{b}(U,J,\Pi, E_{k}, I_{k}, P_{k})}{\Gamma(U,J,\Pi)} ,$$

$$\frac{d\sigma}{d\varepsilon_{b}}(\varepsilon_{a},\varepsilon_{b})$$

$$= \sum_{J\Pi} \sigma_{a}^{CN}(\varepsilon_{a}) \frac{\sum_{IP} \Gamma_{b}(U,J,\Pi, E, I, P)\rho_{b}(E, I, P)}{\Gamma(U,J,\Pi)}$$
(2)

with

$$\Gamma(U, J, \Pi) = \sum_{b'} \left(\sum_{I'P'} \int_{E_c}^{U-B_{b'}} dE' \Gamma_{b'}(U, J, \Pi, E', I', P') \right)$$

$$\times \rho_{b'}(E',I',P')$$

$$+\sum_{k}\Gamma_{b'}(U,J,\Pi,E_k,I_k,P_k)\right).$$
 (3)

Nuclear Level density studies

Isospin Effects on Nuclear Level density

1)
$$a = \alpha A$$

2) $a = \alpha A / \exp[\beta(N - Z)^{2}]$
3) $a = \alpha A / \exp[\gamma(Z - Z_{0})^{2}]$
Al-Quraishi et al., PRC 63 (2001) 065803
Al-Quraishi et al., PRC 67 (2003) 015803

How this parameterization works at higher excitation energy ? ³²S + ¹⁰⁷Ag → ¹³⁹Eu (E_x=90 MeV)

8πLP@LNL

No evidence of Z-Zo effects No possible to discriminate between st. and N-Z

Measurement of the Level Density (I)

At moderate excitation energies of the CN, the high energy part of the particle spectrum arises mainly from the first step decay.

- A~ 100, E_{proton}= 13 20 MeV predominantly from 1st step
- Typical range of applicability E_x= 5 - 25 MeV

TABLE I. Experimental information and input and output parameters. $E_p^{c.m.}(90\%)$ is proton c.m. energy at which 1st step contribution is 90%. E_x^{max} is maximum E_x in residual nuclei up to which NLD is extracted. δa is A/a where A is the mass number of the residual nuclei

Reaction	$E_{ m beam}$	E_X^{CN}	$\sigma_{ m fus}$	$L_0^{ m CN}$	$E_p^{\rm c.m.}(90\%)$	E_X^{\max}	δa
	(MeV)	(MeV)	(mb)		(MeV)	(MeV)	(MeV)
	40	35.0	188	10	14.0	16	$8.9{\pm}0.3$
$^{12}\mathrm{C}{+}^{93}\mathrm{Nb}$	45	39.4	515	18	16.0	18	$8.5{\pm}0.3$
$ ightarrow p+^{104} \mathrm{Pd}$	50	43.9	779	23	18.0	21	$8.7{\pm}0.3$
	56	49.1	1039	28	20.5	24	$9.1{\pm}0.6$
$^{12}\mathrm{C}+^{103}\mathrm{Rh}$	53	46.3	633	21	19.5	24	$9.2{\pm}0.4$
$ ightarrow p+^{114} { m Sn}$	0						

D.R. Chakrabarty et al., PRC 51 (1995)

Measurement of the Level Density (II)

Measurement of the Level Density (II)

Systems Proposed and Experimental Needs

Projectile energy, MeV	Reaction	Compound Nucleus Excitation Energy, MeV	⁸⁶ Sr
40	$^{12}C + ^{74}Ge$	45	
53	¹⁶ O + ⁷⁰ Ge	45	86
93	$^{28}Si + ^{58}Ni$	45	
40	$^{12}C + ^{49}Ti$	48	\square ⁶¹ Ni

Table 1. List of possible reactions to be studied at the Laboratori Nazionali di Legnaro.

- Light particle spectra with high precision over many decades
- Angular distributions
- > CN contribution tagging (ER residues detection)

Detectors at LNL:

GARFIELD, $8\pi LP$ (charged particles) and **RIPEN** (neutrons)

60 MeV ${}^{16}O + {}^{58}Fe \rightarrow {}^{74}Se$

Bombarding energy (MeV)	60.00
Center of mass energy (MeV)	47.03
Compound nucleus excitation energy (MeV)	52.349
Q-value of reaction (MeV)	5.322
Compound nucleus recoil energy (MeV)	12.973
Compound nucleus recoil velocity (cm/ns)	5.820e-01
Compound nucleus velocity/c	1.940e-02
Beam velocity (cm/ns)	2.692e+00
Beam velocity/c	8.973e-02

60 MeV ¹⁶O + ⁵⁸Ni →⁷⁴Kr

Bombarding energy (MeV)	60.00
Center of mass energy (MeV)	47.03
Compound nucleus excitation energy (MeV)	44.394
Q-value of reaction (MeV)	-2.633
Compound nucleus recoil energy (MeV)	12.973
Compound nucleus recoil velocity (cm/ns)	5.820e-01
Compound nucleus velocity/c	1.940e-02
Beam velocity (cm/ns)	2.692e+00
Beam velocity/c	8.973e-02