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Abstract

This thesis has been developed in the framework of a new experimental cam-

paign, recently proposed by the NUCL-EX Collaboration (INFN III Group), in

order to progress in the understanding of the statistical properties of light nuclei, at

excitation energies above particle emission threshold, by measuring exclusive data

from fusion-evaporation reactions. These properties notably include the excitation

energy dependence of the nucleon effective mass, symmetry energy and pairing cor-

relations. In particular, the determination of the nuclear level density in the A ∼ 20

region, the understanding of the statistical behavior of light nuclei with excitation

energies ∼ 3 A.MeV , and the measurement of observables linked to the presence of

cluster structures of nuclear excited levels are the main physics goals of this work.

On the theory side, the contribution to this project given by this work consists in the

development of a dedicated Monte-Carlo Hauser-Feshbach code for the evaporation

of the compound nucleus, which explicitly includes all the experimentally measured

particle unstable levels from the online archive NUDAT2, and which provides highly

constrained predictions to be compared to data, in order to extract quantitative

information on the quantities of interest.

Simulations performed with this statistical decay code have been at the basis of an

experimental proposal to the PAC - Physical Advisory Committee - of Laboratori

Nazionali di Legnaro - LNL - INFN, and the reaction 12C +12 C at 95 MeV beam

energy provided by the LNL Tandem XTU accelerator has been measured, using the

GARFIELD+Ring Counter(RCo) apparatuses. The experimental part of this thesis

consisted in the participation to the measurement, from the beam-time request to

the data taking, data reduction, detector calibrations and data analysis. Several

results of the data analysis are presented in this thesis, together with a theoretical

study of the system, performed with the new statistical decay code.

As a result of this work, constraints on the nuclear level density at high excita-

tion energy for light systems ranging from ∼ C up to Mg are given. Moreover,

pre-equilibrium effects, tentatively interpreted as α-clustering effects, are put in ev-
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idence, both in the entrance channel of the reaction and in the dissipative dynamics

on the path towards thermalisation.



Riassunto

Questo lavoro di tesi si inserisce nell’ambito di una campagna sperimentale, pro-

posta dalla collaborazione NUCL-EX (INFN - Gruppo III), volta ad un avanza-

mento nella comprensione delle proprietà statistiche dei nuclei leggeri, a energie di

eccitazione superiori alla soglia di emissione di particella, mediante misure esclu-

sive di reazioni di fusione - evaporazione. Queste proprietà includono la dipendenza

dall’energia di eccitazione della massa effettiva del nucleone, dell’energia di simme-

tria e dell’interazione di pairing. In particolare, gli obiettivi di questa tesi sono

la determinazione della densità dei livelli nella regione di massa A ∼ 20, la com-

prensione del comportamento statistico di nuclei leggeri ad energie di eccitazione

e∗ ∼ 3 A.MeV , e la misura di osservabili legate alla presenza di strutture a cluster

di livelli eccitati.

Sul fronte teorico, il contributo di questa tesi consiste nello sviluppo di un codice di

decadimento statistico Monte-Carlo Hauser-Feshbach, per simulare l’evaporazione

del nucleo composto, che include esplicitamente tutti i livelli sperimentali misurati

raccolti nell’archivio online NUDAT2. Attraverso il confronto tra le previsioni di

questo codice e i dati sperimentali, è possibile ottenere dei constraint sulle quan-

tità fisiche di interesse. Le simulazioni effettuate con il codice evaporativo sono

state alla base di una proposta di esperimento, presentata al PAC - Physical Advi-

sory Committee - dei Laboratori Nazionali di Legnaro - LNL - INFN, e la reazione
12C +12 C, a un’energia di fascio di 95 MeV , è stata misurata con il set-up speri-

mentale GARFIELD+Ring Counter(RCo).

La parte sperimentale di questo lavoro di tesi è consistita nella partecipazione alla

misura, in tutte le sue fasi dalla proposta alla presa dati, dalla calibrazione dei rive-

latori fino all’analisi. In questa tesi sono presentati i risultati dell’analisi dati, e uno

studio teorico del sistema, ottenuto con il nuovo codice evaporativo.

Come risultato dell’analisi, è possibile dare dei constraint per la densità dei livelli,

nella regione di masse e cariche esplorata dal decadimento (dal ∼ C al ∼ Mg).

Inoltre, vengono evidenziate delle deviazioni da un comportamento statistico del
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decadimento, sia nel canale di ingresso, legate quindi alla struttura a cluster dei

partner della rezione, che in processi più dissipativi, con l’emissione di cluster dal

sistema fuso prima del raggiungimento della termalizzazione.



Résumé

Ce travail de thèse se situe dans le cadre d’une campagne expérimentale, proposée

par la collaboration NUCL-EX (INFN, 3ème Groupe), dont le but est de progresser

dans la compréhension des propriétés statistiques des noyaux légers, à des énergies

d’excitation au-dessus du seuil d’émission des particules, par le biais de la mesure de

données exclusives pour des réactions de fusion-évaporation. Les propriétés d’intérêt

incluent notamment la dépendance en énergie d’excitation de la masse effective du

nucléon, de l’énergie de symétrie et des corrélations d’appariement. Plus en parti-

culier, les objectives de ce travail sont la détermination de la densité des niveaux

dans la région de masse A ∼ 20, la compréhension du comportement statistique des

noyaux légers avec des énergies d’excitation ∼ 3 A.MeV , et la mise en évidence des

effets liés à la presence d’une structure cluster pour certains niveaux nucléaires.

En ce qui concerne la partie théorique de ce travail de thèse, nous avons développé

un code Monte - Carlo Hauser - Feshbach, pour l’évaporation du noyau composé, qui

inclut d’une façon explicite tous les niveaux mesurés expérimentalement, disponibles

dans l’archive en ligne NUDAT2. A l’aide de ce code nous obtenons des prédictions

directement comparables aux données expérimentales, afin de contraindre les quan-

tités physiques en jeu.

Les simulations qui ont été effectués avec ce code ont étées à la base d’une proposi-

tion d’expérience aux Laboratori Nazionali di Legnaro - LNL - INFN, et la réaction
12C +12 C, à une energie de faisceau de 95 MeV , à été mesurée avec le set-up

expérimental GARFIELD+Ring Counter(RCo).

La partie expérimentale de ce travail de thèse à consisté dans la participation à cette

experience, de la phase de la proposition à la mesure, l’étalonnage des détecteurs,

le traitement des données et l’analyse des données.

Dans ce travail de thèse, plusieurs résultats de l’analyse sont présentés, ainsi qu’une

étude théorique du système, obtenue avec le nouveau code de décroissance statis-

tique. Suite à l’analyse presentée dans cette thèse, nous pouvons donner des con-

straintes à la densité des niveaux à haute énergie d’excitation pour les noyaux légers,
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du∼ C jusq’au Mg. Par ailleurs, des émissions hors équilibre sont mises en évidence,

et interprétées comme des effets liés à la structure en cluster des noyaux dans la voie

d’entrée de la réaction, ainsi que du système chaud issu de la fusion, avant que la

thermalisation soit achevée.



Chapter 1

Physics Case

Nuclei are finite quantum systems. As such they are characterized by their

ground state properties and their excitation spectrum. To access this latter, nuclei

must be excited by means of nuclear reactions. The stronger is the nuclear exci-

tation, the larger becomes the number of quantum mechanical states which can be

explored by the nucleus, and the more one can access nuclear properties far from

the ground state. In a statistical mechanics description of the nucleus, a tempera-

ture can be associated to the variation of the number of accessible states with the

excitation energy of the system. Dissipative nuclear reactions can therefore be seen

as a tool to investigate nuclear properties at finite temperature T , above the zero

temperature of the ground state, and, for higher bombarding energies, also at a

nuclear density ρ far from the nuclear saturation density ρ0 ≈ 0.16 fm−3.

However, in a nuclear reaction, dynamical aspects always play a role together with

structure properties: what is measured in an experiment is always a convolution of

different emitting sources and processes taking place in a wide range of excitation

energies (and therefore, of temperatures) and at different times. This results in a

sort of “hierarchy” in particle emission, and gives rise to a general concern with

nuclear reaction experimental studies: the final inclusive yields represent integrated

contributions over the whole time evolution of the reaction and, because of that, the

information they bear on specific excitation energy regions of the different nuclei

explored during the reaction may be model dependent.

Speaking in terms of nuclear “thermal properties” , if the challenge for nuclear the-

ory is to predict correctly the dependence of nuclear properties on excitation energy,

the challenge for an experimental measurement will be to perform a highly exclusive

and (quasi)complete detection of the different decay products emitted in the nuclear

reaction, in order to reconstruct their origin and to backtrace the information they
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bear, with the final aim of experimentally constraining nuclear properties at finite

temperature. An additional challenge comes into play in the modelization of nu-

clear reactions: because of the strong interplay of nuclear structure and reactions,

statistical (as well as dynamical) codes should be highly constrained by the huge

amount of available nuclear data on basic ground state properties and information

on low excitation energies, with the aim of gaining a better predictive power on

finite temperature observables.

In this chapter we describe the physics framework of this work, consisting in a theo-

retical and experimental study of the statistical decay of a light nuclear system. Our

aim is an attempt to progress in the reconstruction of nuclear thermal properties

from fusion-evaporation reactions. Physical issues we aim to shed some light on are

the level density of light nuclei, together with possible deviations from a statistical

behaviour in their decay, and the temperature dependence of the pairing interaction.

We will also justify how this work could be of some help, in a long range plan, in

addressing the temperature dependence of the nuclear symmetry energy.

1.1 From Nuclear Ground States

to Finite Temperature Properties

Nuclear masses contain a substantial amount of information about nuclear struc-

ture at zero temperature. A relatively simple way of extracting this information, is

to fit ground state binding energies with various versions of the liquid drop mass

formula:

E = −avolA+ asA
2/3 + aC

Z2

A−1/3
+ asym

(
1− 2

Z

A

)2

+ δE (1.1)

where:

• −avolA is an attractive volume term;

• asA2/3 and aC
Z2

A−1/3 are respectively the repulsive surface and Coulomb terms;

• asym
(
1− 2Z

A

)2
is the symmetry term;

• the δE term represents a correction due to pairing and shell effects; the pair-

ing part of it can be parametrized as δE = χ aPA
−1/2, where χ = 1, 0,−1

respectively for even-even, even-odd and odd-odd nuclei.
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The roles of the symmetry and pairing terms in the semi-empirical parameterization

of eq.(1.1) are therefore, respectively, to favour the stability of N = Z nuclei and

to reproduce the observed mass differences between odd and even neighbouring

nuclei. Both these effects can be ascribed to the fermionic nature of the nucleon,

and rather simple dependences on the isotopic content of the nucleus are proposed

for the two terms [1]. It is clear at this level that no information at all on the

variation of these terms with increasing excitation energy is needed if our aim is

limited to the description of nuclear ground states. If, on the contrary, we want to

investigate finite temperature nuclear properties, we have to introduce the notion of

level density, together with the notion of thermal average.

1.1.1 Level Density and Nuclear Thermal Properties

Level densities represent fundamental quantities in nuclear physics. Their knowl-

edge is not only important for the understanding of nuclear structure, but it is also

required for different applications of nuclear physics, from nucleosynthesis calcu-

lations to reactor science. There exist different experimental methods to provide

information on this quantity, but most of them are limited to a relatively low exci-

tation energy domain. Above the thresholds for particle emission, level densities are

only accessible in evaporation reactions through the theory of compound nucleus

decay, which will be largely discussed in chapter 2.

Before addressing the issue of isotopic effects in section 1.1.3, we start considering

for simplicity a nucleus as characterized by its mass number A only. Then the Level

Density (LD) ρ(A,E∗) of the nucleus at the excitation energy E∗ (measured start-

ing from the ground-state energy E0, i.e. E∗ = E − E0) is defined as the number

of energy levels available for the system in the range (E∗, E∗ + dE∗), divided by

the energy interval dE∗. Low energy nuclear spectra are dominated by correlation

effects giving rise to pair correlations and collective modes of rotational and vibra-

tional type, which are superimposed on the single particle motion of the nuclear

constituents. The ensemble of these single particle and collective levels constitutes

a spectrum which, as for any other quantum system, is discrete at low excitation

energy. When the excitation energy becomes high enough, particle degrees of free-

dom dominate, and independent particle models may provide a useful guidance in

the discussion of average properties of energy spectra. Moreover, as the excitation

energy increases, because of simple combinatorial reasons the number of available

states exponentially increases, making a continuous approximation to the spectrum

adequate. Then simple models as the Fermi gas model represent a valid theoretical
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framework to calculate level densities in a continuum approximation [1]. Level densi-

ties calculations in independent particle models, in the Monte Carlo shell model and

also with realistic phenomenological parameterizations will be presented in chapter

2, together with the discussion of the dependence of this fundamental quantity on

other nuclear properties as angular momentum and parity. Here we will concentrate

on its dependence on excitation energy and temperature. Nuclear temperature, as

anticipated, can be related to the variation of the number of states accessible to the

nucleus with an increase in excitation energy. The temperature T can therefore be

defined according to the relation:

1

T
=
∂ ln ρ(A,E∗)

∂E∗
(1.2)

In the framework of the Fermi gas model [2], describing the nucleus as an ideal gas

of non-interacting fermions in the thermodynamic limit, the temperature is related

to the excitation energy via the level density parameter a, according to:

E∗ = aT 2 (1.3)

Then, if a is only a mass-dependent constant a(A) and does not show any energy

dependence, the temperature dependence of the LD is completely determined by the

functional form of ρ(E∗). This is the case for the Fermi gas model, where the LD

parameter can be expressed as a linear function of the mass number A, and is related

to the single particle particle level density at the Fermi energy g(εF ) according to:

a

A
=
π2

6
g(εF ) (1.4)

where

g(εF ) =
3

2

A

εF
(1.5)

and the Fermi energy reads:

εF =
~2k2

F

2m
(1.6)

where kF is the Fermi momentum. The Fermi gas model can not obviously ac-

count for the discrete nature of the spectrum nor for nuclear properties beyond the

independent particle picture. More in general, in an independent particle model,

correlations among nucleons other than the ones produced by the self-consistent

mean field cannot be accounted for, which leads to an underestimation of the LD.

To overcome this limitation, a phenomenological approach is currently used in or-

der to get realistic parameterizations for ρ(A,E∗). This approach may consist for



1.1 From Nuclear Ground States
to Finite Temperature Properties 5

instance in adopting a LD functional form resulting from an independent particle

calculation, written in terms of various parameters, and adjust the free parameters

in order to provide agreement with known densities and data. Typically, two free

parameters are left in the ρ(A,E∗) to be fitted on experimental data: one is the

LD parameter a, the other is an energy shift ∆, which is introduced in the exci-

tation energy in order to reproduce the experimentally observed energy gap in the

spectrum of even nuclei, coming from the pairing interaction [3]. Then, an energy

dependence is commonly attributed to the LD parameter a, in order to take into

account the disappearance of shell effects with increasing E∗ [4]. One of the results

of this approach is therefore an energy dependent a(A,Z,E∗) entering in the LD

expression. This reflects the idea that the modification of the LD parameter with

respect to the Fermi gas energy independent value can take into account the ne-

glected correlations among nucleons, and therefore provide realistic level densities.

The overall temperature dependence of the final ρ(E∗) will therefore result also from

the functional form for a(E∗).

We will justify in the following the inclusion of an energy dependent a(E∗) also by

means of theoretical considerations on the motion of the nucleons in the strongly

interacting nuclear medium, which translates in a temperature dependent effective

mass m∗ for the nucleons, entering eq.(1.6) and therefore making a a T - dependent

quantity. This temperature dependence is thus no simple consequence of a semi-

empirical approach but rather a consequence of the strongly interacting nature of

the nuclear medium.

Once one has obtained the overall dependence on temperature of the nuclear level

density, it is then possible to evaluate the thermal average 〈E〉T of a nuclear prop-

erty E (for instance, the symmetry or pairing energy) by means of the following

expression:

〈E〉T =
1

Z

∫ ∞
0

dE∗ρ(E∗) E exp−E∗/T (1.7)

where we have introduced the nuclear partition function Z:

Z =

∫ ∞
0

dE∗ρ(E∗) exp−E∗/T (1.8)

A study of nuclear thermal properties therefore requires a precise knowledge of

the nuclear level density and of its variation with excitation energy via the level

density parameter a(E∗). As anticipated, fusion-evaporation measurements as the

one presented in this work are the only way to experimentally access the nuclear

level density above particle emission thresholds.
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1.1.2 Level Density Parameter and Effective Mass in Nuclei

A mean-field description of the nucleus provides a very powerful framework to

describe states close to the nuclear Fermi energy. In this picture, each nucleon moves

independently in a static nuclear potential, which is non-local in space coordinates

because of the finite range of the nuclear interaction. Within this model, nucleons

can only occupy a set of states with definite excitation energies, spins and parities,

which constitute the proton and neutron single particle level schemes. Single particle

states are generated by the nuclear (plus Coulomb, for the protons) potential. The

nuclear ground state is then given by filling the lowest single-particle states according

to the Pauli principle up to the Fermi energy εF . An illustrative picture of this

schematization is shown in fig.(1.1).

Figure 1.1: Illustrative picture of the neutron and proton square-well nuclear potentials (plus
Coulomb potential for protons) in the framework of an independent particle model.

However, in the independent particle picture, collective phenomena as nuclear

deformation or vibration can not be taken into account, and such model fails in

reproducing the correlated level density of real nuclei. In order to reproduce the

rise of collective nuclear modes, fluctuations in the mean field should be included.

The coupling of these modes with the single particle motion then gives a dynamical

character to the average potential, which becomes also non local in times, i.e. it is

characterized by an energy dependence.

The effective mass is a powerful concept used to characterize the quasiparticle prop-

erties of a particle inside a strongly interacting medium as the nucleus, because it

is used to describe space and time non-locality (or, equivalently, momentum and
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frequency dependence) of the mean field. Let us give a definition of the nucleon

effective mass in nuclear matter. If nucleons are moving in a momentum and energy

(or frequency) dependent average potential υ(k, ω), the energy ω(k) of a state with

momentum k can be written as:

ω(k) =
~2k2

2m
+ υ(k, ω) (1.9)

The effective mass can then be defined in analogy to the free particle case as:

dω =
~2k2

m∗
dk (1.10)

The mass m∗ then coincides with the free nucleon mass only if the potential υ is

local and energy independent. In particular, two different effective masses mk and

mω can be defined, related respectively to the space and time non localities of the

average potential, i.e. to its derivatives with respect to momentum and frequency

implicit in eq.(1.10).

We can therefore write for the total effective mass m∗:

m∗ =
mkmω

m
(1.11)

Different energy scales are associated to the ω and k masses: the energy of low-lying

collective vibrations (related to the to ω mass) is of the order of 1− 3 MeV , while

the rigidity of the mean field (related to the k mass) is controlled by the energy

difference between major shells, which has a value of about 8 MeV for medium

heavy nuclei. A temperature dependence can then be associated to both the mk

and mω masses, which are found to decrease with increasing T , and the dominant

contribution in the resulting temperature dependence of the total effective mass m∗

depends on the energy scale of interest for the different applications [5, 6].

As anticipated, we are interested in this context in the temperature dependence of

the level density parameter a(E∗), which is found to be related to the T dependence

of the nucleon effective mass m∗. We have already anticipated in the framework of

the Fermi gas model that a T dependent m∗ modifies the LD parameter because

it enters eq.(1.6) for the Fermi energy, and therefore modifies the single particle

level density g(ε) at a given T . To be more general, we describe here a procedure to

calculate a(T ) at a given T starting from a local mean field modified by the inclusion

of a T -dependent m∗ [7, 8]. Since we are mainly interested in the implications of

this temperature dependence on the final nuclear level density, we do not enter into

details on how the single particle level density g(ε) is obtained from the chosen

local mean field, and on how the mean field is parametrized. We simply notice that
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the inclusion of m∗(T ) modifies the single particle energy ε, which can be written as

ε = p2/2m∗(T )+U , where U is the mean field potential in momentum representation,

and we assume that we know how to calculate g(ε) at any temperature T , given

m∗(T ). The starting point of the procedure is the main result of the Fermi gas

model, i.e. the relation between nuclear temperature and excitation energy:

a(T ) = 〈E∗〉T /T
2 (1.12)

The excitation energy is measured starting from the energy of the ground state at

zero temperature

〈E∗〉T = 〈E〉T − 〈E〉T=0 (1.13)

The energy at a given temperature T is given by

〈E〉T =

∫ ∞
0

εg(ε)f(ε, µ, T )dε (1.14)

where the distribution f(ε, µ, T ) is the finite temperature occupation probability for

the single particle states with density g(ε) generated by the mean field potential:

f(ε, µ, T ) =
1

1 + exp [(ε− µ)/T ]
(1.15)

and the chemical potential µ is determined by the conservation condition:

〈A〉T =

∫ ∞
0

g(ε)f(ε, µ, T )dε (1.16)

Following this procedure, starting from a local potential of Wood-Saxon type and

calculating the g(ε) within the Thomas-Fermi approximation, the authors in [7, 8]

obtain for the inverse LD parameter:

K(T ) = A/a(T ) (1.17)

the results which are here reported in fig.(1.2). The calculations of fig.(1.2) have

been confirmed by several measurements of fusion evaporation reactions, among

others the ones in ref.[9, 10, 11], respectively for masses A ∼ 160, 120, 40. However,

we have to be aware of the fact that for high excitation energy the results of the

theoretical model proposed in [7, 8] can not be trusted, because of the onset of

intermediate mass fragment emission, which modifies the temperature-excitation

energy correlation of eq.(1.12). This observation is related to the existence of a

missing ingredient in [7, 8] and in our discussion, i.e. a nuclear limiting temperature,
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which will be better discussed in chapter 2.

To summarize, we can say that the inclusion of a T -dependent LD parameter is

indeed necessary to describe the many-body correlated level density of real nuclei,

and therefore to make statistical evaporation models reproduce experimental data.

This inclusion finds a theoretical justification in the temperature dependence of the

nucleon effective mass.

Figure 1.2: Calculated inverse level density parameter K = A/a as a function of temperature
for various nuclei with mass A along the line of stability, taken from ref. [8]. Also indicated by the
dashed lines are the loci corresponding to constant excitation energies per nucleon of 1− 5 MeV .

1.1.3 Nuclear Symmetry Energy at Finite Temperature

Up to now we have considered the nucleus as made up of a given number of

constituents, without making any distinction between protons and neutrons. It

is easy to understand that, even in an independent particle picture, the energy

of the nucleus (and, consequently, its level density) has to depend on its isotopic

content: this is a consequence of the fermionic nature of nucleons, i.e. of the Pauli

principle. The dependence of the energy on the isospin is given in terms of the so-

called symmetry energy. The nuclear symmetry energy is a fundamental quantity
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determining the properties of nuclear systems ranging from the atomic nucleus up

to the neutron star. Strictly speaking, it is a measure of the energy cost of changing

the isotopic content of a nuclear system, going from the symmetric N = Z case (or,

rather, from equal proton and neutron densities ρn = ρp in bulk systems) to the

asymmetric case.

As we have anticipated in the liquid drop mass formula of eq.(1.1), for finite nuclei

the symmetry energy can be expressed as:

Esym(A,Z, T ) = asym(T )

(
1− 2

Z

A

)2

(1.18)

where the isotopic dependence specified in the factor
(
1− 2Z

A

)2
can be easily derived

in the framework of the Fermi gas model (already introduced for the calculation of

the level density) and the asym(T ) coefficient absorbs the temperature dependence

and coincides with the asym of eq.(1.1) for nuclear ground states.

To investigate the temperature dependence of the symmetry energy, it is useful to

define this quantity for bulk systems (as neutron stars), by writing the equation

of state of asymmetric nuclear matter, in which the binding energy is expressed as

a function of the baryon density ρ (the sum of neutron and proton densities ρn,

ρp) and of the asymmetry δ = (ρn − ρp)/ρ. The nuclear equation of state at zero

temperature reads:

e(ρ, δ) = e(ρ, δ = 0) + esym(ρ, δ) (1.19)

where the symmetry energy is written as:

esym(ρ, δ) = Csym(ρ)δ2 +O(δ4) (1.20)

The quantity e(ρ, δ = 0) is the binding energy per nucleon of symmetric nuclear

matter (i.e. with ρn = ρp), and:

Csym(ρ) =
1

2

∂2e

∂δ2

∣∣∣
δ=0

(1.21)

is the zero temperature symmetry energy coefficient. The density functional e(ρ, δ)

contains two contributions, a kinetic and a potential one, both having a minimum

at δ = 0:

e(ρ, δ) = ekin(ρ, δ) + epot(ρ, δ) (1.22)

A Taylor expansion around δ = 0 of the type of eq.(1.19) can therefore be written

for both the kinetic and potential energy terms in the equation of state, and two
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contributions to the symmetry energy Ckin
sym(ρ)δ2 and Cpot

sym(ρ)δ2 can be defined. In

particular, for the kinetic energy term in eq.(1.22) we can write:

ekin(ρ, δ) =
3

10

~2k2
F

2m∗
[
(1 + δ)5/3 + (1− δ)5/3

]
(1.23)

where m∗ is the nucleon effective mass introduced in the previous section, and the

coefficient Ckin
sym of the kinetic contribution to the symmetry energy consequently

reads:

Ckin
sym =

~2k2
F

6m∗
(1.24)

For the total symmetry energy we finally have:

esym(ρ, δ) =
~2k2

F

6m∗
δ2 +

1

2

∂epot(ρ, δ)

∂δ2

∣∣∣
δ=0

δ2 (1.25)

We are now interested in the dependence of these quantities on the nuclear tem-

perature. First of all, we notice that any local dependence on T of the asymmetry

δ(T ) will not modify the global isospin content of the system, and any dependence

on T of the nuclear density ρ(T ) will be to a first approximation negligible because

of the strong incompressibility of nuclear matter. Then, at finite temperature, there

will be no variation of the potential contribution to the total e(ρ(T ), δ(T )), and

consequently, to the symmetry energy, with respect to the zero temperature case.

On the contrary, it is clear from eq.(1.23) that the temperature dependence of the

nucleon effective mass m∗ will make the kinetic contribution to the nuclear sym-

metry energy a temperature dependent quantity. The reason for this is relatively

easy to understand: changing the temperature of the system means changing the

occupation probability of single particle energy orbitals. This causes a variation in

the kinetic energy contribution to the total energy, because the kinetic energy comes

from an expression analogous to the one of eq.(1.14), i.e. an average on occupied

states at finite temperature, where the occupation probability is different than in

the zero temperature case. With the same notation previously introduced in this

chapter for average quantities at finite temperature, we can therefore write:

〈esym(ρ, δ)〉T − 〈esym(ρ, δ)〉T=0 =
[〈
Ckin
sym(ρ)

〉
T
−
〈
Ckin
sym(ρ)

〉
T=0

]
δ2 (1.26)

and the difference of symmetry energy coefficients in the square brackets is in turn

equal to:

〈Csym(ρ)〉T − 〈Csym(ρ)〉T=0 =
~2k2

F

6

[
1

〈m∗〉T
− 1

〈m∗〉T=0

]
(1.27)
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where we have neglected any change in the Fermi surface due to finite temperature

effects.

The same considerations hold for finite nuclei, and it can be shown that the varia-

tion of the asym(T ) parameter with respect to the zero temperature case can also be

written in terms of a difference between two kinetic energy contributions, with an

expression analogous to eq.(1.27), where the global temperature dependence stems

from the temperature dependence of the nucleon effective mass. A coherent descrip-

tion of the symmetry energy in finite and infinite systems can be given under the

Thomas-Fermi or local density approximation. The total symmetry energy for a

finite nucleus at a given temperature T , defined in eq.(1.18) in terms of the asym(T )

parameter, can be written by means of this approximation as:

〈Esym〉TFT =

∫
ρ(r)

〈
C l
sym(ρ(r))

〉
T

(
ρp(r)− ρn(r)

ρ(r)

)2

dr (1.28)

where
〈
C l
sym(ρ(r))

〉
T

is the symmetry energy coefficient at temperature T for infi-

nite nuclear matter at the local nuclear density ρ(r). As it is evident in this last

expression, under this approximation also the temperature dependence of the local

density ρ(r) of the finite nucleus plays a role in determining the T -dependence of

the symmetry energy [15, 16].

Finally, it is clear that information on m∗(T ), or, equivalently, on the temperature

dependence of the LD parameter, from the experimental constraints on nuclear level

densities via fusion-evaporation reactions, can be translated into information on the

symmetry energy coefficients Csym(T ) and asym(T ) respectively for nuclear matter

and for finite nuclei.

Before concluding, we may recall that, from an experimental point of view, the

temperature dependence of the symmetry energy can also be accessed by means

of intermediate (or relatively low-energy reaction), leading the nuclear system into

the fragmentation regime (or at its thresholds). Moreover, in such studies, because

of the higher bombarding energies, also the density dependence of the symmetry

energy can be addressed, since densities lower than the nuclear saturation density

can be attained in the expansion phase of the hot nuclear matter formed in the

collision. Since this work is mainly devoted to the investigation of nuclear thermal

properties by means of fusion-evaporation reactions, we do not enter into details

concerning the study of multifragmentation reactions, but we want to stress in any

case the important link between these two phenomena, since we believe that this

discussion gives an additional value to our choice of particularly investigating light

nuclei. First of all, multifragmentation and evaporation indeed deserve a unified

description, which is made possible by the statistical nature of the decay of the hot
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nuclear source formed in the entrance channel of the reaction: in the framework of

a statistical description, the decay is always determined by the number of available

states in the final channel. In the case of multifragmentation (i.e. at sufficiently high

available energy), an instantaneous break-up of this hot source into several excited

fragments has a larger statistical weight than a decay by (sequential) emission of

light particles, which would be the case of evaporation. Signatures of Csym are then

known to be contained in the hot primary fragment isotopic distributions resulting

as the first stage output of the nuclear reaction (see for instance ref.[17]), but they

can be distorted when the excited primary fragments undergo secondary decays,

and recovering them from cold measured distribution may not be straightforward.

Previous studies at intermediate incident energies have shown that these primary

unstable fragments can be characterized by excitation energies up to 3 A.MeV be-

fore they undergo secondary decays [18, 19]. By means of low-energy beams we

may be able to observe the decay of compound nuclei at similar excitation ener-

gies. The back-tracing of these decays will then provide information on the more

complex problem of secondary decays in fragmentation phenomena, helping us in

the hard task of extracting quantitative information about the symmetry energy at

finite temperature.

1.1.4 Pairing Energy at Finite Temperature

Nuclear binding energies are found to exhibit a systematic variation depending

on the evenness or oddness of Z and N . As anticipated, in order to reproduce this

empirical observation, a pairing energy is included in the liquid drop mass formula

of eq.(1.1), and it can be parametrized as:

δE = χ aPA
−1/2 with


χ = 1 for even N, evenZ

χ = 0 for even/odd N, odd/evenZ

χ = −1 for odd N, odd Z

(1.29)

This energy shift has the effect to increase the stability of a paired nucleons

system, making the nucleus stable against the transfer of an energy lower than

the binding energy gain due to the pairing interaction: there exists therefore a

minimal amount of energy necessary in order excite such a nucleus. Hence, we

easily understand another empirical observation on even nuclei, i.e. the presence of

an energy gap in their excitation spectra.

Our aim in this section is to give some arguments on the temperature dependence

of the pairing interaction [20, 21, 22]. In particular, we will discuss which is the
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interplay between these two features, namely the higher binding energy and the gap

in the excitation spectrum of even nuclei, at high excitation energy. In order to do

this, we make use of the notion of thermal average to compute the average energy

〈E〉T at finite temperature:

〈E〉T =
1

Z

∫ ∞
0

dE∗ρ(E∗) E exp−E∗/T (1.30)

We also need to introduce a phenomenological expression for the nuclear level density

ρ(E∗), in which pairing correlations are accounted for via the inclusion of a backshift

energy ∆. This possibility has been already addressed in section 1.1.1, and it will

be better discussed and justified in chapter 2. For our purposes in this section, we

simply adopt the following expression:

ρ(E∗) = C
exp 2

√
a(E∗ −∆)

(E∗ −∆)5/4
(1.31)

Given this expression, we realize that the integrand term in eq.(1.30) is the product

of two exponentials of opposite signs, therefore a strongly peaked function, and the

integral can be approximated by the value of this function at the peak coordinate

E∗. We can therefore write, for the average excitation energy:

〈E∗〉T =
1

Z

∫ ∞
0

dE∗ E∗ exp (ln ρ− E∗/T ) ≈ E∗ exp (ln ρ(E∗)− E∗/T ) (1.32)

where the peak coordinate E∗ is obtained by the maximum condition:

d

dE∗
(lnE∗ + ln ρ(E∗)− E∗/T )

∣∣∣
E∗=E∗

= 0 (1.33)

Working out this condition with the given expression for ρ(E∗) we get:

1

E∗
+

√
a√

E∗ −∆
− 5

4

1

E∗ −∆
=

1

T
(1.34)

If we are interested in the high temperature average of E, i.e. in an excitation energy

region where E∗ >> ∆, we can neglect linear terms in E∗, thus finally recovering

the known result of eq.(1.3) for the uncorrelated Fermi gas model:

E∗ = aT 2 (1.35)

This means that the correlations introduced by the pairing backshift are washed out

at high temperature. This is easy to understand also intuitively: the average exci-

tation energy at high temperature for an even-even nucleus, with a lower mass but
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also a pairing gap in the spectrum, is similar to the one for neighbouring odd nuclei.

On the contrary, if we compute the low-temperature average for the excitation en-

ergy, the pairing energy persists in affecting the result. We can verify this statement

with a very simple model, in which two energy levels are available for the even-even

nucleus specified by mass and charge (A,Z), namely the ground-state E0 and the

first excited state at an energy E0 + ∆. On a relative energy scale, ground-state

energies for neighbouring (A − 1, Z) and (A + 1, Z) nuclei are close to the energy

E0 + ∆ of the first exited state for the (A,Z), due to the increased stability of this

latter. Eq.(1.30) for the average energy of (A,Z) yields:

〈E〉T =
E0 exp(−βE0) + (E0 + ∆) exp [−β(E0 + ∆)]

exp [−βE0(1 + exp(−βE0)]
(1.36)

where a low temperature limit gives:

〈E〉T ∼ E0

[
1 +

∆

E0

exp(−β∆)

]
(1.37)

If we define the pairing energy as a mass difference between neighbouring nuclei:

〈Epair〉T = 〈E(A− 1, Z)〉T + 〈E(A+ 1, Z)〉T − 2 · 〈E(A,Z)〉T (1.38)

we find for this simple model:

〈Epair〉T ∼ 2∆ (1− β∆) (1.39)

which means that, as the temperature increase, the pairing energy goes to zero. It

is found in the literature that after a critical temperature pairing correlations are

completely destroyed, which can also be described in terms of a “phase transition”

from a superfluid to a normal fluid behaviour [23]. Our simple arguments have led

us to the conclusion that this behaviour is governed by the level density.

In this work we will be mainly concerned with the signature of the pairing interaction

in fragment production following a nuclear reaction. The most evident signature of

pairing is the manifestation of odd-even effects in isotopic variables, and the next

section of this chapter is devoted to this subject. In particular, having discussed

the disappearance of pairing correlations at high excitation energy, it is easy to

justify the common understanding according to which odd-even effects are related

to the low-temperature evaporation phase of a dissipative nuclear reaction. Indeed,

in theoretical dynamical or statistical models no odd even effects are associated to

finite temperature observables, but they may appear on the asymptotic distributions

after secondary decays [24, 25]. Thus, fusion-evaporation reactions are a good tool
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to experimentally access the temperature dependence of the pairing interaction.

Two physical ingredients which can be associated to the pairing interaction enter

in evaporation models, namely binding energies and level densities. We will discuss

in the following how the effects of these two ingredients could be disentangled and

how their signatures could be read, respectively, in cold and finite temperature

distributions, provided that we are able, experimentally, to reconstruct these latter.

Finally, to conclude, we want to state that the understanding of odd-even effects

also has a great importance in studies on the symmetry energy. As said before,

the symmetry energy can be related to the isotopic distributions resulting from

a multifragmentation reaction if these are not too much perturbed by secondary

decay. An accurate investigation on the origin of the staggering in measured isotopic

observables and on the temperature dependence of the pairing interaction is therefore

also required for an experimental evaluation of the finite temperature Csym(T ).

1.2 The Odd-Even Effect in Fragment Production

Odd-even effects in fragment production have been experimentally investigated

since a long time but never quantitatively understood. They were observed in dif-

ferent reactions with different target-projectile combinations and in a large range of

beam energies. It was found that the distributions of light fragmentation residues

after violent heavy-ion collisions reveal an even-odd staggering of similar magnitude

as in the case of low-energy reactions, suggesting that this “anomaly” is indepen-

dent on the beam energy and on the acceptance of the experimental devices. In

some experiments the magnitude of the odd-even effect is found to be related to

the isospin of the projectile and/or the target, becoming slightly suppressed when

the emission source is neutron-rich [26]. The effect in final observables was seen to

be very large in reactions where at least one of the reaction partner has N = Z:

globally, an enhancement of the production of even-Z fragments can be observed,

even if a detailed look at other selected isotopic chains, as the N = Z + 1 chain,

usually reveals a reversed effect, which is masked in final inclusive Y (Z) distribu-

tions because of the dominant contribution of N = Z nuclei.

A review of experiments with signatures of fine structure in the measured yields

is given for instance in Table I of ref. [27], while in fig.(1.3) we report a collection

of recent experimental data (more details in the figure caption) showing a clear

staggering effect in the production cross section or normalized yields as a function

of the fragment charge number Z. In the following we will discuss some of these

recent results and their interpretations, which have renewed the interest of the nu-
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clear physics community on this topic, especially concerning the production of light

fragments. We underline at this point that for lighter fragments, a better isotopic

identification can generally be achieved, and as we will see, together with high ex-

perimental energy and angular resolution, this is a strong requirement in order to

be able to perform more quantitative investigations on odd-even effects.

1.2.1 Phenomenological Interpretation

As anticipated, odd-even effects are clearly linked to the pairing residual interac-

tion and its dependence on temperature. Some attempts to interpret the odd-even

effects as a simple consequence of the pairing effect in nuclear masses (i.e. at zero

temperature) have been done. In particular, the authors in ref. [28] have assumed

that the very last step of the evaporation chain, concerning either a proton or a

neutron emission, determines the observed staggering, and have found a good re-

semblance between the trend as a function of Z of the fragments production cross

section and of the lowest between their p/n-separation energies, which suggests the

validity of the principle that, the larger is the nucleon separation energy of a given

nucleus, the more likely will be its production in the ground state. We can verify the

reasonable validity of this statement by looking at the top and bottom-left panels of

fig.(1.3), where nucleon separation energies are plotted together with the fragment

production cross sections σ(Z) in mb.

Even if this idea, implemented in an evaporation model, can predict correctly the

trend of the experimental staggering, it does not reproduce the amplitude of the

staggering quantitatively: the experimental oscillations are less important than the

ones predicted in this simple scenario. This suggests that the previous evaporation

steps may also play a role. Moreover, if we consider that the last evaporation step

may also concern an α-particle, we soon loose the oscillating trend of the lowest sep-

aration energy for particle emission, at least for some selected isotopic chain as the

N = Z one, since the Q-value for α decay shows a smooth behaviour as a function

of Z. This is shown in fig.(1.4).

We also have to take into account the fact that nuclei at the end of the evaporation

chain may be populated at excitation energies at which their spectra still show a

discrete nature. As we can also see from fig.(1.4), the position of the first particle-

unstable excited level of the parent nucleus as a function of Z nicely coincides with

the lowest Q-value for particle emission. Additionally, unbound clusters may also be

directly evaporated, both in the case of clusters unstable in their ground states (as
8Be or 5Li) or that of clusters excited above particle emission thresholds. Sequen-
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tial feeding from particle unstable levels and branching ratios for their decay into

different channels can therefore also contribute in determining the abundances in

final measured distributions (together with any other inclusive observable as energy

spectra) [30, 31].

These observations suggest therefore that the odd-even staggering depend on the

whole evaporation chain, and not only on the energy balance of the last evaporation

step. It also seems that a control on the discrete level population of hot nuclei may

confirm this statement, and to this aim, we introduce in the following section the

experimental technique of correlation functions, which can actually give us access

to this information.

1.2.2 Experimental Information from Correlation Functions

The information on the discrete level population of hot nuclei is experimentally

accessible, at least at the last but one step of the decay, through the technique

of correlation functions in relative kinetic energy of coincident pairs of fragments,

provided that the measurement is carried out with detectors having high energy

resolution and granularity. Experimentally the two particle correlation function [32,

33] (1 +R(εrel)) may be defined as:

∑
( ~p1− ~p2)2/2µ=εrel

Y12(~p1, ~p2) = C
[
1 +R(εrel)

] ∑
( ~p1− ~p2)2/2µ=εrel

Y1(~p1)Y2(~p2) (1.40)

where Y12 is the two particle coincidence yield of a given pair of particles with

their individual momenta ~p1 and ~p2, respectively, and the Yi(~pi) are the single parti-

cle yields for the two particles measured under the same impact parameter selection

but not in the same event. The summations on both sides of the equation run over

pairs of momenta ~p1 and ~p2 corresponding to the same bin in relative kinetic en-

ergy εrel. The correlation function describes how the correlation between interacting

particles measured in the same event differs from the underlying two particle phase

space. This phase space can be modeled by mixing the single particle distributions

of particles from different events. The correlation constant C is chosen as the ratio

between the total (integrated over momentum) number of generated mixed events

and the total number of coincident yields: C =
∑
Y12/

∑
(Y1Y2). To investigate

the decay of particle unbound states it is necessary to consider the modifications of

the two particle phase space by the long range Coulomb and short range nuclear

interactions and to disentangle these contributions. Having a parameterization of

the Coulomb background (as the one proposed in [34]), it is possible to isolate the
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Figure 1.3: Collection of data with signature of fine structure in the measured yields. Top panel:
experimental cross section (in mb) of isotopically resolved fragments from the reaction 56Fe+ Ti,
1 A.GeV , taken from ref. [28]. The lowest between proton and neutron separation energies (in
MeV ) is shown to oscillate coherently with the cross section. Bottom panel, left: experimental
cross sections for fragments emitted in 78Kr+40Ca (solid squares) reactions at 5.5 A.MeV , together
with the proton separation energy (red dashed line), taken from ref. [29]. Bottom panel, right:
normalized charge distribution for the decay of the QP source in the reactions: 32S+58Ni (full
symbols, dashed line) and 32S+64Ni (open symbols, full line) at 14.5 A.MeV , ref. [31].

contribution of the nuclear interaction between the two fragments, which in this case

is the signature of their common origin from the decay of a resonant state populated

in the parent nucleus. Finally, primary yields of warm nuclei populated in discrete

states can be directly extracted from the correlation function.

In a recent work by the NUCL-EX collaboration [35], we have applied this tech-
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Figure 1.4: For the isotopic chains N = Z and N = Z+1, plot as a function of the charge number
of the energy of the lowest unstable state (thick lines) decaying in a given daughter isotope, the
Q-value for alpha decay (open squares) and the lowest between neutron and proton separation
energies (open circles).

Figure 1.5: Upper part: representative relative kinetic energy correlation functions (symbols)
of different isotopes measured in ref.[35] for peripheral 32S+58Ni collisions. The solid line is
the Coulomb background, indicated together with its uncertainties (dashed lines). Lower part:
experimental population of primary parents (symbols) and single excited state contributions (thin
lines) together with their sum (thick line) as a function of the excitation energy: E∗ = εrel + Q-
value. From left to right: α-α correlations and corresponding excited states of 8Be (zoomed view
around 3 MeV in the insert), α-6Li correlations and corresponding excited states of 10B, p-13C
correlations and excited states of 14N .



1.2 The Odd-Even Effect in Fragment Production 21

nique to data for the reactions 32S+58Ni and 32S+64Ni at 14.5 A.MeV , measured at

Laboratori Nazionali di Legnaro - LNL INFN with the Garfield + RCo apparatuses,

an experimental set-up which will be largely described in chapter 4. Representative

relative kinetic energy correlation functions of different isotopes measured in ref.[35]

for peripheral 32S+58Ni collisions are shown in fig.(1.5).

The important result presented in [35] is that the reconstructed distribution of warm

fragments corresponding to the last but one decay step of the quasi-projectile source

(〈Z〉 = 16, A = 2Z, and e∗ ≈ 1 A.MeV ) still show a staggering effect, now reversed

because of the dominant abundance of odd-Z with respect to even-Z fragments. We

report this result in fig.(1.6). This is clearly related to a pairing effect in the level

density: even-even nuclei have a lower density of levels at low energy because of the

pairing gap, which leads to a reduced population at the last but one evaporation step.

Figure 1.6: Population of the different primary fragments extracted from correlation functions
of isotope pairs measured in the decay of the QP source in the reactions 32S+58Ni (full symbols,
dashed line) and 32S+64Ni (open symbols, full line) at 14.5 A.MeV , from ref.[35]. Lower part:
population of the different primary fragments corrected for the integral efficiency of each correlation
function.

The results presented in [35] show indeed that an exclusive measurement of the
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decay products for relatively low-energy nuclear reactions can actually help us in

disentangling pairing effects on the nuclear masses and on the level densities. As we

have discussed in the previous section, the staggering is expected to be especially

sensitive to the pairing effects in the level density via the backshift parameter, and

thus its quantitative understanding is potentially useful to gather information on

the temperature dependence of nuclear pairing.

Finally, it is clear that this understanding requires a global control of the evaporation

chain. An upgraded experimental set-up GARFIELD+RCo is now available at LNL-

INFN, with an improved detector granularity so that more resonant states can be

observed in the correlation functions. Also the study of lighter systems as the one

presented in this work will certainly help us in going in this direction, given the

higher probability of collecting the total initial charge of the entrance channel of the

reaction, due to the lower final multiplicities, and thus achieving a (quasi)complete

reconstruction of the decaying source.

1.3 The specificity of A ∼ 20 nuclei

Our attention in this work is mainly devoted to thermal properties of light nu-

clei, and our aim is to obtain some information on this topic by means of fusion-

evaporation reactions. We want to underline in this section, which are the main

reasons which should specifically motivate the study of light nuclear systems.

The discussion of nuclear thermal properties presented in this chapter has started

necessarily from the definition of the nuclear level density, which is the fundamental

ingredient of any statistical description of the nucleus. Despite the fundamental in-

terest of the issue, only inclusive experiments have been used up to now to constrain

this quantity, and very few studies exist altogether concerning the evaporation of

light nuclei in the mass region A ∼ 20 [36, 37]. Among recent works, the analysis of

inclusive spectra obtained in the reaction 7Li+6 Li at 14− 20 MeV incident energy

presented in [37] has produced results which are still in agreement with the statisti-

cal model, if the level density parameter is increased to a = A/4.5 and deformation

is included at high angular momentum [38].

Besides the lack of experimental information on nuclear level density, the mass re-

gion A ∼ 20 is very interesting to explore also for other reasons. First of all, both

theoretical and experimental studies [39] point to a nuclear limiting temperature

(see chapter 2) increasing with decreasing compound mass. In this sense, we could

say that light nuclei are better suited to high temperature nuclear thermodynamics

studies.
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From an experimental point of view, in order to access the thermodynamic infor-

mation, we have of course to be able to carefully select the reaction as well as decay

mechanism. In this respect, light nuclei reactions present an additional difficulty:

the decay model itself is not well established for nuclei in the mass region A ∼ 20: be-

sides the Hauser-Feshbach theory of statistical evaporation (also detailed in chapter

2) a different model, the so-called Fermi break-up [40], foreseeing an instantaneous

rather than sequential decay, is known since a long time and has been extensively

used, but no unique experimental information exists on the transition, if any, be-

tween these two regimes. It is then clear that a highly exclusive measurement is

requested, in order to perform a good selection of the reaction mechanism according

to criteria on the event-by-event topology.

Finally, another reason to pursue the investigation on light nuclei is the expected

stronger interplay between nuclear structure and thermal properties for these “few-

body” systems. Besides the interest on nucleon-nucleon correlations giving rise to

the odd-even effects previously described, also cluster-cluster correlation are known

to be important in nuclei with A ∼ 20: some excited states of different nuclei in this

mass region are known in fact to present pronounced cluster structures. These corre-

lations may also persist in the ground state along some selected isotopic chains [41].

According to the Ikeda diagrams [42], which is shown in fig.(1.7), alpha-clustered

excited states are massively expected at high excitation energies close to the multi-

alpha decay threshold in all even-even N = Z nuclei. Clustering degrees of freedom

should therefore be taken into account in order to reproduce the existence of these

states. The presence of such clustered states lead to exotic non-statistical decays

which start to be identified in the recent literature. A very interesting case is for in-

stance that of the so-called Hoyle state, i.e. the first excited state 0+ at 7.654 MeV

of 12C, which plays a decisive role in stellar nucleosynthesis of 12C. Both calculations

and experimental results tends to confirm the fact that this state has a low-density

α-clustered structure, which can be compatible with the description of a bosonic

condensation phenomenon. In terms of a nuclear state, this translates into a non

negligible probability of a simultaneous 3-body decay (alternative to the 8Be + α

channel), where the three α particles are characterized by a low kinetic energy and

low kinetic energy dispersion [43]. At present an experimental upper limit of 4%

exists for the contribution of the direct 3α channel to the decay width of this state.

The issues of clustering in nuclear physics and that of the statistical behaviour of

the decay are clearly intercorrelated: a trustable modelization of highly correlated

alpha-clustered states is very difficult to achieve [44], however such effects might be

experimentally seen as an excess of cluster production with respect to the prediction
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of the statistical model, provided that the ingredients of the latter are sufficiently

constrained via experimental data.

Finally, an additional interest of studies on light nuclei come from the problem of

secondary decays in reactions in the fragmentation regime. Light nuclei with ex-

citation energies of the order of ∼ 3 MeV per nucleon, are massively produced

in multifragmentation reactions and their statistical behaviour is thus essential to

access the properties of heavy excited sources at break-up time.

Figure 1.7: Ikeda Diagram: illustrative pictures in the excitation energy - mass number space
of possible α-cluster configurations for light self conjugate nuclei, together with the corresponding
decay thresholds in MeV .

1.4 Outline of the Thesis

In this chapter we have described the physics framework of this thesis, in which

we concentrate on the reconstruction of thermal properties of light nuclei from fusion-

evaporation reactions. In order to progress in the understanding of this topic, two

main efforts are needed, which are undertaken in this thesis:

• on the experimental side, we have to take care of obtaining an exclusive and

(quasi)complete detection of the different decay products emitted in the re-

action. This allows to safely select the fusion-evaporation channel and to
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perform backtracing techniques based on coincident yields measurements (as

the correlation functions), ensuring a global control on the whole decay chain.

This requirement translates obviously into an accurate choice of the reaction

itself, together with the choice of the experimental apparatus: low thresholds

for particle detection and (isotopic) identification, high granularity and high

energy resolutions are necessary requirements to pursue this kind of study.

The GARFIELD + RCo set-up (see chapter 4) at the INFN National Lab-

oratory of Legnaro (LNL), now upgraded with respect to the measurements

of ref.[35], satisfactorily matches all these conditions. Therefore, a beam-time

request was submitted to the PAC Committee of INFN-LNL by the NUCL-EX

collaboration [45], and the measurement of the reaction 12C(95 MeV ) +12 C,

presented in this thesis, was performed in December 2010. The measurement

will be described in chapter 4, together the data reduction and calibration

procedures, and preliminary results will be shown in chapter 5;

• on the models side, an improvement of existing evaporation codes is important,

especially concerning the inclusion of the most realistic available parameter-

izations for the statistical model ingredients, with a special attention to the

nuclear level density. To this aim, we present in this thesis the results of cal-

culations performed with our new Monte Carlo Hauser-Feshbach code, whose

development will be the subject of chapter 3. In the code we have included

all the available experimental information on nuclear ground state properties

and on low energy particle unstable levels. The first comparisons with ex-

perimental data from the reaction 12C(95 MeV ) +12 C (chapter 5) will show

the trustability of the code and the goodness of the chosen parameterizations.

Having highly constrained the code via experimental information, deviations

from a statistical behaviour of the system could be identified and eventually

ascribed to the presence of nuclear clustering. Our final aim is to test the

model predictivity on finite temperature observables, which we will be able to

reconstruct from data.

The work presented in this thesis is therefore on both fronts, experiment and

theory. We want to underline at this point that, even if existing models as GEM-

INI [46] have been offering an essential guidance in the modelization, the idea to

develop a new code had its rise in our precise will to test in a controlled way which

is the influence of different physical ingredients as a discrete level density on the

results of the calculations, which could not have been done working on existing

codes. The new code also gives us the opportunity to calculate observables which



26 1. Physics Case

could not have been calculated otherwise, but which we plan, in the future, to be

able to obtain from experimental data, as correlation functions and discrete states

population of fragments at some stage of the decay. Hopefully, this will help us, in

a long range plan, in experimentally constraining some nuclear properties at finite

temperature, and in obtaining a better predictivity on other finite temperature ob-

servable which can not be easily accessed, but whose control could be also useful

for other interdisciplinary applications. We are thinking in particular of the impact

of the temperature dependence of the symmetry energy in nuclear astrophysics: ex-

perimental constraints on finite temperature properties from terrestrial experiments

are needed for a full understanding of astrophysical processes such as supernova

explosions [5].



Chapter 2

Statistical Theory of the

Compound Nucleus

Statistical concepts and models have been widely and successfully applied to

understand the nucleus and its reactions with other nuclei since the beginning of

nuclear physics. The reason for this is simple: the nucleus is a complex many-

body system, whose density of quantum mechanical states increases rapidly with

excitation energy and soon becomes very large. In particular, a nuclear system

issued in a fusion reaction, even if at the lowest bombarding energies at which the

reaction can be initiated, can explore many different configurations and then decay

in many different ways. Given this complexity, statistical methods come out to be

essential for the comprehension and prediction of nuclear phenomena [47].

The Compound Nucleus (CN) is an excited system formed in a fusion reaction which

is complex enough to show equilibrium between its degrees of freedom: this means

that, a priori, all the states available for the system are characterized by an equal

occupation probability. This picture is based on Bohr’s independence hypothesis,

according to which the formation and decay of the equilibrated CN are independent

of each other. It follows that the cross section for the reaction:

a+ A→ C → b+B (2.1)

can be factorized into two independent terms: the fusion cross section in the

entrance channel α and the probability for the decay of the CN to the final channel

β (also called Branching Ratio, BR):

σ
E,J,π(C)
α→β = σCF (α)BRC(β) (2.2)

In the notation α and β stand for the collection of all good quantum numbers
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of the initial and final static problems, i.e. respectively, of the systems a + A and

b+B if there were no interaction between the two nuclei. The interaction giving rise

to the the fused system C has to conserve all the quantities (energy, total angular

momentum and parity) which have been specified.

The Statistical Model for the decay of an equilibrated nucleus is based on the as-

sumption that all possibilities for the decay are, intrinsically, equally likely and are

thus governed by factors such as the density of final states and barrier penetration

factors. The probability for a particular decay to occur is thus inversely proportional

to the total number of possible decays, according to:

BRC(i) =
Γi(E, J)∑
p Γp(E, J)

(2.3)

where the Γp are the decay widths (in MeV ) associated to the decay in channel p.

In the organization of the first part of this chapter the suggestion of the independence

hypothesis is ideally followed: we first discuss the entrance channel of the fusion

reaction, obtaining an expression for the fusion cross section, both in the general

case and in the case of the population of a resonant state in the CN. We then derive

an explicit expression for the decay width of the CN in the framework of the Hauser-

Feshbach evaporation model.

In the second part of the chapter we discuss the main physical ingredients of the

Statistical Model, with a special attention to the nuclear level density, describing

various models to calculate this fundamental quantity and different ways of obtaining

information on it from experimental data.

2.1 The Compound Reaction Cross Section

2.1.1 The Fusion Cross Section in the Entrance Channel

Reaction mechanisms can be classified according to the value of the impact pa-

rameter b, defined as the distance between the initial asymptote of the projectile

trajectory and its parallel through the target nucleus. For large values of b, the in-

teraction is due to the Coulomb force between projectile and target, which is a long

range repulsive force, producing essentially elastic scattering or Coulomb excitation.

As the impact parameter is reduced, the probability of absorption from the elastic

channel due to the short range nuclear forces becomes increasingly important. If we

assume a schematic representation, in which only two ways of interaction, namely

scattering or absorption, are considered, fusion can be identified with the formation
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of a CN system, as the result of a succession of elementary rearrangements reactions

among the nucleons of the projectile and the target.

For a first estimate of the fusion cross section we may use a classical picture of a

nuclear reaction [48], in which the projectile is moving towards the target in an

effective radial potential:

Vb(r) = V (r) + ε
b2

r2
(2.4)

where V (r) is the Coulomb-plus-nuclear scattering potential, (ε b2/r2) is a potential

term associated with tangential motion and ε is the kinetic energy in the center-of-

mass reference frame of the system, i.e., the relative kinetic energy between projectile

and target. Except when b is very large, the effective potential contains a barrier.

There will exists a trajectory for which the barrier height coincides with the energy ε

of the entrance channel, and we call the corresponding impact parameter the grazing

impact parameter bgr. At this energy, one has:

VB + ε
b2
gr

R2
B

= ε (2.5)

where the barrier radius RB and the corresponding value of the scattering potential

VB = V (RB) (assumed independent on b) have been introduced, so that:

bgr(ε) = RB

√
1− VB

ε
(2.6)

We can then adopt the bgr value as a sharp cut-off value determining the outcome

of the nuclear reaction: if the projectile has an impact parameter b > bgr it will be

reflected by the barrier, if b < bgr elastic scattering is suppressed, the projectile is

absorbed and it fuses with the target. In this simple picture the total absorption

cross section is simply given by:

σF =

∫ bgr

0

2πbdb = πb2
gr (2.7)

Substituting here the value of bgr we find:

σF (ε) = πR2
B

(
1− VB

ε

)
(2.8)

where the energy dependence of σF is made explicit.

We can now obtain the equivalent expression in terms of the quantized orbital an-

gular momentum, by attributing successive contributions to σF to successive values
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of ` = kb. We start noticing that the contribution to the barrier coming from the

term proportional to b2 in eq.(2.4) can be expressed as a function of ` and assumes

the form of a centrifugal barrier:

V`(r) =
`(`+ 1)~2

2µr2
(2.9)

where µ is the reduced mass. The cross section for a given ` can be defined as the

area of the surface between circles with radii b = `/k and b = (`+ 1)/k, which is:

π

k2

[
(`+ 1)2 − `2

]
=

(2`+ 1)π

k2
(2.10)

Hence σF can be written in terms of a sum over angular momenta:

σF =
π

k2

`gr∑
0

(2`+ 1) =
π

k2
(`gr + 1)2 (2.11)

which, since `gr = kbgr, coincides with (2.7) when `gr >> 1.

We can push the derivation of σF a step further, even with this simple model,

and consider that, for some values of `, there will be finite probabilities for both

scattering and absorption from the elastic channel. If we define the transmission

coefficient T` as the probability that a given partial wave ` is absorbed, we can write

instead of eq.(2.11):

σF =
π

k2

∞∑
0

(2`+ 1)T` (2.12)

and the sharp cut-off model we have started our derivation with will be defined by

the situation:

T` =

{
1 for ` < `gr
0 for ` > `gr

(2.13)

The derivation of eq.(2.12) presented in this section is obviously far too simple. The

formation of the CN is also limited by conditions on its mass, on its stability against

prompt fission (therefore on angular momentum conditions) and above all by the

competition of non-compound processes accompanying fusion in the entrance chan-

nel. Nevertheless, eq.(2.12) provides an expression which can be easily generalized,

and which is needed in the derivation of the decay widths in the Hauser-Feshbach

model, as it will be shown in the following sections.

The general form of eq.(2.12) which will be later needed requires additionally the

consideration of the spin degree of freedom in the reaction. This can be easily done

by the evaluation of the statistical factors giving us the spin coupling probabilities.
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For the entrance channel α of the reaction between a and A, we can define the chan-

nel spin Sα as the result of the coupling between the spin of the incident particle

ia and the spin of the target nucleus IA, for a total amount of (2ia + 1)(2IA + 1)

available states, and its inverse multiplied by the degeneracy (2Sα + 1) represents

the probability of having a channel spin Sα in a reaction with unpolarized beam and

target:

g(Sα) =
2Sα + 1

(2ia + 1)(2IA + 1)
(2.14)

In the very same way, since the presence of a channel spin Sα different than zero

implies that the angular momentum of the CN will be the result of the coupling

between Sα and the orbital angular momentum `, we have to evaluate the relative

probability of having a CN with angular momentum JC , which is given by:

p(JC) =
2JC + 1

(2`+ 1)(2Sα + 1)
(2.15)

In the absence of angular momentum selection rules, which is implicit in the equiprob-

ability hypothesis of CN reactions, the desired expression for the total fusion cross

section is obtained by multiplying eq.(2.12) by g(Sα)p(JC), and substituting the sum

over orbital angular momentum values with all the necessary sums coming from an-

gular momentum couplings (which means summing up over all possible entrance

channels of the reaction):

σF =
1

(2ia + 1)(2IA + 1)
·
∑
JC

IA+ia∑
Sα=|IA−ia|

JC+Sα∑
`=|JC−Sα|

π

k2
α

(2JC + 1) T JCSα,` (2.16)

At this point, the only missing ingredients to completely specify the fusion cross sec-

tion are the transmission coefficients T` and their dependence on the energy ε and

orbital angular momentum `. These coefficients correspond to the quantum me-

chanical penetration probability of the effective barrier Vb(r), which is given by the

sum of the Coulomb plus nuclear potential V (r) and the centrifugal barrier V`(r), as

in eq.(2.4) with the substitution ` = kb. If we adopt for the transmission coefficients

the result of the barrier penetration probability for a parabolic barrier [49], we can

write:

T`(ε) =
1

1 + exp [2π(Vb − ε)/~ω`])
(2.17)

where ω` is the curvature of the barrier at its maximum.

In applications, eq.(2.17) is usually compared to the results of optical model fits to

elastic scattering data in order to extract realistic values of the parameters Vb and
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ω`. Much more sophisticated approaches exist for the calculation of the transmission

coefficients, usually keeping the results of optical model fits (where available) as a

reference. Some examples will be given in chapter 3, when discussing the implemen-

tation of transmission coefficients parameterizations in statistical decay codes.

2.1.2 Elements of Resonance Theory

In the previous section we have started the derivation of the total fusion cross-

section from simple assumptions, which have led us to eq.(2.8), where σF (ε) is a

monotonic function of the available energy. This classical picture has been mod-

ified by the inclusion of the transmission coefficients and of angular momentum

couplings, leading us to eq.(2.16). It is evident from eq.(2.16) that the monotonic

behaviour of σF (E) as a function of the incoming energy can not hold anymore: the

transmission coefficients are energy and angular momentum dependent quantities,

and are therefore related to the probability of creating the CN in a specific state C,

characterized by an energy E∗C and an angular momentum JC . As a consequence

of this, resonances in the fusion cross section may appear. In the following, we will

adopt the notation σCF meaning the population of a specific state C of the CN.

We want now to derive which is the energy dependence of the fusion cross section

if the CN is excited in a region where only a discrete level with energy ER (and

with a given angular momentum JR) exists. An excited unstable nuclear state is

characterized by a finite lifetime τ . Thus the wavefunction of the resonant state has

the form:

|ψ(t)|2 = |ψ0|2 exp(−t/τ)

ψ(t) = ψ0 exp(−iωRt− t/2τ) with ER = ~ωR

Using a Fourier transform the wavefunction ψ(t) can be rewritten as:

ψ(t) =
1√
2π

∫ ∞
0

dωϕ(ω) exp(−iωt) (2.18)
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whose inverse is:

ϕ(ω) =
1√
2π

∫ ∞
0

dtψ(t) exp(iωt)

=
ψ0√
2π

∫ ∞
0

dt exp[i(ω − ωR)− 1/2τ ]t

=
ψ0√
2π

exp[i(ω − ωR)− 1/2τ ]t

i(ω − ωR)− 1/2τ

∣∣∣∞
0

=
iψ0√

2π

1

(ω − ωR) + i
2τ

⇒ |ϕ(ω)|2 =
ψ2

0

2π

1

(E∗ − ER)2 + Γ2

4

with Γ = ~/τ

where we have introduced the energy width Γ of the discrete level, related to its life-

time through the uncertainty principle. The quantity |ϕ(ω)|2 represents the prob-

ability of finding the CN at the energy E∗ = ~ω when ER = ~ωR is the resonance

energy. Here we have to precise that the assumption of a single resonance available

for the CN excitation is valid only if the width of this resonance is smaller than the

mean spacing between CN levels, which we take as a constant D. This condition is

actually satisfied only for rather low excitation energies.

The cross section σCF (E∗) for the formation of the CN has to be proportional to this

probability:

σCF (E∗) =
C(E∗)

(E∗ − ER)2 + Γ2

4

(2.19)

We have to pay attention here to the fact that the variable E∗ in this last expression

represents an excitation energy value for the CN , and it is related to the available

energy by energy conservation:

E∗ = εα +Q (2.20)

where α is the reaction entrance channel, εα is the relative kinetic energy between

a and A and Q is the Q-value of the reaction. We will derive in the following the

dependence of σCF from the relative kinetic energy variable εα, instead as from the

CN excitation energy E∗, taking advantage of the fact that the difference between

these two quantities is given by the constant Q-value. We have therefore dεα = dE∗,

and we can write the Q-value shifted version of eq.(2.19):

σCF (εα) =
C(εα)

(εα − εαR)2 + Γ2

4

(2.21)
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where in the notation εαR stands for the value of the relative kinetic energy εα in

the entrance channel producing the resonance in the reaction cross section.

In order to get an explicit expression for the term C(εα) in eq.(2.21), we can make

use of the detailed balance principle, which asserts:

prob(α→ C)Nα(εα) = prob(C → α)NC(EC) (2.22)

where the terms indicated by prob(·) are the normalized probabilities (per unit time)

of the processes specified between parenthesis, and Nα and NC are, respectively, the

number of available states in the entrance channel and for the CN nucleus. To avoid

being repetitive and for the sake of simplicity, we neglect in the counting of available

states the angular momentum degeneracy: in fact, we will derive in the following

the decay width of the CN, always starting from the detailed balance principle

and explicitly including the angular momentum degeneracy from the beginning.

Moreover, the angular momentum dependence of the result of this derivation is

simply coming from the product of the same spin weighting factors which were

discussed in the previous section and are given in eq.(2.14,2.15), further multiplied

by the (2`+1) factor coming from the decomposition of the fusion cross section into

partial waves.

Therefore, for the terms entering the detailed balance principle we have:

• Nα(εα) is the number of relative motion states of a and A in the entrance

channel:

Nα(εα) = d3pαV
(2π~)3 , where we have already carried out the integration on d3r,

giving us the geometrical volume V associated to the reaction. The momentum

pα is the one related to εα by εα = p2
α/2µ;

• the factor prob(α → C) can be expressed in terms of the CN formation cross

section in the entrance channel:

prob(α→ C) = σCα vα
V

,

where we have written for simplicity of notation σCF (εα) = σCα , and vα is the

relative velocity;

• NC(E∗C) is the number of CN states with energy between (E∗C , E
∗
C +dE∗C), and

since we are assuming that in the energy range for the CN formation only a

well-defined resonant state exists, it can be considered equal to 1;

• the factor prob(C → α) can be defined as the inverse of the lifetime of the CN

for the decay into channel α, that is to say:

prob(C → α) = 1/τCα = Γα/~, where Γα is the energy width associated to the

finite lifetime τα.
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Substituting these terms in eq.(2.22), we have in the LHS :

prob(α→ C)Nα(εα) =

∫
d3pα · V
(2π~)3

· σ
C
α vα
V

(2.23)

=
1

2π2~3

∫
dpαvαp

2
ασ

C
α (εα)

=
1

2π2~3

∫
dεα p

2
α

C(εα)

(εα − εαR)2 + Γ2

4

where we have also made use of dεα = vαdpα. At this point, if we do the hypothesis

that the factor p2
αC(εα) is a smoother function of εα than 1

(εα−εαR)2+ Γ2

4

(which is

certainly true for values of εα near the resonance value εαR) we can further write:

prob(α→ C)Nα(εα) =
1

2π2~3
p2
αC(εαR)

∫
dεα

1

(εα − εαR)2 + Γ2

4

(2.24)

=
k2
α

2π2~
C(εαR)

2

Γ
π

=
k2
α

π~Γ
C(εαR)

Going back to the detailed balance principle, we have for the constant C(εαR):

k2
α

π~Γ
C(εαR) =

Γα
~

(2.25)

C(εαR) =
π

k2
α

ΓΓα

Finally we get the resonant CN formation cross section:

σCF (εα) =
π

k2
α

ΓΓα

(εα − εαR)2 + Γ2

4

As anticipated, in order to take angular momentum into account, we have to intro-

duce a spin dependence, analogous to the one appearing in eq.(2.16). If we assume

spinless projectile and target, the resulting spin dependence reduces to a (` + 1)

factor, and we can write:

σCF (εα) =
π

k2
α

(2`+ 1)
ΓαΓ

(εα − εαR)2 + Γ2

4

(2.26)

As stated in the introduction of this chapter, in order to find the cross section for

a particular (α, β) reaction proceeding through an intermediate given state C it is
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sufficient to multiply σCF (α) by the Branching Ratio BRC(β) = Γβ/Γ. Doing so for

eq.(2.26) we finally get:

σCα→β =
π

k2
α

(2`+ 1)
ΓαΓβ

(εα − εαR)2 + Γ2

4

(2.27)

which is called the Breit-Wigner one-level formula for nuclear reactions. An addi-

tional sum over Breit-Wigner resonances will be needed if the CN can be excited in

more than one discrete state, and a resulting convoluted fusion cross section has to

be evaluated.

Starting from eq.(2.26), we may want to recover the expression of the fusion cross

section in terms of transmission coefficients. A single ` contribution to the total

fusion cross section of eq.(2.12) can be compared to the average of eq.(2.26) in an

energy interval large enough to contain several resonances which can be excited by

the same entrance channel. The energy range to calculate the average will be a

multiple of the constant energy spacing D for CN levels. If we evaluate the energy

average of eq.(2.26), we obtain:

〈
σCF (εα)

〉
≈ 1

(rnD)

π

k2
α

(2`+ 1)
rn∑
ri

∫
dεα

ΓαriΓri

(εα − εαri)2 +
Γ2
ri

4

(2.28)

=
π

k2
α

(2`+ 1)
2π 〈Γα〉
D

where the sum runs over all the resonances whose energy falls in the interval of

width (rnD), and we have carried out the energy integration of all the single Breit-

Wigner terms (assuming that they dominate the overall energy dependence of the

cross section). For a single ` contribution in eq.(2.12) we had:

σCF (εα) =
π

k2
(2`+ 1)T`(α) (2.29)

A comparison of the two above equations gives the key result:

T`(α) =
2π 〈Γα〉
D

(2.30)

where the transmission coefficient is expressed in terms of average properties of the

CN spectrum, namely average decay widths and level spacing. To give a further

insight into the meaning of this last expression, we start noticing that the result

obtained in eq.(2.26) implies that the fusion cross section in the resonant state is

proportional to the probability of the opposite process, i.e. the decay of the CN
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through the same channel α, which is determined by the width Γα. This is of course

a consequence of the microscopic reversibility of the process, which is assumed in the

detailed balance equation. In a very simple picture, we can think of the CN state as

created by the particle a entering into the nucleus through channel α. If the excited

state is unbound, we may ask after what time τα the particle would reappear at the

nuclear surface, ready lo leave through the same channel it came in. This time could

be expressed in terms of the period of the motion of particle a inside the nucleus.

Having assumed an average energy spacing D for CN states, we can substitute for

the energy ER in the wavefunction ψ(t) the expression ER = E0 + nD, where E0 is

the ground state energy of the CN nucleus. Thus ψ(t) comes out to be a periodic

function of coordinate t, with period P = 2π~/D. Since the assumption of the

presence of resonant states is valid only if D >> Γ, the lifetime τα has to be large

compared to P . This can be the case because of the reflection of a at the inner side

of the nuclear surface, described by the finite probability T`(α) of escaping through

channel α. We then get:

τα ≈
P

T`(α)
(2.31)

which gives us back the expression of eq.(2.30).

Summarizing, in this section we have derived the energy dependence of the fusion

cross section in presence of discrete states for the CN formation. An illustrative

picture of a resonant cross section is given in fig.(2.1), where also the corresponding

spectrum of excited levels for the CN is shown. Since in the rest of this work we

will be mainly interested in the outgoing channel of the nuclear reaction rather than

in the formation of the CN, we want to recall at this point that resonances are of

great importance also in the decay of the CN source. Discrete levels can indeed

be populated in daughter nuclei, which can further decay delivering cold products

which keep memory of their “resonant” origin. Decaying discrete states can then be

reconstructed through techniques as the correlation function in relative momentum

of coincident measured yields, as discussed in chapter 1.

2.1.3 The Evaporation Width in the Hauser-Feshbach Model

We want now to derive a general expression for the CN decay width for channel

β, which determines the probability for the hot nucleus to decay via this channel,

or equally, its decay rate (probability per unit time). We consider CN reactions in

which all final channels are made up of light particles (up to Z = 2) and a resid-

ual nucleus. Obviously this means assuming that the excitation energy of the CN

exceeds the nuclear separation energy, i.e. the lowest Q-value for particle emission.
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Figure 2.1: Illustrative picture of the population of a discrete state in the fusion reaction a+A→
C, with the consequent appearance of resonances in the fusion cross section and deviation of the
energy dependence of the fusion cross section from a monotonic behaviour.

We anticipate at this point that the energy spectrum of the particles emitted in such

reactions shows a Maxwellian shape, whose slope is determined by the excitation

energy of the emitting source. It is because of the analogy with the spectrum of

molecules evaporated from the surface of a hot liquid that the CN is also said to

undergo a decay via evaporation.

Let us consider the most general case of the decay of a compound nucleus in a CN

state C with energy E∗C and angular momentum JC by the evaporation of a light

particle b with spin ib and energy in the range (εβ; εβ + dεβ), leaving a residual nu-

cleus B, excited at an energy E∗B = E∗C−Q− εβ and with an angular momentum IB
(here in reality εβ is the relative kinetic energy of the two decay products, associated

to the reduced mass µβ, and it is equal to the energy of the emitted particle only if

we can neglect the recoil of the evaporation residue).

The starting point of our derivation is once again the the detailed balance principle:

prob(C → β)NC(E∗C , JC) = prob(β → C)Nβ(εβ, ib IB) (2.32)

where we have kept the same notation as for its former application in eq.(2.22).

In the detailed balance equation the following terms appear:
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• NC(E∗C , JC) is the number of states accessible to the system C in the energy

interval (E∗C ;E∗C + dE∗C). We know from the previous section that the number

of these excited states depends on the excitation energy range for the CN. We

assume now that the CN is excited in the continuum region, where the energy

overlap of excited levels is such that no isolated resonance can be resolved (i.e.

Γ >> D, to make use of the same notation as in the derivation of the fusion

cross section). The number of available states can therefore be expressed in

terms of the nuclear Level Density (LD) ρC(E∗C , J
∗
C), already introduced in

chapter 1, which will be discussed later in details, defined in such a way that:

NC(E∗C , JC) = (2JC + 1)ρC(E∗C , J
∗
C)dE∗C .

We only have to notice at this point that the spin-degeneracy factor (2JC + 1)

is not accounted for in the counting of levels coming from ρ, and therefore has

to be explicitly introduced;

• the factor prob(C → β) (probability per unit time) is such that:

prob(C → β) = 1/τβ = Γβ/~.

and it represents a differential decay rate:

dRJ
{C E∗C JC}→{b εβ ib IB}

which can be as well expressed in terms of the decay width Γβ;

• the probability per unit time prob(β → C) can be deduced from the the cross

section of the inverse reaction σCF (β) (= σCβ for simplicity of notation), i.e.

prob(β → C) =
σCβ (εβ ,ib,IB)vβ

V
;

• Nβ(εβ, ib IB) is the number of relative-motion states for b and B multiplied by

the spin degeneracy of the two final nuclei and by the number of energy states

in which the residual nucleus B can be left (we are then assuming that the

evaporated particle is emitted in its ground state). Therefore we have:

Nβ(εβ, ib IB) =
d3pβV

(2π~)3 · (2ib + 1)(2IB + 1)ρB(E∗B, IB)dE∗B
where we have already carried out the integration on d3r.

We can thus rewrite the balance equation and find the following expression for

the differential rate:

dRJ
C→β =

1

(2JC + 1)ρC(E∗C , J
∗
C)dE∗C

·
σCβ (εβ, ib, IB)vβ

V
· d

3pβV

(2π~)3
(2.33)

·(2ib + 1)(2IB + 1)ρB(E∗B, IB)dE∗B
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where dE∗C = dE∗B for a given decay. Integrating in the momentum space the LHS

of eq.(2.33) we can further write:∫
vβ

d3pβ
(2π~)3

· σCβ (εβ, ib, IB) ρB(E∗C −Q− εβ, IB) (2.34)

= 4π

∫
vβ
p2
βdpβ

(2π~)3
· σCβ (εβ, ib, IB) ρB(E∗C −Q− εβ, IB)

=
4π 2µβ
(2π~)3

∫
εβ vβdpβ · σCβ (εβ, ib, IB) ρB(E∗C −Q− εβ, IB)

=
µβ
π2~3

∫ E∗C−Q

0

dεβ εβ · σCβ (εβ, ib, IB) ρB(E∗C −Q− εβ, IB)

where we have made use of the relations εβ = p2
β/(2µβ) and dεβ = vβdpβ and we

have specified the limits of the integration on the relative energy εβ.

Once integrated over the energy, we have to sum over the spins IB of the residual

nucleus to obtain the evaporation rate in the RHS of eq.(2.33). This finally gives:

RJ
C→β =

(2ib + 1)

(2JC + 1)ρC(E∗C , J
∗
C)
· µβ
π2~3

(2.35)

·
∑
IB

(2IB + 1) ·
∫ E∗C−Q

0

dεβ εβ · σCβ (εβ, ib, IB) ρB(E∗C −Q− εβ, IB)

We can then express the fusion cross section for the inverse process in terms of

transmission coefficients with the help of the generalized equation (2.16) previously

obtained, which we rewrite hereafter for a specific state C of the CN issued from

fusion in channel β:

σCβ (εβ, ib, IB) =
1

(2ib + 1)(2IB + 1)
·

IB+ib∑
Sβ=|IB−ib|

JC+Sβ∑
`β=|JC−Sβ |

π

k2
β

(2JC + 1) T JCSβ ,`β (2.36)

This last expression can be substituted into eq.(2.35). If we further write k2
β =

2µβεβ/~2 we finally obtain:

Γβ =
1

2πρC(E∗C , J
∗
C)
·
∫ E∗C−Q

0

dεβ
∑
IB

IB+ib∑
Sβ=|IB−ib|

JC+Sβ∑
`β=|JC−Sβ |

T JCSβ ,`β · ρB(E∗C −Q− εβ, IB)

(2.37)

where we have written the result in terms of the energy width associated to the

CN decay: Γβ = ~RJ
C→β. A derivation of eq.(2.37) can be also obtained starting
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from Fermi’s Golden Rule for the transition {C → β} and making use of the time-

reversal invariance, as shown in [48].

In the final channel of the reaction, the residual nucleus B can have an excitation

energy again exceeding its separation energy, and therefore it can undergo a succes-

sive decay via evaporation. The whole sequence of successive decay steps necessary

to reach a final cold daughter nucleus is called an evaporation chain. An illustrative

picture of a fusion reaction followed by an evaporation chain is shown in fig.(2.2).

Figure 2.2: Illustrative picture of a fusion-evaporation reaction. In this representation, the decay
chain of the CN starts when the nucleus is excited in its continuum, and a discrete state of the
daughter nucleus is populated at the last decay step.

Eq.(2.37) is the main result of the Hauser-Feshbach model for the evaporation

of the CN [51]. In the framework of this model, as it clearly appears from the

derivation, also the spin and angular momentum degrees of freedom are considered

in the determination of the decay widths, which represents the main difference with

the alternative and simpler approach of Weisskopf and Ewing [52].

In both models however, the decay width is always expressed as an integration over

the energy spectrum of the evaporated particle εβ, whose shape is in turn determined

by the energy dependence of the transmission coefficients and of the LD ρB(E∗C −
Q − εβ). It is out of these quantities that we can extract the maxwellian shape of

the energy spectra, which is evident in the examples of fig.(2.3) for experimental

fusion-evaporation data taken from ref.[53].

To have a quick understanding of where does this maxwellian shape originate from,

we can simply recall the definition of the nuclear temperature T which was given in
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chapter 1:
1

T
=
∂ ln ρ

∂E∗
(2.38)

From this definition we get that the LD has to scale as exp(E∗/T ), where still

no assumptions have been made on the relation between excitation energy and

temperature. Hence, we can already write:

T`(β) · ρB(E∗C −Q− εβ) ∝ εβ · exp
(
−εβ
T

)
(2.39)

where the expression in the RHS is that of a Maxwell distribution at temperature T .

In the following sections of this chapter we will discuss in details the fundamental

quantity ρ(E∗), which will allow us for a better understanding of the functional

dependence of the LD term in eq.(2.39).

Concluding, we want only to notice that, since we have stated the validity of Bohr

independence hypothesis, eq.(2.37), together with the explicit expressions of all the

physical ingredients appearing in it, will be all we need to implement the Hauser-

Feshbach decay model in a Monte Carlo code, which is the subject of chapter 3.

Figure 2.3: Evaporated particle energy spectra for the 3He +58 Fe at 10 MeV beam energy,
taken from ref.[53]. The experimental data are shown by points. Solid lines are Hauser-Feshbach
calculations. Arrows show energies above which spectra contain only contributions from the first
stage of the reaction.

2.2 The Nuclear Level Density

In the framework of the statistical model, the decay of an equilibrated source

is governed by the density of final states. For rather low excitation energy the
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counting of states in the outgoing channel is dominated by the amount of energy

levels corresponding to nuclear intrinsic excitations.

The fundamental quantity bearing this information is called nuclear Level Density

(LD), and has already been introduced according to the definition:

ρ(A,E) =
dN(A,E)

dE
(2.40)

The density ρ(A,E) corresponds to the number of nuclear levels in the energy inter-

val (E,E+dE), divided by dE. In this chapter, we have made use of ρ(E∗) in order

to derive a decay probability for the excited CN, and we want now to investigate

the LD and its dependences as a property of the nuclear system.

The most frequently used method to obtain the LD might be called a thermodynamic

approach and makes use of the concepts and mathematical techniques of statistical

mechanics: a partition function, containing the essential statistical information, is

written down in terms of nuclear levels, properties of the system (as the number of

nucleons and the energy) are used to calculate the thermodynamic quantities which

enter in the calculation of the entropy and of the level density.

Given the discrete nature of the nuclear excitation spectrum, the most general ex-

pression for the LD is a sum of δ functions, namely:

ρ(A,E) =
∑
n,i

δ(A− n)δ(E − Ei(n)) (2.41)

where Ei(n) is the energy of the ith level of the nucleus with n constituents (nu-

cleons). The grancanonical partition function Z is then obtained by means of a

Laplace transform of the LD, i.e. :

Z(α, β) =

∫ ∞
0

∫ ∞
0

ρ(A,E)e−(βE−αA)dAdE (2.42)

which, given the discrete nature of ρ(A,E), can be also given as:

Z(α, β) =
∑
n,i

e−(βEi(n)−αn) (2.43)

The inverse Laplace transform of the grancanonical partition function reads:

ρ(A,E) =
1

(2πi)2

∫ +∞

−∞

∫ +∞

−∞
Z(α, β)e(−αA+βE)dAdE (2.44)

and this last equation shows that, if Z is known, ρ can be obtained, either numeri-

cally or analytically [48, 56].
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To further simplify the problem, one generally uses the so-called saddle point approx-

imation, for which still no assumptions on the statistical properties of the nucleus

levels are required. This approximation is based on the fact that the integrand in

eq.(2.44) has a saddle point around which a Taylor series expansion can be performed

in order to calculate ρ. Making use of the expansion, we get:

ρ(A,E) =
eS

2π
√
det

(2.45)

where the entropy S reads:

S = lnZ(α0, β0) + β0E − α0A (2.46)

and where det is the determinant of the matrix whose elements are formed by the

second derivative of ln(Z) with respect to the variables α and β:

det =

∣∣∣∣∣ ∂2 lnZ
∂β2

∂2 lnZ
∂β∂α

∂2 lnZ
∂β∂α

∂2 lnZ
∂α2

∣∣∣∣∣
α0,β0

(2.47)

taken at the saddle point (α0, β0) defined by:

E = −∂
2 lnZ
∂β

(2.48)

A =
∂2 lnZ
∂α

(2.49)

2.2.1 Independent Particle Model

Independent particle (or quasi-particle) models are by far the most often applied

to calculate level densities. In this framework, the procedure to calculate the nuclear

LD is conceptually straightforward: it is sufficient to count the number of different

configurations corresponding to a given E∗, J and π. The determination of the LD

is thus a combinatorial problem in which the physics is contained in the specification

of the single-particle orbitals for non-interacting nucleons.

In practice, this combinatorial problem cannot be solved directly, because of the huge

number of possible independent particle configurations entering in the calculation.

Nevertheless, the saddle point approximation introduced at the beginning of this

section allows a simple calculation of the resulting level density, which we give
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hereafter in some details.

In the independent particle model, eq.(2.43) for the partition sum reads:

Z0(α, β) =
∏
k

[1 + exp(α− βεk(n))] =
∏
k

[1 + exp−β(εk(n)− µ)] (2.50)

where εk are single particle energies (see section 1.1.2) and µ = α/β is the chemical

potential. At zero temperature, the chemical potential can be seen as the amount

of energy required to add an extra particle to the system. For the sake of simplicity,

we start considering only one nucleon species, and the use of the notation Z0 will

be made clear in the following.

For the calculation of the level density, we can make use of the Thomas-Fermi local

density approximation, which has already been introduced in chapter 1. Under this

approximation, we can write:

lnZ0(β, µ) =
1

(2π~)3

∫
d3r

∫
d3p ln

[
1 + exp−β

(
p2

2m∗
+ U(ρ(r))− µ

)]
(2.51)

where single-particle energies have been explicitly written as the sum of a kinetic

energy term and of the mean-field local potential U(ρ(r)). This expression corre-

sponds to the partition sum of an ideal gas of fermions, with shifted local chemical

potential given by µ̃(r) = µ−U(ρ(r)). Because of the self-consistency of the mean-

field U(ρ), it can be shown that this expression has to augmented by an interaction

term, representing the interaction part of the pressure [54], as we now show. We

evaluate the integral given in eq.(2.51):

lnZ0(β, µ) =
2

3
β

∫
d3r

∫
d3p

(2π~)3

p2

2m∗

exp−β
(

p2

2m∗
− µ̃(r)

)
1 + exp−β

(
p2

2m∗
− µ̃(r)

) (2.52)

=
2

3
β

∫
d3r
〈
ekinρ(r)

〉
T

=
2

3
β
〈
Ekin

〉
T

where the distribution of states following a finite temperature Fermi gas has ap-

peared in the integration on d3p, which therefore yields the average density of ki-

netic energy per units volume,
〈
ekinρ(r)

〉
T

(ekin is the kinetic energy per nucleon).

Integration on d3r of this quantity yields the total averaged kinetic energy. We no-

tice at this point that the obtained results corresponds indeed to a kinetic pressure
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term, which we can explicitly write as (βp0V ) under the assumption of a constant

ρ density in the final integration on d3r. This pressure is only due to the zero point

particle motion, even if single particle energies do contain the mean-field. There-

fore, an analogous pressure term has to be added, linked to the mean-field U(ρ). By

making use of:

pV = −V ∂E
∂V

= V ρ2 ∂e

∂ρ
(2.53)

in order to write the pressure term as a function of the density and of the energy per

nucleon instead of total volume and total energy, we can add to lnZ0 the following

expression:

lnZint
β

=

∫
d3rρ2(r)

∂e(ρ(r))

∂ρ
(2.54)

=
1

2

〈
U tot

〉
T

where we have made use of the definition 1/2U(ρ) = ∂(eρ)/∂ρ and integration

on d3r yields the total averaged energy 〈U tot〉T . For a rigorous demonstration of

eq.(2.54), see ref.[54].

For the total partition sum, we finally have:

lnZ = lnZ0 + lnZint (2.55)

=
2

3
β
〈
Ekin

〉
T

+
1

2
β
〈
U tot

〉
T

We can further write:

lnZ =
2

5T
εFA+

2

3T
aT 2 +

1

2T

〈
U tot

〉
T

(2.56)

where we have written β = 1/T , and we have made explicit the contribution of

the excitation energy E∗ = aT 2, evaluated starting from the Fermi surface. The

fundamental quantity a entering the expression for the excitation energy is the level

density parameter, which, in turn, can be written in terms of the single particle level

density at the Fermi energy:

a =
π2

6
g(εF ) (2.57)

In order to calculate average values of observables by making use of the Fermi

distribution of states for the independent particle system, also appearing in eq.(2.52),

the (numerical) solution of Fermi integrals is necessary. This is usually done in
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the low temperature limit, which, in particular, allows us to obtain the following

expressions for the chemical potential and the total energy:

〈µ〉T = εF −
T 2

3

a

A
+ β

〈
U tot

〉
T

(2.58)

〈E〉T =
3

5
AεF + aT 2 + β

〈
U tot

〉
T

At this point, we can make use of the saddle point approximation for the calcula-

tion of the entropy, whose expression was given at the beginning of this section in

eq.(2.46), and substitute the expressions we got for lnZ, 〈E〉T and 〈µ〉T respectively

in (2.55,2.58), thus obtaining:

S = lnZ(β0, µ0) + β0E − β0µ0A (2.59)

= 2aT

Eq.(2.45) for the LD finally reads:

ρ(A,E) =
e2aT

2π
√
det

(2.60)

=
e2
√
aE∗

2π
√
det

The obtained expression for the LD depends mainly exponentially on the excitation

energy E∗, and the pre-factor can only be a slowly varying function of E∗ with

respect to exp
√
E∗, depending on the approximations done for the derivation. The

dependence on the mass number is mainly contained in the LD parameter a(A). A

first important observation is that, in this theoretical framework, it turns out that

the LD ρ(E∗, Jπ) will depend only on the density D−1
0 of single-particle states near

the Fermi energy (D0 is therefore the mean spacing of levels around εF ), all other

properties of the single-particle potential being irrelevant. An intuitive explanation

for this result is that, for fixed E∗ and Jπ, the major contribution to the number of

configurations comes from the excitation of many nucleons into states right above

εF , and the number of configurations in which few nucleons take up the whole E∗

is relatively small [55].

In the literature, the LD is often given through the Bethe formula [2], obtained for

the Fermi gas model, i.e. an ideal gas of non-interacting fermions in the thermody-

namic limit:

ρ(A,E∗) =
1

4
√

3E∗
e2
√
aE∗ (2.61)
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with the same definition of the LD parameter a, and with the pre-factor 1
4
√

3E∗

deriving from the low temperature limit.

Explicitly considering the isospin degree of freedom does not change the derivation

of the LD, and a usual expression for the result obtained for a two-components

independent particle system made up by Z protons and N neutrons, is given by:

ρ(A,E∗) =

√
π

12

e2
√
aE∗

a1/4E∗5/4
(2.62)

with

a =
π2

6
(gπ(εF ) + gν(εF )) (2.63)

where gπ and gν are the proton and neutron single-particle densities at the average

Fermi energy εF for the two species.

Let us now specify the values of the independent particle model parameters. The

numerical value of the Fermi energy for a nucleon system is εF ≈ 30 MeV , and

this corresponds to the energy of the highest level occupied by the nucleons in the

nucleus at zero temperature, i.e. in the ground-state. With this value one can cal-

culate the average single particle level density g(εF ), and consequently get for the

LD parameter: a ≈ A/12 MeV −1. We will later see that this value is too small

compared to the empirical value necessary to describe experimental data, and this

is of course due to the simplifying assumptions we have done, mainly concerning the

independent particle nature of the excitations.

Within the framework of the independent particle model it is also possible to de-

termine the way ρ depends on the quantum numbers M and J, respectively the

angular momentum projection and the total angular momentum. We denote by jk
the angular momentum of an individual nucleon, and the resultant of all individual

particle momenta will be J . If mk is the z-component of jk for particle k, we will

have:

M =
∑
k

mk (2.64)

and provided the number of particle in the nucleus is large, being each mk a random

variable with mean 〈m〉 = 0, the probability law p(M) is of gaussian type, with

mean M =
∑
〈m〉 = 0 and dispersion σ2 = A〈m2〉. The LD as a function of M can

then be written as:

ρ(A,E∗,M) = ρ(A,E∗)
1√
2πσ

exp

[
−M

2

2σ2

]
(2.65)

where σ2, called the spin cut-off parameter, will shown to be proportional to
√
E∗.

The number of states of given total angular momentum J is equal to the number of
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states with M = J , minus the number of states with M = J + 1, i.e.:

ρ(A,E∗, J) = ρ(A,E∗,M = J)− ρ(A,E∗,M = J + 1) (2.66)

which, for large J (i.e. high in the continuum) can be approximated by:

ρ(A,E∗, J) ≈ ∂ρ(A,E∗,M)

∂M

∣∣∣∣
M=J+1/2

(2.67)

We finally get:

ρ(A,E∗, J) = ρ(A,E∗)
2J + 1

2
√

2πσ3
exp

[
−(J + 1/2)2

2σ2

]
(2.68)

An estimation of σ2 can be obtained using again the grandcanonical approximation.

Classically, an angular momentum J corresponds to an amount of rotational energy

given by:

Erot =
|J|2

2I
(2.69)

where I is the moment of inertia. If we go back to the picture of the nucleus as

a heat-reservoir characterized by a fixed temperature T , the probability to have a

given rotational energy would go as e−Erot/T . Replacing the square of the angular

momentum with the quantum mechanical equivalent, the density would be:

ρ(E∗ − Erot, J) = ρ(E∗, J = 0) exp

[
−J(J + 1)~2

2IT

]
(2.70)

A comparison with eq.(2.68), if we do the approximation (J + 1/2)2 ≈ J(J + 1),

leads to the conclusion that:

σ2 =
IT
~2

(2.71)

This means that σ2 depends on the square root of the energy E∗, as anticipated.

Since the moment of inertia scales with the mass number A, the dependence of σ2

on A will also be linear: in particular, for spherical nuclei, the moment of inertia I
can be assumed equal to the one of a uniform density sphere of mass number A and

radius R, about an axis passing through its centre:

I =
2

5
m0c

2AR2 (2.72)

We have to notice at this point that eq.(2.70), can be written only as an approxima-

tion of ρ(E∗ − Erot). Indeed the canonical expression given in eq.(2.70 neglects the
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energy conservation law, by definition of the canonical ensemble. For an isolated

nucleus at a given energy E∗, for some angular momentum JY given by:

JY (JY − 1)~2

2I
= E∗ (2.73)

the rotational energy is equal to the excitation energy and the total density will fall

to zero. The plot JY (E∗) is usually referred to as the Yrast line, and determines the

maximum angular momentum for a given excitation energy E∗.

Finally, the last variable which is usually considered in this framework is the parity

distribution. Since the independent particle model does not provide any information

on the single particle states parity, it is always assumed that the numbers of states

with positive and negative parity are identical, and the expression for the LD, if not

integrated on both parities, needs an additional 1/2 factor.

To summarize, the final expression for ρ(A,E∗, Jπ) provided by the independent

particle model reads:

ρ(A,E∗, J) =
1

2
×
√
π

12

e2
√
a(E∗)

a1/4(E∗)5/4
× 2J + 1

2
√

2πσ3
exp

[
−(J + 1/2)2

2σ2

]
(2.74)

Possible improvements of this expression, consisting mainly in the inclusion of the

effects of the neglected correlations among nucleons in a more phenomenological

than exact approach, will be discussed in the following sections.

2.2.2 Shell Model and Monte Carlo Shell Model

In a Shell-Model Monte Carlo (SMMC) approach [57, 58] the dominant compo-

nents of realistic effective interactions, namely shell effects and the residual inter-

action, can be included at the level of the nuclear Hamiltonian H. The basic idea

of this approach is to partially overcome the limitations in the size of the model

space, which are characteristic when one needs to apply diagonalization techniques,

by the inclusion of fluctuating auxiliary fields, in which non interacting nucleons

propagate. The resulting ensemble exp(−βH) of interacting nucleon states can then

be seen as a coherent superposition of one-body propagators of non-interacting nu-

cleons moving in these external time-dependent fields, to which a gaussian weight is

attributed. The thermal average of an observable is calculated by the Monte Carlo

with a sampling of these external fields according to their weights. The expectation

value of the Hamiltonian itself corresponds to the thermal energy of the system,

which can be given as a function of the inverse temperature β:

E(β) = 〈H〉β (2.75)
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The partition function Z(β) is then determined by a numerical integration of E(β):

ln

[
Z(β)

Z(0)

]
= −

∫ β

0

dβ′E(β′) (2.76)

where Z(0) is the total number of states within the model space. The LD ρ is the

Laplace transform of Z, and it is calculated in the saddle point approximation as

given in eq.(2.45) and (2.46). Within this approach, also the dependence of the level

density and partition function on good quantum numbers such as parity, spin and

isospin can be investigated, by introducing the appropriate projection operators and

calculating projected observables.

Our main interest in describing the basic principles of this approach in this con-

text, consists in the fact that the results of the SMMC for the nuclear LD can still

be reproduced by the same functional dependences for ρ obtained in independent

particle calculations, provided that free fit parameters are left in the level density

expression [59, 60]. The free fit parameters are the LD parameter a and a pairing

shift ∆ in the excitation energy, which is introduced in order to take into account the

pairing gap in the spectra of even nuclei. Adapting these parameters to reproduce

the SMMC results for ρ provides us with microscopic calculations of the level density

parameter a, and of the pairing gap ∆. The typical degree of goodness of the results

for SMMC calculations of the LD and for the obtained microscopic parameters a

and ∆ as a function of the mass number A is evident from the examples of fig.(2.4).

We will discuss in the following that the inclusion of free fit parameters in the level

density formula is at the basis of very successful semi-empirical approaches, which

allow for a determination of the LD through comparison with experimental data

on low excitation energy spectra. The success of the same fit procedure in repro-

ducing also the SMMC results provides therefore a theoretical justification of these

approaches, and a strong indication of the fact that, if nuclear properties beyond

the independent particle model are correctly accounted for, the obtained expression

for ρ can be very well be adapted to describe the many-body correlated LD of real

nuclei.

2.2.3 Semi-empirical Level Densities

In the independent particle model nucleons are considered as non-interacting

particles and any correlation among them, other than the ones produced by the

self-consistent mean field, is ignored. In particular, only single-particle excitations

can be computed, leading to an underestimation of the LD. Indeed it is well known

that, together with single particle excitations, nuclear spectra contain also collective



52 2. Statistical Theory of the Compound Nucleus

Figure 2.4: Shell Model Monte Carlo calculations of level densities. Upper panel: level densities
of three iron isotopes (symbols). Also shown are the experimental level densities of 55Fe and
56Fe (solid lines). Lower panel: single-particle level density parameter a (left) and the backshift
parameter ∆ (right panels) versus mass number A for different isotopes. The SMMC results (solid
squares) are compared with experimental values (crosses) and empirical formulas (solid lines). Fig.
taken from ref.[58].

modes of rotational and vibrational type which can be described as coherent su-

perposition of many-particle-many-holes individual excitations. As we have stated

before, there are sophisticated approaches in which correlations are introduced at

the level of the nuclear hamiltonian, as in the Monte Carlo Shell-Model, in which

however the maximal temperature is limited by the the size of the chosen configu-
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ration space.

We have also anticipated that a good success in reproducing available experimental

data on LD can indeed be achieved using a more phenomenological approach. This

approach consists in adopting a LD functional form, which generally comes from

a correct derivation under some simplifying approximations. The LD expression is

then written in terms of various parameters which can be adjusted to provide agree-

ment with known densities and data.

An example of this approach is given by the inclusion in the independent particle

model of pairing correlations, which reflect the tendency of fermions to couple by

pairs. The effect of these correlations on the LD is that, for a given excitation

energy, the level density of an even-even nucleus is lower than the one of a neigh-

bouring even-odd nucleus, which in turn is lower with respect to the density of an

odd-odd system. The reason for this is that, as discussed in chapter 1, assuming

that all nucleons in an even-even nucleus are coupled by pairs, an additional amount

of energy have to be spent in order to break a pair and excite the nucleus. As far as

LD are concerned, this can be mimicked by the definition of an effective excitation

energy, shifted by an amount ∆, so that the LD with pairing correlations included

will be equal to the one of a system of independent particles calculated at the energy

(E∗−∆). This shift will correspond to the pairing gap which can be experimentally

observed in the excitation spectra of even nuclei, since the level density ρ(E∗) will be

zero for excitation energies lower than ∆ (with the exception of the value 1 for the

LD at the zero energy of the ground state). The result of the previous independent

particle LD calculation can be now re-written with the inclusion of the backshift ∆

as:

ρ(A,E∗, J) =
1

2
×
√
π

12

e2
√
a(E∗−∆)

a1/4(E∗ −∆)5/4
× 2J + 1

2
√

2πσ3
exp

[
−(J + 1/2)2

2σ2

]
(2.77)

where the spin cut-off σ has become:

σ = I
√
E∗ −∆

a
(2.78)

The Back-Shifted Fermi Gas Model (BSFG) approach [3] consists in using the ana-

lytical expression of eq.(2.77), leaving both the backshift ∆ and the LD parameter

a as free adjustable parameters for each nucleus of mass A. A good success in re-

producing data can be obtained for a LD parameter a(A) ≈ A/8 for A ∼ 40 [11],

which is bigger than the theoretical result a(A) ≈ A/12 MeV −1, and with a param-

eterization for ∆ as a function of mass number A:

∆ = χ
12√
A

(2.79)
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with χ = 0, 1 or 2 for odd-odd, odd-even or even even nuclei. Note that parameteri-

zation is the same as the one adopted for the pairing energy correction to the liquid

drop mass formula of eq.(1.1).

Another approach of phenomenological type is the one proposed by Gilbert and

Cameron [61], in which a different functional form is chosen to describe the density

in the low-energy region of nuclear spectra (E∗ . 5 MeV ), namely:

ρ(E∗) =
1

T0

exp

(
E∗ − E0

T0

)
(2.80)

which is called the Constant Temperature (CT) model, where T0 and E0 are also

free parameters. Eq.(2.80) obviously derives from the argument that the exponential

exp
√
aE∗ is the main factor governing ρ(E∗), and since a ∝ E∗/T 2, the LD comes

out to be proportional to exp(E∗/T ). The expression of eq.(2.80) is used to better

fit the the LD in the energy region where discrete resonances are measured, and it

has then to be matched continuously to the continuous region with the expression

for ρ(E∗) coming from eq.(2.77) [62].

Both these approaches still do not include an energy dependence for the LD pa-

rameter a, which makes them valid only up to low excitation energy. Besides being

justified theoretically as discussed in chapter 1, from an empirical point of view,

a parameterization of the type a(A,E∗) has indeed been shown to be necessary

in order to account for the shell effects, whose evidence is in the very low LD

parameter values needed to reproduce ρ for nuclei close to magicity. One of the

simplest prescription to deal with an energy dependent LD parameter a is the one

by Ignatyuk [4]. Ignatyuk formula is based on the correlation between the mass

evolution of the LD parameter and that of the so-called shell-correction S(Z,N), i.e

the difference between the experimental mass of the nucleus and the one calculated

with a liquid-drop parameterization. The proposed expression reads:

a(E∗, Z,N) = ã(A)

[
1 + S(Z,N)

1− exp(−γE∗)

E∗

]
(2.81)

with γ > 0, such that the effect of S(Z,N) in determining how a(E∗, Z,N) reaches

the asymptotic mass-dependent values ã(A) = αA + βA2/3 vanishes with increas-

ing excitation energy. Parameters α,β and γ are global best fit parameters, i.e.

the ones giving the best description of LD over a whole range of nuclides. For in-

stance, evidences for the change in the LD parameter with E∗ were found in the

mass region A ∼ 120 − 160, where a transition from a constant value of A/8 to

ã(A) ≈ A/11− A/13 is needed in order to reproduce evaporation data [9, 10].

Finally, always in the framework of a phenomenological approach, also the effects
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on the LD of collective properties as nuclear vibration or rotation can tentatively

be reproduced. It can be shown that these kind of coherent excitations of fermions

do enhance the LD, which can be mimicked by the inclusion of enhancement factors

damped with increasing excitation energies [63, 64].

Concluding, for any practical application of the statistical model, it is very impor-

tant to obtain parameters of the LD from reliable experimental data. Huge projects

of systematics of these parameters and of their applications to different tasks were

- and are being carried out, providing us with complete online libraries with fitted

experimental data and theoretical calculations [65, 66]. As an example, a system-

atics for phenomenological LD parameters determined in ref.[67] for more than 300

nuclei and with three different LD models (namely, BSFG model with constant LD

parameter, BSFG model with energy dependent LD parameter and CT model) is

reported in fig.(2.5).

It is important to notice however, that the available experimental techniques (which

will be listed at the end of this chapter) provide us information on LD in a limited

excitation energy range. This is the reason why the parameters systematics is of

great importance, since it allows to extrapolate the obtained parameterizations to

the higher energy range or even to nuclei for which no experimental data on LD are

available, as the ones far from stability.

2.2.4 Nuclear Level Density at High Excitations

In the previous section we have seen that, in the framework of a phenomenolog-

ical approach, it is possible to extend the validity of the independent particle model

result for ρ(E∗) up to relatively high energies, provided that an appropriate energy

dependence of the LD parameter a(E∗) is chosen. In any case we have to be aware

of the fact that, even for a functional form for a(E∗) of the type of eq.(2.81), the

domain of validity for ρ(E∗) has to be upper limited: if the level density is coming

from the counting of all the possible configurations of the given CN, it may also con-

figurations with an excitation energy considerably in excess of the nuclear binding

energy. The inclusion of such configurations in the LD of an equilibrated system is

clearly questionable. An alternative way of seeing the necessity of a cutoff for the

LD is to observe that highly excited states, decaying by emission of a successive

chains of single-particle emissions, are not strongly coupled to compound nuclear

states, or, viewed in the time-reversed sense, the probability of emission of a high

energy particle from a compound state is very small.

Shell Model calculations of the LD with a restricted scheme of bound (and qua-
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Figure 2.5: Phenomenological LD parameters determined in [67], for 310 nuclei between 18F

and 251Cf , by fitting of the complete level schemes at low excitation energies and s-wave neutron
resonance spacings at the neutron binding energies. Results are given for three models, from left
to right: Back-Shifted Fermi Gas model with constant LD parameter, fit parameters (a,∆); BSFG
model with energy dependent LD parameter, fit parameters (ã,∆); Constant Temperature model,
fit parameters (T,E0).

sibound) single particle states show indeed a decrease of the ρ(E∗) for increasing

excitation energies beyond 8− 10 A.MeV [68].

While all these arguments make an upper cutoff necessary, they do not give a defini-

tive prescription for where it should really be. Of course such a cutoff is necessary

only for applications at energies in which the evaporation channel is far from being

the dominant one. As we have stated in the introduction of this chapter, doing

the assumption of a decay governed by statistical laws, the outgoing channel is

determined by the density of final available states. At such high energies the dis-

appearance of CN states is indeed compensated by the increasing statistical weight

of configurations in which the source, instead of emitting (also sequentially) single
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nucleons or fragments, undergoes an instantaneous break-up into more fragments.

Thus factors as the number of fragments in the final state, their total kinetic energy

or the combinatorics of placing them into a given space volume become determining

for the choice of the final configuration. This kind of events are called multifragmen-

tation events, and the onset of this phenomenon determines the limiting excitation

energy at which a given nucleus can exist. It comes out, as it will be later dis-

cussed, that these limiting energies are lower than the nuclear binding energies, at

least for nuclei with a mass bigger than A = 40 [39]. A usual way of implementing

an independent particle ρ(E∗) in multifragmentation applications [69] is to add an

exponential cutoff, obtaining an expression of the type:

ρ(E∗) = ρIP (E∗) exp−E∗/τ (2.82)

where high energy constraints come from the necessity of reproduction of experi-

mental or theoretical limiting energies.

We have also to notice that, because of the high excitation energy, structure ef-

fects in the ρIP (E∗) are usually neglected, together with the dependence on angular

momentum. It is clear at this point that the treatment of the LD is not unique,

according to the different applications.

2.2.5 Experimental Methods to determine the Level Den-

sity

Since we have stated in the previous sections that a successful approach to the

LD calculation is of phenomenological type, we want now to discuss briefly which

are the main methods providing us LD data to constrain the parameterizations we

want to use.

Experimental information on LD can be obtained:

• from counting of resolved discrete levels, measured with γ- or charged particle

- spectroscopy techniques. This method is only effective at low excitation

energy, below or at about the particle emission threshold, and requires of

course high energy resolution detectors;

• from counting of neutron resonances. This method provides information on LD

at about the neutron separation energy, in a narrow spin range (for incident

low-energy, neutrons s-waves, i.e. with ` = 0, are mainly contributing the

resonance-reaction) and a single parity;
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• from evaporation spectra in CN reactions. This is actually the only method

providing us information on LD at energies higher than the particle emission

threshold. LD are indeed an essential ingredient of statistical calculation for

the evaporation of the CN, and if the contribution of this reaction mechanism

can be safely discriminated from other kinds of reactions (as the direct or in-

elastic channel), the experimental energy spectra of emitted particles can be

compared to model predictions, providing us an indirect experimental deter-

mination of LD:

ρEXP = ρTH
dσ/dEEXP
dσ/dETH

(2.83)



Chapter 3

The Statistical Decay Code

This chapter is concerned with the practical application of the Hauser-Feshbach

formalism to the problem of sequential evaporation of the compound nucleus. A

Monte Carlo Hauser-Feshbach code has been developed in the framework of this

thesis, and the implementation of the decay model is discussed in the first part of

this chapter. A special attention has been paid to the choice of realistic parameteri-

zations for the nuclear Level Density (LD), which is a fundamental ingredient of any

statistical calculation. The level density model implemented in the code is described

here in details. A full description of the treatment of angular momentum is also pre-

sented, being this aspect specific to the Hauser-Feshbach formalism. At the same

time, some features of the GEMINI++[75] binary decay code are discussed, under-

lining the differences between the parameterizations for the physical quantities of

interest implemented in GEMINI and the ones we have adopted for our decay code.

Thanks to the choice of level densities highly constrained to experimental data and,

as it is later explained, to the inclusion of all available experimental information

on low-energy excitation spectra, the newly developed code is intended to be best

suited to perform calculations for the decay of equilibrated light nuclei, for which we

expect a strong influence of nuclear structure effects even at high excitation energy,

whose signature is evident in experimental observables. Our interest in light nuclei

also justifies the particular attention paid to the level density model with respect to

other ingredients of the statistical code, as transmission coefficients and Coulomb

barriers, for which rather simple expressions have been chosen. These latter quan-

tities are indeed the main uncertainty source for medium and heavy nuclei, but are

quite under control for light nuclei, and their effects on predicted observables can

be easily disentangled.

In the second part of this chapter, we show the results of calculations performed with
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our Hauser-Feshbach code and propose different observables related to the thermal

behaviour of light nuclei. In this thesis, we discuss the data analysis and present

preliminary results for the reaction 12C +12 C at 95 MeV beam energy, measured

with the GARFIELD+RCo apparatuses at LNL-INFN. The Compound Nucleus

(CN) issued in case of complete fusion for this reaction is 24Mg at an excitation en-

ergy of e∗ ∼ 2.6 A.MeV . With the perspective of comparing the predictions of our

statistical code to experimental data, we have performed calculations for the decay

of 24Mg at the same energy and angular momentum conditions (specified later on)

which we expect to have for the equilibrated fused system in the measurement. To

pursue a more general investigation on the statistical properties of light nuclei and

contribute to future experimental proposals , we have also made calculations for

the decay of the same system at different input energies, always in the excitation

region e∗ ∼ 3 A.MeV . In order to check the dependence of calculated observables

on the physical ingredients entering the decay model, we also present calculations

with different values of the code input parameters.

3.1 Monte Carlo Implementation of

the Decay Model

The expression for the decay width in channel ξ for a compound nucleus in its

state C (specified by the energy E∗ and the angular momentum J) in the framework

of the Hauser-Feshbach model has been derived in the previous chapter and reads:

ΓCξ =
1

2πρC(E∗, J)
·
∫ E∗−Q

0

dεξ
∑
Jd

J+Jd∑
j=|J−Jd|

j+sp∑
`=|j−sp|

T Jj,sp(εξ) · ρd(E
∗ −Q− εξ, Jd)

(3.1)

where εξ is the relative kinetic energy of decay products, i.e. the daughter nucleus

(whose properties are labelled by d) and the evaporated particle (labelled by p). For

sake of simplicity, with respect to the equation given in chapter 2, we have dropped

the subscript ξ on all the channel dependent quantities, and we have adopted a

different notation for the angular momenta which will be made clear in the following.

Calculating the widths ΓCi for all the possible decay channels, we can define the

Branching Ratio (BR) associated to a specific channel ξ as the ratio between ΓCξ
and the total decay width for the CN:
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BRC(ξ) =
ΓCξ∑
i Γ

C
i

(3.2)

The quantity BRC(ξ) is therefore the probability for the excited CN to decay

via channel ξ, i.e. via the emission of particle (Ap, Zp), leaving a daughter nucleus

(Ad, Zd). This probability depends on all the physical quantities entering eq.(3.1),

and it constitutes the main ingredient of the Monte Carlo simulation. It is interesting

to notice that the LD of the CN nucleus ρC(E∗, J) does not really enter in the

calculation of the BR, since the factor (1/2πρC) is the same in the width ΓCξ and

in all the widths in the denominator of eq.(3.2). Therefore, the relevant LD is only

the one of the daughter nucleus ρd(E
∗
d , Jd)

1.

In this section we describe the main decay algorithm for the implementation of the

Hauser-Feshbach decay model given by eq.(3.1). The decay channels implemented

in the code are the evaporation of a light particle or of a charged fragment (always

in their ground states), among:

n, p, d, t, 3He, α, 6Li, 7Li

In this first version of the code, γ-emission is not explicitly implemented: the un-

derlying hypothesis is that, above particle emission thresholds, γ-emission is not

competitive with respect to charged particle decay. Nevertheless, γ unstable lev-

els under the threshold for particle emission are part of the database and can be

populated in calculations for complete decay chains. Their further decay does not

modify the isotopic yields and does not need to be considered for our purposes.

Consequently, in the case of a multi-step decay calculation, the decay chain starting

from the initial hot source is stopped whenever an excitation energy lower than the

particle emission threshold for the evaporation residue is reached.

These emission thresholds (the decay Q-values) determine the energy interval of in-

tegration in eq.(3.1) because of energy conservation. In the code, they are calculated

from experimental binding energies taken from Audi and Wapstra compilation [70].

Input for the calculation are the properties of the decaying CN source: its mass

and charge numbers (A,Z), its excitation energy E∗, the initial value of the angular

momentum quantum number J , the initial orientation of the classical vector J in

the Center-of-Mass Reference-Frame (CM RF) of the system (i.e. the system with

z-axis parallel to the velocity of the beam).

1As already commented in chapter 2, the (2J + 1) spin degeneracy factor is not included in the
level density ρ entering equation (3.1). In the following, when needed, we will refer to the effective
number of states (2J + 1)ρ(E∗, J) as to the nuclear state density.
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A complete decay chain calculation is therefore a series of successive binary decays,

in which at each step a new decaying source is defined, inheriting the characteristics

of the evaporation residue of the previous step. Mass, charge and excitation energy

of the new source are coming from conservation laws, also the angular momentum

vector is conserved, and how the changes in its module and orientation are taken

into account at each decay will be discussed in the following.

In a fusion reaction the angular momentum J of the created CN is the result of the

couplings of different momenta in the entrance channel: the spin of the target and

the projectile and the orbital angular momentum of the incoming projectile. In the

very same way, at each evaporation step, we have a decomposition of the initial J

of the decaying source into different angular momenta subject to conservation laws.

Angular momentum vectorial couplings in the decay are specified by the following

equations:

J = Jd + j (3.3)

j = ` + sp

meaning that the orbital angular momentum of the decay ` and the spin of the evap-

orated particle sp are coupled to the vector j (dependent on the decay channel), and

the daughter nucleus can be left with every possible value of its angular momentum

quantum number Jd coming from the coupling of J − j. The angular momentum

Jd of the daughter nucleus may differ from its ground state spin, since the daughter

nucleus can still be excited. The upper limit Jplus for the angular momentum of

a given evaporation residue with excitation energy E∗d comes from the Yrast line

limitation, i.e. E∗d ≤ E∗yrast with:

Jplus(Jplus − 1)~2

2Id
= E∗yrast (3.4)

where Id is the moment of inertia of the daughter nucleus, which, assuming a rigid

spherical rotator, is given by:

Id =
2

5
m0c

2AdR
2
d (3.5)

with Rd = R0A
1/3
d and R0 = 1.2 fm. The lowest value Jlow the angular momentum

can assume has to be either 0 or 1/2, depending on the residue being an even- or

odd-mass nucleus.

Once the decay channel is selected by the Monte Carlo according to its weight

BRC(ξ), the relative kinetic energy of the emitted particle and the evaporation
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residue has to be drawn up according to the same distribution which is integrated

for the calculation of the branching ratio. From the derivation of eq.(3.1) presented

in chapter 2, we know that the integrand term in the calculation of the BR can be

seen as the probability distribution p(εξ) for the relative kinetic energy of the decay

products in the outgoing channel. In order to extract a value for εξ, we calculate

the maximum value max [p(εξ)] and perform an extraction of εξ according to its

distribution with the acceptance-rejection method.

At this point of the calculation, we are left with an evaporation residue of given

mass, charge and excitation energy, coming from the energy conservation law:

E∗d = E∗ −Q− εξ (3.6)

We want now to check if, following the decay, the daughter nucleus has a residual

excitation energy such that the discrete part of its spectrum is reached.

To this aim, we have to store all the information concerning discrete experimental

levels in a database accessed by the code at each decay calculation. The source of

this information is the online archive NUDAT2 [71], and for each nucleus a com-

plete list of level energies, energy widths and spins are read and stored in memory,

indexed by a progressive counter [lev]. We have to be aware of the fact that the

experimental determination of nuclear levels is subject to some indetermination, es-

pecially concerning the measurement of high lying resonances, and the attribution

of their energy, width and spin. This is reflected in the fact that, if we plot the

quantity dn/dE∗ (shown in fig.(3.1) for two chosen isotopes), defined as the num-

ber of measured levels stored in NUDAT2 in bins of excitation energy for a given

isotope, we systematically find an energy beyond which this density distribution

starts decreasing. Since this cannot be due to the physical behavior of the LD at

energies lower than the limiting energy (which, as discussed in the following, can be

assumed to be equal to the binding energy for nuclei with A . 40), we attribute

the observed decrease to the lack of experimentally resolved high-lying levels, due

to the physical emergence of the continuum. We define therefore for each isotope

the matching energy between the discrete and the continuum part of the spectrum

Ematch(A,Z), as the excitation energy maximizing the density dn/dE∗(A,Z).

Given this definition, our assumption is that, for energies lower thanEmatch(A,Z),

measured discrete levels completely exhaust the physical level density ρ(E∗). This

assumption translates in a strong requirement on the LD model to be implemented

in the code, which has to provide functional forms for ρ(E∗) good enough to fit

the experimental counting dn/dE∗ in the low energy region. Our choice for the LD

model is discussed in the next section.
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Figure 3.1: Number of measured levels stored in NUDAT2 in bins of excitation energy (dn/dE∗

in the text, blue histograms) for 16O and 20Ne; corresponding cumulative distributions are given
in black. The red arrow shows the maximum of the dn/dE∗ distribution, defined as the matching
energy Ematch(A,Z).

If we additionally define for each isotope the energy Elast(A,Z) of the highest en-

ergy level listed in NUDAT2, with Elast(A,Z) ≥ Ematch(A,Z), we are left with three

excitation energy regions:

• the discrete region, defined by E∗ ≤ Ematch. If the daughter nucleus is pop-

ulated at an energy E∗d which falls in this energy region, it means that it has

to be populated in one of its discrete levels. We check therefore which is the

level nearest to the selected residual energy, denoted by E
∗[lev]
d , and populate it

attributing to the daughter nucleus an excitation energy extracted according

to the Breit-Wigner distribution of that level:

BW (E∗
′
) =

1

2π

Γ[lev](
E∗′ − E∗[lev]

d

)2

+
(

Γ[lev]

2

)2 (3.7)

In order to keep the total energy conserved, it will be necessary at this point to

increment the selected εξ by the difference between the first calculated residual

energy and the new extracted one. The spin Jd of the daughter nucleus is easily

obtained, and it corresponds to the spin of the selected energy level;
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• the continuum region, defined by E∗ > Elast. The daughter nucleus is popu-

lated in one of its continuum states, at the selected energy E∗d . The continuum

hypothesis lies therefore in the assumption that E∗ is a continuous variable,

which can assume any selected value. The only missing information at this

point is the angular momentum Jd of the evaporation residue. This angular

momentum can be drawn up according to a distribution given by ρd(E
∗
d , J

′)

as a function of J ′. This suits the statistical assumption of a decay governed

by the number of states available in the final channel, since the most probable

value resulting from the extraction will be the one maximizing the LD of the

daughter nucleus. In the following section we will show the results of this

prescription for the spin distribution of evaporation residues;

• the energy region in-between, i.e. with values of excitation energy in the range

Ematch < E∗ ≤ Elast, which may be called a “hybrid” region. In this energy

region we have some experimental information on measured levels, but the

counting of discrete resonances cannot exhaust the level density ρ(E∗), since

measured levels are too few and their experimental determination is subject

to great indetermination. We may want to treat the “hybrid” region as if

there were no discrete levels at all in this energy range, and therefore keep

the selected E∗d for the daughter nucleus and treat it as a nucleus excited

in one of its continuum states. But we may also be somewhat interested in

having high energy levels populated in a calculation, and compute therefore

a population probability for the level E
∗[lev]
d in proximity of the selected E∗d ,

with respect to the probability of populating a continuum energy state at the

exact energy E∗d . Therefore, the population of discrete states in this region is

left as an option in the code. If this option is enabled, two different weights are

associated to the population of the residual nucleus in the discrete level E
∗[lev]
d

or in its continuum state at E∗d . In principle, the weight wdiscr associated

to the population of the hybrid region in the discrete should be given by

the ratio of the state densities coming from the experimental counting (2J +

1)dn/dE∗ and from the continuum expression (2J + 1)ρ(E∗), evaluated at the

selected residual excitation and angular momentum. The discrete nature of

dn/dE∗ makes a wiser calculation necessary, and we have therefore adopted the

following prescription: we first define the cumulative distributions (integrated
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over energy and angular momenta) of the two state densities:

%(E ′) =

∫ E′

0

Jplus∑
J=Jlow

(2J + 1)ρ(E∗, J)dE∗

N(E ′) =

E∗ [lev]≤E′∑
E∗ [lev]=0

(2J [lev] + 1)
dn

dE∗ [lev]

(3.8)

and evaluate them at the two extremes of an energy interval of 1 MeV centered

on the selected E∗d . The numerical derivatives of these quantities at E∗d are:

d%(E∗)

dE∗
(E∗d) =

%(E∗d + 0.5)− %(E∗d − 0.5)

1
dN(E∗)

dE∗
(E∗d) =

N(E∗d + 0.5)−N(E∗d − 0.5)

1
(3.9)

and the weight wdiscr(E
∗
d) is given by:

wdiscr(E
∗
d) =

dN(E∗)/dE∗(E∗d)

d%(E∗)/dE∗(E∗d)
(3.10)

since the continuum LD includes experimental levels entering in the dn/dE∗

of the hybrid region. It is easy to see that, if no measured resonances fall in

the interval of integration of 1 MeV centered on the selected residual energy

E∗d , the weight wdiscr is zero. In general, because of the large absolute value

of the continuum LD and because of the few number of experimental levels

in this excitation energy range, the net result of this prescription is that the

hybrid region is mostly populated in the continuum. Nevertheless, it has been

worthwhile to implement a specific treatment of the hybrid region, because

this option may allow us to perform dedicated calculations for the study of

the decay of a scarcely populated high lying energy level of a given isotope

of interest. In order to do this, it is sufficient to force the population of this

level by attributing to it a weight wfixdiscr = 1, and then to weight the results of

the decay calculation by the real population weight wdiscr obtained with the

above described prescription. This procedure allows an exact and numerically

accessible calculation of extremely rare decay processes.

Concerning the angular momentum selection, Jd is automatically chosen to be

the one of the selected level if the discrete is populated, or it is extracted with
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the same prescription of the continuum in the alternative case.

Finally, we want to notice that the formalism of this weight calculation nicely

extends to a global characterization of the three excitation energy regions in

which we have subdivided the full range of E∗, always under the condition of a

continuum level density fitting the low energy part of nuclear spectra up to the

Ematch. If this is verified, it is easy to understand that the same prescription

of eq.(3.10) will give wdiscr(E
∗) = 1 for E∗ ≤ Ematch, 0 < wdiscr(E

∗) < 1 for

Ematch < E∗ ≤ Elast (hybrid region), and finally wdiscr(E
∗) = 0 for E∗ > Elast,

because of the zero derivative of the flat cumulative distribution of experimen-

tally measured levels.

    

    nucleus 
  (A,Z,E*,J) 

Selection of the BR(p)
 (Ap,Zp, relative ekin) 

Evaporation
Residue

(Ad,Zd,E*d)

E*d < Ematch
    DISCRETE
   [lev] selected
BW(E*[lev]),J[lev]

   Ematch< E*d < Elast
                 HYBRID
          W discr calculated

         E*d > Elast
             CONTINUUM
                    E*d,Jd

    DISCRETE
   [lev] selected
BW(E*[lev]),J[lev]

               CONTINUUM
                    E*d,Jd

 E*< Sp
gamma emission
      STOP

      

HOT
 E*> Sp

Figure 3.2: Scheme of the main decay algorithm implemented in the code.

A scheme of the above described algorithm is shown in fig.(3.2). We have to spec-
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ify that, if no experimental information on discrete levels is available, the decay is

always described in the continuum approximation. If the information is only partial

but we still want to make use of it, we have to establish some rules to complement

it. For instance, in our database, if the width of an energy level is not known, we

simply put Γ[lev] = 5 MeV , assuming that the uncertainty on the determination

comes from the large energy spread of the level.

In the decay calculations, to keep memory of the population of discrete levels in the

decay chain, a dedicated CDL(A,Z, [lev]) counter exists in the code and it is incre-

mented each time a nucleus is populated in its level indexed by [lev]. This allows us

to study the population of states of the nuclei produced in the whole evaporation

process. The final aim of storing this information is the possibility of comparing the

code predictions for the discrete states population at the last but one step of the de-

cay chain with the experimental information coming from reconstructed resonances

through the correlation function technique. The population of nuclei in their ground

state (and bound excited states) is then checked to be coherent with the abundance

of a given nucleus as evaporation residue.

At this point, having discussed the general algorithm for the population of nuclear

excitation spectra along the decay chain, we need to define the physical ingredients

entering eq.(3.1).

The next section of this chapter is devoted to the description of the LD model.

For the transmission coefficients in eq.(3.1) we adopt the same expression of ref.[72],

in which the authors propose a typical parameterization of barrier penetration fac-

tors, written in terms of the relative kinetic energy of decay products and of a

potential energy barrier, with two free parameters depending on the charge Zp of

the evaporated particle. These parameters can be adapted to provide the best de-

scription of experimental evaporation data and are optimized to reproduce the decay

of discrete resonances. The expression for the barrier, which is the sum of a Coulomb

and a centrifugal term, reads:

Vb =
1.44

rZ

Zp(Z − Zp)
(A− Ap)1/3 + A

1/3
p

+
~2`(`+ 1)

2r2
Z

A
Ap(A−Ap)[

(A− Ap)1/3 + A
1/3
p

]2 (3.11)

where (A,Z) are the mass and charge numbers of the parent nucleus and rZ is one

of the free parameters. The parameterization used for the transmission coefficient

is:

T`(εξ) =
1

1 + exp
(
Vb−εξ
δ·Vb

) (3.12)

where δ is the second free parameter, whose value is different depending on the
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emission taking place in the sub- or above-barrier region:

δ = δ1 if εξ > Vb (3.13)

δ = δ2 else

Numerical values of rZ , δ1 and δ2 proposed in ref.[72] are reported in the following

table.

Zp 0 1 2 3 4 5

rz 1.62 1.62 1.57 1.57 1.55 1.53

δ1 0.60 0.25 0.07 0.08 0.05 0.04

δ2 0.10 0.09 0.07 0.06 0.03 0.02

The ` value resulting from angular momentum couplings in eq.(3.1) enters as

an argument in the routine evaluating the transmission coefficients, hence the de-

pendence of these coefficients on all angular momenta which is made explicit in the

notation T Jj,sp .

More sophisticated approaches are proposed in the literature for the calculation of

transmission coefficients, which usually make use of optical model fit to elastic scat-

tering data. As an example, we will later comment on the transmission coefficients

implemented in GEMINI++.

3.2 Level Density Model

The choice of the level density model to be implemented in the Hauser-Feshbach

code was driven by the will of including, in a coherent way, all the available ex-

perimental information on low energy discrete spectra. In some statistical models,

a constant temperature formula for the LD is used, in order to take into account

the discrete part of the energy spectrum [62]. The expression coming from the con-

stant temperature model has then to be matched continuously to a reliable model

for higher excitation energies, as a back-shifted Fermi gas model. As discussed in

chapter 2, within a phenomenological approach, the BSFG model, with the LD pa-

rameter and the pairing backshift left as free fit parameters, is very well suited to

the description of the many-body correlated nuclear level density: pairing effects are

included through the backshift, and all correlations are taken into account in the

renormalization of the LD parameter a(E∗). In ref. [67] it is shown that the BSFG

model also allows an excellent fit of the complete low-lying level schemes. Then

the question arises, if the same functional form can be used to describe the nuclear
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LD at any excitation energy, provided that through an appropriate renormalization

of a(E∗, A) we are able to match correctly the two energy regimes: the low energy

regime in which the LD is strongly affected by structure effects and the higher energy

regime in which we have experimental constraints from fusion-evaporation data.

3.2.1 Systematics of nuclear level density parameters

We have chosen to implement in the code the level density model presented

in [67], where the parameters of the nuclear level density for the backshifted Fermi

gas model (with energy dependent level density parameter a) have been determined

for 310 nuclei between 18F and 251Cf , by the fit of complete level schemes at low

excitation energies and s-wave neutron resonance spacings at the neutron binding

energies.

The variations of these phenomenological parameters for the set of nuclei of inter-

est were then studied and correlated with those of other physical observables. The

considered observables are such that they are both well experimentally known quan-

tities, available from mass tables for a large set of nuclei, or quantities accessible with

reliable theoretical calculations or extrapolations from existing data. In such a way,

from the observed correlations, the authors were able to propose simple formulas for

the parameters entering the LD calculation, whose results allow for a description of

the main features of empirical low energy spectra. These formulas are also proposed

as reliable means for the extrapolation of level density parameters to exotic nuclei,

as well as for nuclei which were not part of the studied data set.

The level density model presented in [67] perfectly matches therefore our requests:

• possibility to fit the low energy spectroscopic information with the same func-

tional form known to be adequate to the description of the high energy behav-

ior of the level density;

• explicit inclusion of experimental levels for light nuclei in the fit procedure;

• good reproduction of the low energy information for light nuclei not included

in the studied data set (as it is later shown in this section), by means of

extrapolation with the proposed formulas for the level density parameters.

Not entering into the details of the experimental data-fitting procedure, we give

hereafter the formulas of the phenomenological model used. The LD dependence on

the excitation energy E∗, angular momentum J and parity π is assumed to have a

separable form:

ρ(E∗, J, π) =
1

2
ρ(E∗)f(J) (3.14)
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where the factor (1/2) accounts for the hypothesis of equipartition of the two parity

states, and the angular momentum dependence is given by:

f(J) =
2J + 1

2σ2
e−J(J+1/2)/2σ2

(3.15)

where σ is the spin cut-off factor, for which an energy dependent parametrization

will be later reported.

The expression for ρ(E∗), after integration on J and π under the normalization

conditions: ∑
π

1

2
= 1

∞∑
J=0

f(J) = 1

reads:

ρ(E∗) =
exp[2

√
a(E∗ − E2)]

12
√

2σa1/4(E∗ − E2)5/4
(3.16)

where the energy backshift E2 is left as a free parameter in the data fitting, and

the functional form a(E∗) has also to be adapted to data and contains the second

free parameter, as we discuss in the following. The level density ρ(E∗) is then

chosen to be zero if 0 < E∗ ≤ E2. Moreover, since the function exp(2
√
ax)x−5/4

has a minimum at x = (25/16)/a, ρ(E∗) is assumed to be constant below (E∗ −
E2) < (25/16)/a, which does not influence the final results on the quality of the fit

according to the authors. We have indeed verified that the choice of a constant level

density value in this energy range, which could be for instance either ρ(E∗) = 0

or ρ(E∗) = ρ(E∗ − E2 = (25/16)/a), concerns only few low-lying levels, typically

γ-unstable bound excited states. Therefore this choice does not affect the quality

of the parameterizations proposed in [67] for our statistical decay calculations, as

far as we can drop the information on the population of these few bound states.

Finally, ρ(E∗) has to be one at zero energy, where the only available state is the

nuclear ground state.

The proposed expression for the spin cut-off parameter as a function of the energy

E∗ reads:

σ2 = 0.0146A5/3 1 +
√

1 + 4a(E∗ − E2)

2a
(3.17)

and the backshift E2 and the LD parameter a(E∗) are entering the calculation of

σ2. For the LD parameter a(E∗, Z,N), a phenomenological expression as the one
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proposed by Ignatyuk [4] has been chosen, in order to include an energy depen-

dence able to reproduce the damping of shell (and pairing) effects at high excitation

energies:

a(E∗, Z,N) = ã

[
1 +

S(Z,N)− δEp
E∗ − E2

f(E∗ − E2)

]
(3.18)

where ã is the asymptotic value of the a parameter at high excitation energies, and:

f(E∗ − E2) = 1− e−0.06(E∗−E2) (3.19)

The term S(Z,N) is the so-called shell correction, defined as:

S(Z,N) = Mexp(Z,N)−MLD(Z,N) (3.20)

where Mexp is the experimental mass and MLD is the mass calculated with a macro-

scopic liquid drop formula for the binding energy not including any pairing or shell

correction. The asymptotic value ã is thus the second free parameter in the data fit-

ting and the variation of a(E∗) is correlated to shell and pairing effects. More specif-

ically, given the nuclear binding energy as Eb(N,Z) = [NMn +ZMp −M(N,Z)]c2,

the liquid drop formula used to calculate the shell correction reads:

− Eb
A

= avol + asfA
−1/3 +

3e2

5r0

Z2A−4/3 + (asym + assA
−1/3)

(
N − Z
A

)2

(3.21)

with the following parameter values (fitted to about 2000 mass values): avol =

−15.65 MeV , asf = 17.63 MeV , asym = 27.72 MeV , ass = −25.60 MeV and

r0 = 1.233 fm. Since the pairing correction term is missing in the chosen liquid

drop formula, the shell correction term is further shifted by δEp in eq.(3.18). The

best results for the fit of experimental excitation spectra were obtained considering

a pairing term linked to the so-called deuteron pairing Pd, which is on turn written

in terms of deuteron separation energies Sd:

δEp =


+0.5Pd for even− even

0 for odd−A

−0.5Pd for odd− odd
(3.22)

where:

Pd =
1

2
(−1)Z [Sd(A+ 2, Z + 1)− Sd(A,Z)] (3.23)

As a result of the fit procedure, the authors in [67] provide a complete table of

values for the empirical parameters ã and E2 for all the nuclei in the studied data

set. The global behaviour of these parameters is then investigated.
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The parameter ã is found to be rather similar to that of other comparable evalua-

tions [73], although its absolute values correspond to the particular approach in [67].

In this approach, the strong dependence on shell effects of the LD parameter is taken

into account in the functional form for a(E∗), so that ã shows a very gentle behaviour

as a function of mass number A, and ã(A) can be fitted by a linear dependence with

a small quadratic correction.

The parameter E2 has, generally, a more complicated behaviour, and its variation

is found to be correlated to both shell and pairing effects. In particular a strong

correlation with the derivative dS(Z,N)/dA of the shell correction with respect to

mass number A was put in evidence. This quantity can be calculated from mass

tables in different ways, as for instance:

dS(Z,N)

dA
= [S(Z + 1, N + 1)− S(Z − 1, N − 1)] /4 (3.24)

The formula for the fit of E2(A,Z) is then chosen as simple as possible, namely, a

quadratic combination of dS(Z,N)/dA and Pd.

A summary of the proposed formulas for both ã and E2 is reported in the following

table.

Formula Parameters Type of Nuclei

pl ps
ã/A = pl + psA 0.127(1) −9.05(53) 10−5 All

p1 p2 p3

E2 = p1 − 0.5Pd + p4
dS(Z,N)
dA

-0.48(3) -0.57(2) -0.24(4) even-even

= p2 − 0.5Pd + p5
dS(Z,N)
dA

p4 p5 even Z-odd N

= p2 + 0.5Pd − p5
dS(Z,N)
dA

0.29(11) 0.70(11) odd Z-even N

= p2 − 0.5Pd + p5
dS(Z,N)
dA

odd Z-odd N

Table 3.1: Summary of formulas proposed in [67] for the description of the BSFG model with
energy dependent LD parameter a. The dimensions of the different pi constants are such that ã is
in MeV −1 and E2 is in MeV .

Results of the fit to LD empirical parameters with these formulas are shown in

fig.(3.3).

In fig.(3.4) we compare for chosen isotopes the cumulative level densities, obtained

by integration of eq.(3.16) with parameters from these formulas, to the cumulative

distributions of experimental levels N(E∗). The quality of the proposed LD model

in reproducing experimental spectra is evident, and it is also clear that formulas
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proposed in [67] can be considered reliable also for nuclei which are not part of the

fitted data set, as it is the case for 12C and 16O.

The BSFG model level density with parameters calculated according to [67] is rec-

ommended up to the neutron binding energy (or a slightly higher energy), which

corresponds to the energy range of experimentally measured levels used for the fit.

The authors state in the conclusions of their work that the proposed model may

even be reliable up to higher energies (≈ 15 − 20 MeV ), because it contains the

recommended damping of shell and pairing effects with increasing excitation energy.

In the following, we will address the problem of finding an expression for the ex-

trapolation of a(E∗, Z,N) at even higher energies.

Figure 3.3: Fits to the BSFG model parameters ã and E2 obtained with empirical formulas
reported in table 3.1. The same phenomenological best-fit parameters were already shown in
chapter 1, as an example of the application of the BSFG model to level density calculations.
Figure taken from ref.[67].
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Figure 3.4: Comparison between the cumulative number of levels, calculated with ρ(E∗) from
eq.(3.16) (lines), with ã and E2 coming from the formulas given in table 3.1, and the cumulative
counting of experimentally measured levels from the NUDAT2 archive (histograms). For 12C and
16O the values of ã and E2 are an extrapolation of the formulas proposed in [67] out of the fitted
data set, and the cumulative level density is given by a red dashed line; 19F ,20Ne,24Mg and 28Si

are part of the fitted data set, and the cumulative level density is given by a continuous line.

3.2.2 Match of the Level Density to Higher Energy

As described in the previous section, the authors of ref.[67] provide us with a

reliable semi-empirical model to calculate the level density up to maximum 15 −
20 MeV of excitation energy. We could think of this limitation in the following

terms: below this energy limit, the parameters entering the LD calculation in the

BSFG model are strongly affected by structure effects, as pairing and shell effects.

The results for ã and E2 presented in [67], where these parameters are optimized

to describe low energy data, bear therefore a strong signature of these effects. For

higher energies, structure effects are supposed to be less relevant. The transition

between these two energy regimes can be mainly ascribed to the variation of the LD

parameter a with the excitation energy, since the backshift energy, which is needed to

reproduce the energy position of the first excited level, becomes negligible as soon as

E∗ >> E2 in eq.(3.16). As we have stated before, eq.(3.18) for a partially accounts

for the vanishing of shell and pairing effects as the excitation energy increases, but



76 3. The Statistical Decay Code

the function a(E∗) keeps memory of structure effects at any energy, because its

convexity is uniquely determined by the sign of the term S(Z,N) − δEp and the

asymptotic value ã itself is obtained with the purpose of fitting low energy data.

We can consider an alternative parametrization for a(A), as the one given in [74]:

a =
A

14.6

(
1 +

3.114

A1/3
+

5.626

A2/3

)
(3.25)

in which we have no energy dependence but instead a more complicated mass depen-

dence which include surface and curvature effects. We can think of eq.(3.25) as to

a formula for the asymptotic value a∞ of the LD parameter at high energy. Indeed,

values calculated with this parametrization are generally in agreement with exper-

imental data for fusion-evaporation reactions, in particular even for light systems,

when the compound nucleus has an excitation energy of the order of 3 A.MeV

[37, 38]. Nevertheless, a∞(A) values calculated with eq.(3.25) differ considerably

(are generally larger) from the ones predicted by the expression for ã given in ta-

ble 3.2.1. For instance, in the mass region A ∼ 20, eq.(3.25) approximately gives

a ≈ A/5, while values of ã in [67] for nuclei of this kind are generally of a factor of

2 smaller.

In the statistical decay code we have therefore decided to make use of a matched

aM(E∗, A) function, which is written such that the LD parameter is given by eq.(3.18)

up to a certain energy, for which we take as an initial guess the same Ematch intro-

duced in the previous section, and rapidly tends asymptotically to the value pre-

dicted by eq.(3.25) for higher energies. Indeed, low-lying levels, whose reproduction

is ensured by eq.(3.18) for the LD parameter, are available up to e∗ ∼ 1. A.MeV for

nuclei of mass A ∼ 20, while constraints from studies on evaporation after fragmen-

tation, reproduced by eq.(3.25), concern nuclei at e∗ ∼ 2÷3 A.MeV . The transition

between calculated values at low and high energy for the chosen aM(E∗, A) has to

take place in an excitation energy range of about ∼ 20 MeV . We write therefore:

aM(E∗, A) =


aD(E∗, A) = ã

[
1 + S(Z,N)−δEp

E∗−E2
f(E∗ − E2)

]
for E∗ − E2 ≤ Ematch

aC(E∗, A) = α exp [−β(E∗ − E2)2] + a∞
with β > 0for E∗ − E2 > Ematch

(3.26)

where the gaussian functional form for aC(E∗, A) is chosen to satisfy the request of

rapidity in reaching the asymptotic value a∞ calculated with eq.(3.25), and the α

and β parameters are determined by the following matching conditions:

aD(Ematch + E2, A) = aC(Ematch + E2, A) (3.27)

aC(Ecl + E2, A) = a∞(1 +X) with |X| ≤ 10% (3.28)



3.2 Level Density Model 77

The matching conditions imply that the two parameterizations have to give the

same LD parameter value in correspondence of the matching energy Ematch, (to be

intended as a given (E∗ − E2) value), and that the asymptotic value a∞ has to be

reached by aC(E∗) within a certain percentage X at a given energy Ecl (which will

be on turn a E∗ − E2 ≈ E∗ value). In the following, we will write for simplicity:

E
′

match = Ematch +E2 and E
′

cl = Ecl +E2. It is easy to see that the sign of X has to

be opposite with respect to that of the difference (a∞ − aD(E
′

match, A)).

Resolving the matching equations, we have for the α and β parameters:

C =
aD(Ematch, A)− a∞

X · a∞
(3.29)

β = − lnC

E
′2
match − E

′2
cl

(3.30)

α =
X · a∞
−βE ′2cl

(3.31)

We have now to discuss the choice of the two energy values Ematch and Ecl. Ematch
simply represents the limits of validity of the parameterization aD(E∗, A) proposed

in [67], and we can assume it to be equal to the upper limit of the energy range of

discrete levels used for the fit, if the nucleus of interest is part of the fitted data set.

As can be inferred from our choice of notation, this upper limit usually corresponds

to the energy maximizing the measured dn/dE∗ level density distribution for nuclei

included in the study done in [67]. We have however to be careful to the fact that

this energy value has to be defined also for nuclei which are not part of the fitted

data set, or for nuclei for which we have no or too few experimental information on

energy spectra: in such cases we can for instance put it equal to ≈ 10 MeV , which

is typically considered as a critical energy above which a damping of pairing effects

is expected (see for instance [62]). This choice corresponds to the assumption that,

beyond this critical energy, the LD parameter is no more affected by structure effects.

The choice of a uniform value for Ematch entering the LD parameter calculation

ensures to avoid any dependence on the relative range of excitation energy for which

the functional form aD(E∗, A) is used, which we do not want to vary too much from

nucleus to nucleus. Therefore, this matching energy is left an input parameter for

the calculation, and the default value is set to 10 MeV .

To fix the energy Ecl we can refer to ref.[39], in which a study of the limiting

nuclear temperature (or excitation energy per nucleon) as a function of nuclear

mass is presented. Results for the limiting energy per nucleon elim are presented

in [39] only for the mass region A ≥ 40. Values for this quantity increase from

elim ∼ 3 A.MeV for heavier nuclei (with A ∼ 100÷ 200) up to elim ≈ 8 A.MeV for
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the lightest nucleus considered. At such energies, the onset of multifragmentation

(or break-up for lighter nuclei) is expected, and compound nucleus states are known

to disappear. The corresponding value for the LD parameter has to fall to zero, the

more abruptly the more rapid is the threshold process. The decrease of a(E∗) with

increasing energy beyond a given limiting value has not been included in our level

density model, because no simultaneous break-up channels are implemented in the

code in order to compensate the disappearance of CN states. Therefore, the Ecl
value, left as free parameter of the calculations, does not correspond to the limiting

energy of ref.[39], but rather represents an energy limit at which the asymptotic

value of the LD parameter has already been reached (within a certain controllable

percentage), and after which a decrease of a(E∗) up to the zero value at the limiting

energy may start. In order to give constraints on the decrease of the level density

parameter, data for reactions in which the fragmentation regime is attained are

needed, and this possibility is discussed in some more details in Appendix B of this

work. On the contrary, the rapidity of the increase of a(E∗) up to the asymptotic

value of eq.(3.25) can be constrained with fusion-evaporation data, as it is the case

for the reaction under study in this work, and is determined by the parameter Ecl.

As a first guess, without extrapolating the trend for elim(A) given in [39] to the

unexplored lighter nuclei region, we can assume a constant value elim ≈ 8 A.MeV

for nuclei with mass A < 40, and we can vary Ecl ≤ (elim ·A) between the extremes

(8 ·A) and (3 ·A) MeV in our calculations. In the former case, being 8 A.MeV an

average estimation of the nuclear binding energy per nucleon, we are asking that,

when the nucleus approaches its limit of existence, the asymptotic value of the LD

parameter has already been reached; in the latter, the asymptotic limit for a(E∗) is

reached at a lower excitation energy. The Ecl value, together with the asymptotic

value of the LD parameter a∞, can be varied in the calculations to tune the model

in order to reproduce experimental data. The effect of the modification of these

parameters will be discussed in the following.

Going back to the LD expression of eq.(3.16), the a(E∗) functional form has to be

substituted by the matched aM(E∗), which assumes the two different forms aD(E∗)

or aC(E∗), depending on the energy coordinate (E∗−E2) being ≷ E∗match. Since, as

said before, the asymptotic value of aC(E∗, A) are usually larger than the ã values

for aD(E∗, A), we expect that the calculation of ρ(E∗) with the matched aM(E∗, A)

function will give a larger number of availables nuclear levels with respect to the LD

calculation with the non matched a of eq.(3.18) in the whole energy range.

In fig.(3.5) we can see the results of the matching procedure for 20Ne. In the figure

inset we show both functions aD(E∗) (in black) and two different evaluations for
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aC(E∗), obtained making two different choices for the limiting energy, i.e. Ecl =

(8 , 3 ·A) MeV respectively for the blue and red curve. With the same color scheme,

we then show the resulting level density ρ(E∗) calculated with eq.(3.16) if we use as

LD parameter the aD(E∗) coming from ref.[67], or the two matched aM(E∗) with

Ecl = (8 , 3 · A) MeV . As expected, the LD grows more rapidly if the limiting

energy is lower (red curve), and calculations at different limiting energies converge

when the LD parameter approaches the same asymptotic value. The nearly constant

aD value causes a very limited growth of the LD absolute value (black curve), and

the calculation is stopped at a lower excitation energy, to remind that the use of

aD(E∗) in the whole excitation energy range is by definition not correct.
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Figure 3.5: Level density calculation for 20Ne. In the figure inset: aD(E∗) (in black) and two
different evaluations for aC(E∗), obtained with Ecl = (8 , 3 · A) MeV respectively for the blue
and red curve. With the same color scheme: ρ(E∗) calculated with eq.(3.16) with aD(E∗), and
aM (E∗) with Ecl = (8 , 3 ·A) MeV .
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3.3 Kinematics of the Decay

with Angular Momentum

The treatment of angular momentum is a specific feature of the Hauser-Feshbach

formalism, and represents the main advance of this evaporation model with respect

to the standard Weisskopf approach. This section is dedicated to the description

of how angular momenta couplings are implemented in the Monte Carlo code, with

the constraint of total angular momentum conservation, and of how the angular

momentum degree of freedom affects the kinematics of the decay.

The approach we have chosen to adopt is of semi-classical type: angular momenta

are considered as classical vectors, the angular momentum quantum number J giv-

ing the module of vector J. Angular momentum vectors J1 and J2 couple under the

assumption of equiprobability for the module JS of their sum vector, ranging from

|J1 − J2| ≤ JS ≤ |J1 + J2|. A correct quantum mechanical treatment, in which cou-

pling probabilities are given by specifying the angular momenta projections M and

making use of Clebsch-Gordan coefficients is therefore missing. The more general

procedure which we have decided to adopt, is analogous to the one implemented in

the GEMINI++ model and it is detailed in the following.

Input parameters for the initial hot nucleus are the module of its angular momen-

tum vector J0 and the initial orientation of J0, the latter being specified by the

angles (θJ0 ;ϕJ0) in the CM reference-frame of the decaying CN (z-axis parallel to

the velocity of the beam).

For each decay we select the emitted particle according to the branching ratio weight

calculated within the HF model. As anticipated, the angular momentum Jd of the

daughter nucleus is selected maximizing the LD at the given residual excitation

energy as a function of J . We want then to consider the disalignment of Jd with re-

spect to J0 due to the evaporation. For the couplings of angular momentum vectors

in the binary decay we have (fig.3.6):

J0 = Jd + j (3.32)

j = ` + sp

where ` is the relative orbital angular momentum and sp is the spin vector of the

emitted particle. We assume at this point that all the values of j in the range

|J0 − Jd| ≤ j ≤ |J0 + Jd| are equally probable so that we can randomly select the

module of the j vector in this interval. Given sp, the same can be said for the module

of the orbital angular momentum `, for which we will choose a random value in the
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range |j − sp| ≤ l ≤ |j + sp|.
Given the modules of all angular momenta, we can obtain the angles θd and θ`,

which are respectively the orientation angle of Jd with respect to J0 and of ` with

respect to j, simply thanks to the law of cosines:

θd = arccos

(
J2

0 + J2
d − (` + sp)2

2J0 · jd

)
(3.33)

θ` = arccos

(
(` + sp)2 + `2 − s2

p

2` · |` + sp|

)

Figure 3.6: Vectorial couplings of angular momenta in the decay.

If we interpret θd as a spherical θ coordinate and we attribute to Jd a ϕd angle

randomly chosen in the interval [0; 2π], the space orientation of Jd is then fully

determined in the reference frame whose z-axis is parallel to the CN angular mo-

mentum J0, which we call J0 RF (fig.3.7). The same holds for the orientation of j,

which will be given in the same RF by (θj;ϕj = ϕd + π). The space orientation of

` and sp will be instead given in the RF whose z-axis is parallel to j, by the angles

(θ`;ϕ`) and (θs;ϕs = ϕ` + π).

The angular distribution of the evaporated particle about the classical ` vector will

then be given by dY/dΩ = |P `
` (cos θ)|2, where P `

` (cos θ) is the associated Legendre

function for m = `, and θ is a spherical coordinates angle relative to a z-axis parallel

to `. Finally, the emission angle and all the angles giving the relative orientations

of angular momenta have to be transformed back to the CM RF performing one

(or more successive) rotation of axes (for instance of the type J0
rot−→CM). Explicit

equations for the rotational transformations are derived in Appendix A.

To see the effects of including the angular momentum in the kinematics of the

decay, we have performed two calculations for the CN 24Mg, at the excitation en-
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Figure 3.7: Left side: CM e J0 reference frames; right side: components of vector Jd in the
two coordinate systems. The use of the notation (x

′′
, y

′′
, z

′′
) for the axes of J0 is made clear in

Appendix A.

ergy e∗ = 2.6 A.MeV , with different input values for the initial spin J0, namely

J0 = 2; 12 ~, (and with a fixed Ecl = (8 · A) MeV ). Given our CM RF, the ori-

entation of the CN angular momentum J0 is chosen to be (θJ0 ;ϕJ0) = (π/2; 3/2π)

i.e. J0 is oriented along −y, being the beam velocity parallel to the z-axis and the

impact parameter of the reaction measured along x in the classical notation.

Moreover, to get rid of the effect of multiple disalignments in the decay chain we

have stopped the evaporation after one single emission. We show in fig.(3.8) for the

case J0 = 12 ~ the module distribution for the angular momentum of daughter nuclei

after one decay step, together with the correlation of the value of Jd to the relative

orientation of the residue angular momentum vector with respect to the initial J0,

given by the angle θd. As can be understood from the Jd vs. θd correlation plot,

for each value of the module Jd we have (2j + 1) possible orientations of Jd with

respect to J0, corresponding to the (2j+ 1) possible values for the module of vector

j = J0 − Jd. In particular, the orientation angles θd = 0; π, corresponding to the

two opposite cases of Jd parallel or antiparallel to J0, are always possible, while

the number of intermediate orientations increase with increasing Jd value. Being

the Jd distribution peaked at around Jd = 2 ~, it is not surprising then that the

corresponding θd distribution will be peaked at θd = 0; π, and only a small fraction

of the daughter nuclei has a θd in between. As far as the J0 module distribution is

concerned, we can observe that the relative abundance of integer and half-integer

values has to reflect the isotopic abundance of the masses of daughter nuclei of a

given charge.
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Figure 3.8: Predictions of the Hauser-Feshbach code for the angular momentum of the daughter
nuclei in a single-step decay of 24Mg e∗ = 2.6 A.MeV , J0 = 12 ~. Left panel: Jd module
distribution; right panel: correlation between the module Jd and the relative orientation angle of
Jd with respect to J0. Normalization is to the total number of simulated events.

Once transformed to the CM RF, the distribution of θJd will be strongly peaked

at the initial θJ0 = π/2 value, and correspondingly j will be most probably parallel

to J0. If we consider the coupling ` = j − sp we can also easily understand that

` will stay parallel to j when spin sp = 0or 1/2 particles are evaporated, which is

quite always the case, with the only exception of rare d and Li evaporation.

Moreover, ` module distribution will be peaked around the initial J0 value, as can

be seen from fig.(3.9) for both cases J0 = 2; 12 ~.

Finally, what we expect from the dY/d cos θ(`) angular distributions coming from

Legendre associated functions is that, for increasing ` value, the emission will take

place in the plane perpendicular to vector `, which correspond to the plane xz for an

orbital angular momentum ` ‖ J0. This is confirmed by fig.(3.9), where we can see

the (θ, ϕ) emission angles of the evaporated particles in the CM RF corresponding

to both the initial values of J0 = 2; 12 ~. In the case J0 = 12 ~, where higher values

for the orbital angular momentum ` can be attained, in-plane emission (θ = 0;π and

ϕ = 0) is thus favoured with respect to the lower initial angular momentum case.

In the following sections we will show the results of full decay chain calculations, and

we will further comment on how the angular momentum effects acting at each binary

decay step are averaged, and on how they affect final inclusive angular distributions.
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Figure 3.9: Predictions of the Hauser-Feshbach code for the orbital angular momentum for light
particle emission in a single-step decay of 24Mg, e∗ = 2.6 A.MeV : ` distributions are shown in
the upper panel, on the left for an initial J0 = 12 ~ for the CN (black histogram), on the right for
J0 = 2 ~ (red). In the lower panel, corresponding dY/d cos θ and dY/dϕ distributions for emitted
particles, with the same color scheme. Normalization is to the total number of simulated events.

3.4 The GEMINI++ De-Excitation Code

GEMINI is a statistical decay model largely and successfully used by the nuclear

physics community. It was first written in FORTRAN in 1988, with the main aim of

reproducing data from heavy-ion induced fusion reactions. It has later been further

developed and translated in C++, and the original dichotomy between light-particle

emission and other binary decays is maintained in the actual version of the code,

GEMINI++ [75]: together with the evaporation of light particles within the Hauser-

Feshbach model, decay channels as the emission of an Intermediate Mass Fragment

(IMF) (Z ≥ 4) following the formalism of Moretto [76] and nuclear fission, described

with the transition-state formalism by Bohr and Wheeler [77], are implemented in

the code.

In the literature, we can find many applications of GEMINI to the description of

evaporation data, and a systematic study on this topic has been recently published

in [46].
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The very complete online documentation on GEMINI++ has also provided a nec-

essary guidance in the development of the Hauser-Feshbach code which is presented

in the first part of this chapter. This is the reason why, before going to the results

of calculations performed for the decay of light nuclear system with our newly de-

veloped code, we want to comment in this section on the main differences between

our approach and the one followed by the author of GEMINI in the implementation

of the decay and level density models in the code. First of all, to our knowledge,

few studies exist on the comparison of data for the decay of light nuclear systems,

in the mass region A ∼ 20, to GEMINI++ calculations. As previously described,

our efforts in the development of the decay code have been mainly devoted to the

choice of parameterizations for the physical quantities of interest which are at most

constrained to the available experimental information on nuclear structure and low

energy excitations. We could say, on the contrary, that the parameterizations pro-

posed in GEMINI++ are optimized to the description of the decay of generally

heavier systems, for which the influence of nuclear structure in the decay is less

relevant.

Going into some details, the starting point for the calculation of the nuclear level

density in GEMINI++ is a Fermi-gas expression, written in terms of the nuclear

thermal energy U :

ρgemFG (E∗, J) =
(2J + 1)

24
√

2a
1
4U

5
4σ3

expS(U) (3.34)

where S(U) is the nuclear entropy, given by S(U) = 2
√
aU , and the energy co-

ordinate U is obtained by subtracting a deformation-plus-rotational Eyrast(J) and a

pairing energy contribution δP from the excitation energy E∗. The angular momen-

tum J then enters in the definition of the Yrast energy, and as a result, ρgemFG (E∗, J)

has non-separable dependences on J and E∗, contrary to the case of our semi-

empirical approach of eq.(3.14). An energy dependence is then attributed to the LD

parameter a, in order to reproduce the fluctuations coming from shell effects:

a(U) = ã

[
1− h(U/η + J Jn)

δW

U

]
(3.35)

where δW is the shell correction to the liquid-drop mass and and ã is a smoothed

level-density parameter. With h(x) = tanh(x), the best fit to the experimental data

is obtained for η = 19 MeV and ã = A/7.3 MeV −1. Jn, determining a fading out of

shell effects also with spin, is set equal to 50~. A further modification of ρgemFG (E∗, ã)

is needed, in order to take into account the enhancement of the LD due to collectivity
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induced by long-range correlations. This is done by multiplying ρgemFG (E∗, ã) by a an

enhancement factor Kcoll(E
∗). In the systematic study done in [46] the prescription:

ρgem(E∗) = ρgemFG (E∗, ãeff ) = Kcoll(E
∗)ρgemFG (E∗, ã) (3.36)

is adopted, i.e. the enhancement due to collectivity and its fade out at higher ener-

gies are ascribed to an effective smoothed LD parameter ãeff , which is parametrized

as a function of the thermal energy:

ãeff (U)
A

k∞ − (k∞ − k0) exp
(
− K
k∞−k0

U
A

) (3.37)

where k0 = 7.3 MeV and the asymptotic value at high excitation energy is ãeff =

A/k∞. The parameter K determines how fast the long-range correlations wash-out

with excitation energy. k∞ is typically set to 12, and K is fitted in the A > 100

region as K(A) = 0.00517 exp(0.0345A).

The excitation energy dependence of ãeff (U) is very strong for heavier systems, but

it becomes negligible already for A < 100. Therefore, according to ref. [46], we can

make use of a constant ã = A/7.3 in this “lighter” mass region. In any case, we have

to be aware of the fact that the lightest system which is included in the systematics

presented in [46], is a mass ∼ 60 nucleus, which means three times heavier than the

region we are concerned with in this work.

The transmission coefficients implemented in the GEMINI code are obtained

through a sophisticated approach taking into account a distribution of barriers due

to thermal fluctuations of the CN. The final transmission coefficient is the average of

three different values corresponding to a temperature dependent fluctuation of the

radius parameter in the nuclear potential, which enters in the optical model fit to

elastic scattering data. In this first version of our model, the adopted prescription

for the calculation of transmission coefficients is far more simple. Nevertheless, we

expect that being concerned with lighter systems, the absolute values of the barrier

is smaller, and the effect of the barrier distribution on the spectra is reduced, as we

read in [46]. Moreover, since the transmission coefficients define the shape of evapo-

rated spectra in the Coulomb barrier region, when comparing to data their effect can

be easily isolated from the one of the level density parameter, determining the slope

of the spectra exponential tail. An improvement of the adopted parameterizations

can be therefore planned, if this will result necessary.

Concerning the treatment of angular momentum, a modified expression for the Yrast
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Figure 3.10: For 20Ne, as an example, comparison between the LD parameter a(E∗) implemented
in our Hauser-Feshbach calculations, with Ecl = (8 · A) MeV (blue line) and Ecl = (3 · A) MeV

(red line), where the black line corresponds to the excitation energy region in which the value of
this parameter is given by aD(E∗) of eq.(3.28) [67] for both Ecl values, and the almost constant
a(E∗) implemented in GEMINI++, calculated with eq.(3.37).

line parameterization is adopted in GEMINI, which differs from our classical expres-

sion given in eq.(3.4). The proposed parameterization makes use of Yukawa-plus-

exponential finite-range calculations by Sierk [78] and contain free fit parameters to

be adapted on the compound nucleus of interest. In particular, this modification

allows to take into account the steeper increase of the deformation-plus-rotational

energy due to lower values of the moment of inertia for lighter nuclei. Modification

of Eyrast(J) has a stronger influence on heavier fragments emission, as in the case

of α particles, which can remove a larger amount of angular momentum. The Eyrast
effect, even if affecting both the barrier region and the exponential tail of evapora-

tion spectra, can in principle be disentangled from the effects of the level density

parameter and that of the transmission coefficients by comparing data for a lighter

particle as a proton to that for a heavier particle as an α. Finally, the problem of

the kinematics of the decay in presence of angular momentum is addressed with our

same semi-classical approach.
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3.5 Observables and Thermal Properties

in the Decay of 24Mg∗

In this section we report the results of the calculations performed with the Monte

Carlo Hauser-Feshbach code for the decay of equilibrated light nuclei in the mass

region A ∼ 20 and at an excitation energy of the order of ∼ 3 A.MeV . Such calcu-

lations have been at the basis of a beam-time request, submitted by the NUCL-EX

collaboration to the PAC - Physical Advisory Committee - of Laboratori Nazionali

di Legnaro - LNL - INFN, where we have proposed to measure several reactions

involving light nuclei with our GARFIELD+RCo set-up.

In particular, we have performed calculations for the decay of 24Mg at e∗ = 2.6A.MeV ,

corresponding to the excitation energy of the CN issued in case of complete fusion

for the reaction 12C +12 C at 95 MeV beam energy. This reaction has been mea-

sured, and the description of the measurement is presented in chapter 4.

The angular momentum input distribution for the fused system in this reaction

can be assumed as a triangular distribution with a maximum value J0 max = 12 ~
coming from the systematics. Moreover, in order to respect parity conservation,

we have allowed the CN to assume only even values of J0 extracted from the tri-

angular distribution. The initial space orientation of J0 is always determined by

(θJ0 ;ϕJ0) = (π/2; 3/2π). In the following, to avoid being repetitive, we will refer

to this set of input parameters for the calculations as “experimental ” energy and

angular momentum conditions for the CN. All kinematic observables are given in

the CM reference-frame.

We have performed calculations for two different input values for the free parameter

Ecl in the LD model, namely Ecl = (8 · A) MeV and Ecl = (3 · A) MeV . Compar-

ison to data (see chapter 5) will allow us to constrain the value of this parameter.

Together with our calculations, we show for chosen observables the results obtained

with GEMINI++, with a twofold purpose: firstly, the good agreement obtained for

the computation of global observables ensures the reliability of our code; secondly,

in GEMINI++, we have the possibility of enabling/disabling a decay channel com-

petitive to sequential evaporation, namely the emission of IMF, described in terms

of the transition state formalism, and this allows us to investigate the effect of the

inclusion of this channel on the output of the decay. In fact, any constraint on our

evaporation code free parameters, which we aim to obtain from the comparison to

data, can be considered reliable only if the presence of additional channels does not

strongly affect the observables which we plan to use to extract this information.
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Light charged particles

The first observables which we can potentially compare to experimental data are

inclusive angular, energy and multiplicity distributions of emitted particles.

Angular distributions for emitted particles in a fusion-evaporation reaction are de-

termined by an average of angular momentum effects on each step of the sequential

decay chain, and we have previously detailed the effect of the inclusion of angular

momentum in a one-step decay calculation. In fig.(3.11) we compare the obtained

angular distributions for protons and α particles for the decay of 24Mg under ex-

perimental conditions. As expected from the theory, angular distributions are less

sensitive to the input level density model, and calculations for the two chosen values

of Ecl are indistinguishable. Coherently with the single-step decay calculations, we

expect that the overall effect of sequential evaporation is to push the mean module

of the orbital angular momentum towards lower values with respect to the first step

angular momentum `, which is approximately J0, thus favouring out-of-plane emis-

sion approaching the end of the decay chain. At the same time, ` space orientation

will most probably remain the same of the initial J0, as far as smaller values of

angular momenta are involved in the decay. The net result for complete evaporation

calculations is that the angular distributions of emitted particles integrated over all

the decay chain still show memory of the reaction plane, as we can see from the

figure. This reaction plane has to be randomized before comparing to experimental

data, and this has to be done conserving relative ϕ angles between emitted particles,

as it is discussed in chapter 4.

Finally, as mentioned, the angular momentum treatment implemented in our code

is analogous to the one implemented in GEMINI, as it is also evident from fig.(3.11).

The inclusion of IMF emission does not further modify protons and α particles an-

gular distributions.

The comparison of evaporated particles energy distributions obtained with dif-

ferent values of Ecl allows for a test of the well-known dependence of the slopes of

energy spectra on the input level density parameter. As discussed, varying the value

of Ecl in our level density model corresponds to a modification of the rapidity with

which the LD parameter reaches its asymptotic value a∞. A quicker increase of

a(E∗), corresponding to the lower Ecl = (3 · A) MeV case, implies a lower nuclear

temperature for a given excitation energy, according to the relation E∗ = aT 2, which

translates into a steeper kinetic energy spectrum for evaporated particles. In the

Ecl = (8 · A) MeV case, evaporation of particles with a higher average energy will

be favoured. This is shown in fig.(3.12). As previously shown in fig.(3.10), at the
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Figure 3.11: Angular distributions for protons (upper panel) and α particles (lower) for the evap-
oration of 24Mg under experimental conditions. Calculations are shown for the Hauser-Feshbach
code, with Ecl = (8 · A) MeV (blue line) and Ecl = (3 · A) MeV (red line), and for GEMINI,
enabling (black dashed line) or disabling (black continuous line) the IMF emission. All calculations
almost give identical results. Normalization is to the total number of produced protons/α particles.

excitation energies of interest for the decay of 24Mg under experimental conditions,

the level density parameter implemented in GEMINI++ is intermediate between

the values assumed by a(E∗) in correspondence with the two choices Ecl = (8 · A)

and (3 ·A) MeV . This is also evident in fig.(3.12), where the slope of energy spectra

calculated with GEMINI++ are intermediate between our Hauser-Feshbach results

for the two cases. A difference between our calculations and GEMINI results can

be observed also in the low-energy region, which can be attributed to the different

adopted parameterizations for the transmission coefficients. This confirms that, as

we have previously commented, the effects of transmission coefficients and of the

level density can be easily disentangled. Finally, we notice that the inclusion of IMF

emission does not strongly affect the slope of the energy spectra: this ensures the

reliability of the constraint to the level density, which can be obtained by tuning

our evaporation model parameters in order to reproduce the data.
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(blue line) and Ecl = (3 · A) MeV (red line), and for GEMINI++, enabling (black dashed line)
or disabling (black continuous line) the IMF emission. Normalization is to the total number of
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Finally, concerning light charged particles emission, we show in fig.(5.3) the

predicted multiplicity distributions for protons and α particles, for the same exper-

imental source. As it is the case for angular distributions, this observable is less

sensitive to the choice of Ecl in the level density model. In particular, for protons,

almost no differences can be observed between our calculations for Ecl = (3 · A),

(8 ·A) MeV and GEMINI++ without IMF emission. As far as α particles are con-

cerned, a difference is observed for the probability of nα = 1 events, and a globally

higher α multiplicity is found if IMF emission is taken into account. The particular

shape of all α multiplicity distributions, which present a peak at nα = 6, corre-

sponding to the complete disintegration of the 24Mg source, will be better discussed

in the following.

Charge distribution and staggering

To have a more global look at the outcome of the calculations, we can check

the final charge distribution Y (Z) resulting from the decay of the 24Mg CN under
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experimental conditions, which is shown in the upper panel of fig.(5.9), together

with the multiplicity distribution of reaction products, shown in the lower panel.

Both observables are evaluated with our Hauser-Feshbach code for the two choices

for Ecl and for GEMINI++ with/without IMF emission. The variation of the level

density parameter is reflected in the average kinetic energy of emitted particles, and

therefore, in the average size of evaporation residues and event multiplicity. A higher

temperature (as it is the case for Ecl = (8 · A) MeV with respect to GEMINI++,

and for GEMINI++ with respect to Ecl = (3 · A) MeV ) corresponds to a reduced

event multiplicity and to a heavier evaporation residue, since the available energy is

spent in fewer evaporation steps. This can be seen in fig.(5.9). Concerning the shape

of the charge distribution, a typical distribution of evaporation products is obtained

with our calculations, with a sharp separation between the emitted light particles

and the evaporation residue region. If we think of an experimental distribution,

this may already seem not realistic. The population of the region between emitted
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particles and evaporation residues can indeed be ascribed to decay channels other

than sequential evaporation, as the IMF emission. Calculations with GEMINI++

enabling/disabling IMF emission, also shown in fig.(5.9), confirm that the charge

region 3 ≤ Z ≤ 6 of the calculated Y (Z) could be more populated by including

this decay channel. When the IMF emission is disabled, the shapes of the charge

distribution calculated by our Hauser-Feshbach code and by GEMINI are found to

be in good agreement. A similar enhancement for the IMF yield is also to be ex-

pected in case of a Fermi break-up [40] of the fused system. This decay channel is

not implemented neither in our decay code, nor in GEMINI++.
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Figure 3.14: Upper panel: charge distribution of reaction products; lower panel: total multiplic-
ity distribution. Hauser-Feshbach model predictions with Ecl = (8·A) MeV and Ecl = (3·A) MeV

are shown respectively with blue and red dots connected by a line to guide the eye. GEMINI cal-
culations enabling /disabling the IMF emission are also shown by empty/full black dots connected
by a dashed/continuous line. Normalization is to the total number of simulated events.

As far as the signature of nuclear structure in the reaction is concerned, a clear

odd-even effect is visible in the charge distribution in the residue region, and can

be made more evident plotting the ratio of Y (Z) to a smoothed Ys(Z) distribution,

obtained by means of a parabolic smoothing on 5 successive points, as proposed
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in ref.[31] with the same aim of putting in evidence odd-even effects in experimen-

tal data. This is shown in fig.(3.15) for the Y (Z) distribution of fig.(5.9), with

Ecl = (8 · A) MeV . The ratio is plotted for a restricted charge region for the

residue, where the statistics is such that the smoothed yield can be safely computed

with the interpolation method proposed in [31].

We know from the discussion in chapter 1 that odd-even effects in isotopic ob-

servables are related to the pairing residual interaction. We have also stated that

evaporation models contain two main ingredients which show a signature of the pair-

ing interaction, namely the binding energy and the level density. Odd-even effects

in our calculations are therefore a consequence of the use of experimental values for

the binding energies, together with the implementation of realistic level densities

reproducing the pairing gap. We can ask ourselves which is the relation between the

amplitude of the staggering and the initial excitation energy of the CN nucleus. To

this aim, we have performed calculations for the 24Mg also at two other energies,

namely e∗ = 3. and 3.5 A.MeV , other input parameters being equal. Results for

the Y (Z) distributions and their ratio to the smoothed Ys(Z) are shown in fig.(3.15).

First of all we notice the shift of the centroid of the residue distributions towards

lighter fragments with increasing initial e∗. This is obviously due to the larger ex-

citation energy available for the CN decay, which translates into longer evaporation

chains. Moreover, for the same reason, the higher is the initial CN energy, the

more populated is the charge region 3 ≤ Z ≤ 6, which also means that evaporation

residues are found to be lighter. Concerning the staggering, we have to take care

of the differences in yields to do some significative remarks. For instance, the am-

plitude of the oscillation around Z = 8, where yields are comparable for the three

cases, seems to be reduced when increasing the CN excitation energy. A dependence

of the staggering on the initial excitation energy suggests therefore that odd-even

effects may affect the whole evaporation chain, and that investigating their strength

at finite temperature could give us information on the temperature dependence of

the pairing interaction. To understand the interplay between pairing effects in the

mass and in the level density, we show in fig.(3.16) the charge distribution at the

last but one step of the evaporation chain for the decay of 24Mg under experimental

conditions, for the case Ecl = (3 · A) MeV . In the figure (and in the following) we

adopt the notation proposed in [35], and we write Z∗ when referring to a fragment

of charge Z, excited at the last but one step of the decay chain. We also plot in

the same figure the ratio of Y (Z∗) to the smoothed Ys(Z
∗), to put in evidence the

presence of staggering. By looking at fig.(3.16) it is evident that not only the charge
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Figure 3.15: Upper panel: charge distribution of decay products corresponding to the evaporation
of 24Mg at e∗ = 2.6 (full dots connected by a continuous line), 3 (empty dots and dashed line)
and 3.5 A.MeV (triangles and dashed line), with Ecl = (8 ·A) MeV . Normalization is to the total
number of simulated events. Lower panel: ratio of Y (Z) to the the smoothed Ys(Z) distributions
obtained by means of a parabolic smoothing, same symbols scheme.

distribution at finite temperature is globally smoother, which can be seen as a re-

duced strength for pairing correlations at higher excitation energy, but also that, if

the ratio to the smoothed distribution is evaluated, an inverse staggering effect is

revealed and a peak becomes evident at the odd charge value Z∗ = 7. This is in

agreement with the analysis performed in [35], where the discrete levels population

of warm nuclei has been extracted from coincident pairs measurements through the

correlation function technique, and the resulting Y (Z∗) distribution has been found

to show a reversed staggering behaviour. The analysis done in [35] has been com-

mented in more details in chapter 1.

The obtained result can be interpreted as a signature of pairing effects in the level

density: even nuclei have a lower density of levels at low energy because of the

pairing gap. Making use of the principle of microscopic reversibility, we can think

of the fusion of two cold decay products as the inverse process of the evaporation

of a nucleus excited at the last but one step of a decay chain. It is then easy to



96 3. The Statistical Decay Code

understand that, under the assumption of statistical laws governing the process,

a lower probability will be associated to the creation of an excited even nucleus

with respect to an odd one in the same energy range, this being due to the smaller

number of available states in the final channel for the even system. This reasoning

also justifies the behavior of another observable which has been extracted from data

in [35], namely the mean excitation energy of populated discrete levels at the last

but one step of the decay as a function of the fragment charge, which is found to

stagger coherently: even fragments have a larger mean excitation energy, since they

have to be populated above the pairing gap. In our calculations, the average energy

〈E∗〉 (Z∗) at the last but one step is computed by summing, for all simulated events,

the relative kinetic energy of the last isotope pair produced at the end of the decay

chain to the Q-value for the decay of their parent nucleus, and normalizing this sum

to the yield Y (Z∗). In fig.(3.16) we plot the result for this quantity in two cases:

if all the events are considered in the average, the behavior of 〈E∗〉 (Z∗) is globally

smoother, with the exception of the peak at Z∗ = 6, and increases rapidly for bigger

charges. This is easy to understand, since a nucleus with a charge close to the one

of the CN, populated at the last but one step of the decay chain, implies a low mul-

tiplicity event, with high energy emission from the continuum. On the contrary, if

we include in the average only events in which the last isotope pair is produced from

the decay of a discrete resonance, 〈E∗〉 (Z∗) is found to oscillate with peaks at even

charge values for heavier fragments. This oscillation can be attributed to a level

density effect, and it is worthwhile to notice that the calculation of this observable

can be compared to data only in this latter case.

In order to verify the hypothesis according to which odd-even effects represent

a signature of the pairing interaction in the level density, we have performed two

different calculations for the evaporation of 24Mg, always under experimental con-

ditions and with Ecl = (3 · A) MeV , artificially suppressing the energy backshift in

the level density in one case, and increasing it by a factor of two in the other. The

results of these calculations are shown in fig.(3.17). It is evident that, suppressing

the pairing backshift, the staggering is determined uniquely by odd even effects in

the binding energy, which tend to favour even Z-nuclei because of their increased

stability (i.e., their lower separation energy, as discussed in chapter 1). On the con-

trary, if the pairing gap is increased, pairing effects in the level density dominates

at finite temperature, and the charge distribution at the last but one step shows

a strong reversed odd even effect. Results of our calculations with the values of

the pairing backshift adopted in our level density model, as the ones of fig.(3.16),

coherently show an intermediate behavior.
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Figure 3.16: Observables showing odd-even effects for the evaporation of 24Mg at e∗ = 2.6,
under experimental conditions and with Ecl = (3 ·A) MeV . In the upper panel, on the left: Y (Z)
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Correlation functions and α-structure

As explained in the section on the implementation of the decay model in the

code, discrete levels can be populated in the decay chain and the information on

their population is stored in memory. Binary decays proceeding through discrete

states keep a memory of their “resonant ” origin, which is reflected in the relative

kinetic energy (or, equivalently, relative momentum or velocity) distribution of frag-

ment pairs. Examples of such distributions for the decay products of 24Mg under

experimental conditions and with Ecl = (3 ·A) MeV are plotted in fig.(3.18) for the

(α,12C),(p,12C) and (p,13C) isotope pairs. Peaks corresponding to the decay from

discrete states are clearly visible. Energy conservation allows us to transform the
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Figure 3.17: Charge distribution of cold products (full dots connected by a continuous line) and
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and with a modified pairing backshift. Upper panel: E2 suppressed; lower panel: E2 increased by
a factor of two. Normalization of charge distributions is to the total number of simulated events.

relative kinetic energy distribution of fragment pairs directly into a scale of exci-

tation energy for the decaying parent nucleus from which they were originated, by

adding the Q-value for the decay of the parent nucleus.

The Ycorr(εrel) quantity plotted in fig.(3.18) is the numerator of the correlation

function in relative kinetic energy, which was already introduced in chapter 1 ac-

cording to the definition:

1 +R(εrel) =

∑
εrel

Ycorr(εrel)∑
εrel

Yuncorr(εrel)
(3.38)

where Yuncorr(εrel) is the uncorrelated background calculated by the event mixing

technique and normalization is set such that the same number of pairs enter both the

numerator and the denominator. Correlation functions are also shown in fig.(3.18)

for the same isotope pairs, where the horizontal scale corresponds to the excitation

energy of the decaying nucleus.

In fig.(3.19), we also show the output of the code concerning the global population
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Figure 3.18: For the decay of 24Mg, under experimental conditions and with Ecl = (3 ·A) MeV :
on the left, relative kinetic energy distribution for (α,12 C),(p,12 C) and (p,13 C) isotope pairs.
Normalization is to the total number of coincident pairs . On the right, corresponding correlation
functions, given as a function of the Q-value shifted relative kinetic energy, such that the horizontal
axis corresponds to the excitation energy of the parent nucleus.

of discrete states of three chosen N isotopes along the whole decay chain for 24Mg

under experimental conditions, which is of course not fully experimentally accessible.

The population of the ground states and bound excited states of these isotopes

give an information on their production as evaporation residues, since γ emission

from bound states does not modify the isotopic yield. As already mentioned, the

population of discrete states above particle emission thresholds, which is indicated in

the figures by a red dashed line, can be reconstructed at the last but one step of the

decay chain by measuring correlation functions between decay products. Both these

experimental information can finally be compared to the code predictions: if the

reproduction of the yield of cold residues and of the population of discrete states

at the last but one step of the chain is achieved, then the calculated population

probability is strongly constrained along the whole decay chain, and we may use it

to extract information as average temperatures.

Other interesting observables which can be calculated concern the α particle

production. In the calculations for our 24Mg source we have to deal with an N = Z
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Figure 3.19: Global population dY/dE∗ of discrete states for three chosen N isotopes,
13N ,14Nand 15N , as predicted by the code along the whole decay chain for 24Mg under experi-
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even-even system, for which the energy balance of Q-values tends to favour the

emission of α particles. It turns out that a non negligible percentage of events in

which the CN undergoes a complete (sequential) disintegration into α particles by

sequential emission is predicted by the Monte Carlo. The α-particle multiplicity

per event for the decay of the CN under experimental conditions is characterized

by the probability distribution which was already shown in fig.(5.3), where a peak

corresponding to nα = 6 is observed. An event with the maximum nα multiplicity

is an α decay chain, proceeding through a series of N = Z even nuclei. We may be

interested in checking which is the dependence of this observable on the input energy

for the CN and on parameters of the calculation as the LD parameter. To this aim,

in the upper right panel of fig.(3.20) we show again, as a reference, the multiplicity

distribution for the decay of the experimental source with the two choices of Ecl.

In the upper left panel of the figure, we show the same observable calculated for

the decay of 24Mg at e∗ = 3. and 3.5 A.MeV , other parameters being equal to the

standard experimental case, with Ecl = (8 · A) MeV . What we can see by varying

the CN excitation energy is that the shape of the α-particle multiplicity distribution
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changes, and in particular the peak, formerly at nα = 6 for the e∗ = 2.6 A.MeV

case, seems to be moved towards lower multiplicities for the highest initial energy

calculation. This can be put in correlation to the probability of the 1st-chance

α particle emission, which is reduced with increasing the E∗ for the CN. If high

energy proton or neutron emission in the first steps of the decay is such that an even

daughter nucleus with N = Z, but with a lowered excitation energy, is produced,

then a new α decay chain can start, and this justifies the observed shift of the peak

to lower values of nα for higher initial CN energies.

An α-decay chain starting from 24Mg necessarily proceeds through an excited 12C.

We may therefore be interested in the population of carbon discrete levels in such

a decay chain, with a particular attention to the population of the so-called Hoyle

state, i.e. the first excited state 0+ at 7.654 MeV of 12C, whose peculiarity has

been already discussed in chapter 1. It is known in the literature that this state

has a non negligible branching ratio (experimentally upper limited to 4%) for its

simultaneous decay into three α-particles. Such a decay-channel can be identified for

instance by means of a three-body correlation function, as it is done in [43]. In our

Hauser-Feshbach calculations, simultaneous decay channels are not implemented,

and the decay of the Hoyle state (when populated) proceeds through the unstable
8Be ground state, which successively decays in two α particles. The 3α-correlation

functions, calculated for the decay of 24Mg under experimental conditions for both

choices of Ecl in the level density model, are shown in the lower panel of in fig.(3.20).

Only a slightly different intensity for the peak corresponding to the Hoyle state is

observed for the two cases, implying that this observable is virtually insensitive to

the level density. As discussed in chapter 1, comparing the prediction of the code

for observables concerning the production of α particles to experimental data could

enlighten the presence of a non-statistical behaviour in the decay, and allow us to

distinguish the cases of a high α final multiplicity due to the energetically favoured

nature of α-decay chain or, rather, to the presence of α-clustering in nuclear structure

at finite temperature.
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Figure 3.20: Observables related to α particle production for the decay of 24Mg: upper panel, on
the left: α multiplicity distributions for three different input energies for the CN, namely e∗ = 2.6
(full dots connected by a continuous line), 3 (empty dots and dashed line) and 3.5 A.MeV (triangles
and dashed line); on the right: dependence of the same observable for the decay of the experimental
source on the Ecl model parameter value. Normalization is to the total number of simulated events.
Lower panel: Ecl - dependence of the (3α) correlation function (i.e. of discrete states population
at the last but one step) in the decay of 24Mg under experimental conditions. The usual color
scheme is adopted: calculations for Ecl = (8 · A) MeV and Ecl = (3 · A) MeV are respectively
given by blue and red lines.



Chapter 4

The Experiment

Calculations performed with the newly developed Hauser-Feshbach decay code

presented in chapter 3 have been at the basis of a beam-time request submitted

to the PAC - Physical Advisory Committee - of Laboratori Nazionali di Legnaro -

LNL - INFN, where the NUCL-EX collaboration has currently in charge the exper-

imental set-up made by the coupling of GARFIELD - General ARray for Fragment

Identification and for Emitted Light particles in Dissipative collisions - and the Ring-

Counter (RCo). Making use of this set-up, we have measured the reaction 12C+12C

at 95 MeV beam energy, provided by the LNL Tandem XTU accelerator.

In the first part of this chapter the experimental set-up (section 4.1) and the general

features of the experimental measurement (section 4.2) are described. A second

part is devoted to the discussion of data reduction (section 4.3), i.e. of the neces-

sary steps to go from “raw” experimental data to a series of “physical” events: these

steps notably include particle identification and energy calibration. The “physics”

events obtained after this preliminary phase finally constitute the data-set used for

the analysis. In the data-set used for the analysis presented in this work, all reac-

tion products have been identified, but only particles detected by GARFIELD are

calibrated in energy. Energy calibration of particles and fragments detected in the

RCo is currently still under progress.

Depending on the physics issues we want to investigate, a sorting of events accord-

ing to the reaction mechanism is then necessary. In the case of this work, we select

the fusion-evaporation channel, in order to compare Hauser-Feshbach calculations

to experimental data. How this can be done at present, given the incomplete status

of energy calibration, is discussed in section 4.4. Before being able to perform a

detailed comparison between data and code predictions, the filtering of code calcu-

lations through a softare replica of the experimental set-up is necessary: in section
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4.5 we discuss how the information given at the beginning of the chapter on the

experimental set-up are implemented in a software filter, in order to check if the

detection modifies and eventually distorts the predictions of the statistical decay

code.

4.1 The Experimental Set-Up

The RCo coupled to GARFIELD set-up, now fully equipped with digital elec-

tronics [79, 80, 81, 82], is installed at LNL - INFN. It is lodged in the III experimen-

tal hall of LNL, in a scattering chamber in which vacuum conditions of the order of

1÷2 10−6 mbar can be reached, when gaseous detectors are used. This set-up allows

a nearly-4π coverage of the solid angle. The GARFIELD + RCo apparatuses have

the capability to measure the charge, the energy and the emission angles of nearly

all the charged reaction products, allowing an excellent discrimination of different

reaction mechanisms. They also provide information on the mass of the emitted

charged products in a wide range of particle energy and type.

4.1.1 The GARFIELD Apparatus

The GARFIELD apparatus [83] consists in two drift chambers, having cylindrical

symmetry, which are placed back to back, covering approximately the angular range

30◦ ≤ θ ≤ 150◦ with respect to the beam direction. Depending on the needs of the

measurement, they can also be used separately, leaving place for alternative detectors

at forward or backward angles. The forward chamber covers almost completely the

azimuthal angle, whereas the second one has a side opening of ∆ϕ ' 45◦ to allow for

the allocation of specialized telescopes or different ancillary detectors. The chambers

are filled with CF4, at a pressure which can be varied in the range 20 ÷ 80 mbar.

Standard working conditions are a pressure of ∼ 50 mbar in the forward chamber,

and a lower pressure of ∼ 20÷30 mbar in the backward one, where reaction products

are less energetic. The forward and backward chambers are divided respectively in

24 and 21 azimuthal sectors. A picture of the GARFIELD forward chamber is shown

in fig.(4.1).

In each sector four microstrip pads [84] and four CsI(T l) are present. The

GARFIELD apparatus is based mainly on the well-known ∆E−E technique, which

is described in some details in the following. The ∆E signal given by the the mi-

croStrip Gas Chamber (µSGC) is the result of the collection and amplification of
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Figure 4.1: Picture of the forward chamber of the GARFIELD detector.

free generated charges along the primary ionization tracks of the impinging particles.

Also the information on the polar angle of detection is carried by this signal, and

can be deduced through the measurement of the drift time of the electrons. The

residual energy E is then obtained from the signals of CsI(T l) crystals, with pho-

todiode readout, which are located in the same gas volume in a radial configuration

with respect to the target. This is shown in the schematic view of fig.(4.2).

Preamplifiers [85] are mounted inside the gas chamber, just behind the CsI crys-

tals. A system has been designed to cool the gas, which allows for the dispersion of

the heat generated by the preamplifiers themselves. As a major improvement with

respect to the first version of the GARFIELD chambers, the analog electronics has

been substituted by a fully digitized treatment of the signal, which has been custom

developed by the Florence group [80, 81, 82]. More details on the digital electronics

are given in the following.

As general comments on the operating principles of the GARFIELD apparatus, we

notice that the use of a gas detectors is fundamental to lower as much as possible

the detection thresholds (up to 0.5 A.MeV in this case, depending on the chosen

pressure value), while the presence of four microstrip pads and four CsI in each

azimuthal sector ensures a sufficiently high number of independent telescopes (a

total amount of 360 pseudo-telescopes for the two GARFIELD chambers), in order

to minimize the percentage of double hits.
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Figure 4.2: Schematic view of one sector of the GARFIELD drift chamber. Reaction products
start their flight path from the target. The electrons produced along the path fly towards the two
sections of microstrip electrodes allowing the measurement of the energy loss and the drift time.

In particular, in the measurement presented in this work, due to the light nature of

the system under study, we have not made use of the information coming from the

µSGC up to now, since only light charged particles are produced and detected at

the solid angles covered by GARFIELD, with a low average expected multiplicity

per event. CsI alone can allow for a good detection and identification of all reaction

products in this case. This is possible thanks to the identification of detected parti-

cles through the analysis of the so-called fast - slow correlations, which is discussed

in the following. Therefore, for the GARFIELD apparatus, in the rest of this chap-

ter we limit ourselves to the description of the CsI detectors and on the analysis of

their signals.

As previously mentioned, the residual energy is measured by CsI(Tl) crystals, with

resolution (from laboratory tests) close to 3% FWHM for 5.5 MeV α particles from
241Am source. The thickness of the crystals has been chosen in order to stop all

the charged products of the reaction, after they have lost part of their energy in the

CF4 gas, in the energy regime of the Tandem-ALPI complex at LNL. The shape of

the crystals has been designed in order to optimize the geometrical efficiency, such

that the center of the front face of the crystal is always perpendicular to the radial

trajectory of the particle emitted from the target. Each of the 180 CsI crystals (96

and 84 in the two chambers, respectively) covers 15◦ in θ and ϕ. The doping of the

CsI has been chosen in the range of 1200 ppm. The shape of the backward part
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of the crystal is like a light guide to optimize the coupling with the photodiode,

and a special wrapping of the CsI has been done, aimed at maximizing the light

collection [86].

4.1.2 The Ring-Counter

The Ring Counter (RCo) is an annular detector, designed to be centered at 0◦

with respect to the beam direction. A detailed description of the first version of

the RCo is given in ref.[87]. Here we recall the main features of this detector, and

we describe the improvements recently done. The detector consists in an array of

three-stage telescopes with a truncated cone shape. The first stage is an ionization

chamber (IC), filled with CF4, the second a strip silicon detector (Si) and the last

stage a CsI(T l) scintillator. The apparatus is divided in eight azimuthal sectors.

Each sector of the IC has a unique gas volume, perfectly matching one of the eight

Si-pads placed behind. Each silicon detector, pie shaped, is segmented into eight

independent annular strips. Behind each silicon detector, instead of the two crystals

used in the former version, six smaller size CsI(T l) crystals, 4.0 cm thick, read out

by photodiodes, have been placed (for a total number of 48 scintillators), in order

to increase the global granularity of the detector. The geometrical shapes of the CsI

crystals have been designed to cover the cone subtended by the IC. A picture of the

new RCo is given in fig.(4.3).

Figure 4.3: Picture of the new RCo detector. The IC and three Si detectors are removed,
showing the six CsI(T l) crystals for each azimuthal sector.

The RCO is designed to operate in high vacuum, with minimal outgassing, and

it is mounted on a sliding plate that allows to move it forward and backward by

means of a remote control. When the RCo is in the operating position, it is inserted

in the conical opening of the forward GARFIELD drift chamber. Also a collimator
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system has been designed and built-up, able to interchange different screens in front

of the RCo, for protection during beam focalization or collimation, or for calibra-

tion purposes. Preamplifiers are mounted inside the scattering chamber, shielded

in metallic boxes which are cooled by a water cooling system. As mentioned, the

whole detector is now equipped with digital electronics.

Going into more details for each detection stage, the CF4 gas filling the IC is con-

tinuously flowing in the chamber, and typical working conditions are a pressure of

50 mbar and a temperature of 20◦C. Under these conditions, the resolution of the

IC signal results reasonably good, with a FWHM of the order of 7% for the energy

loss of a 32S beam at 550 MeV scattered on Au target, taking into account that a

large straggling is present.

With respect to the first version of the RCo the silicon detectors1 are now of nTD

type and are reverse-mounted: taking advantage of the experience of the R&D phase

of the FAZIA project [88], this allows for the application of the pulse shape analysis

technique to the Si signals, which is later discussed. As anticipated, each detector

covers one sector of the IC, and its front surface (junction side) is segmented into

eight strips. The polar angle intervals covered by each strip, when the RCo is in

the measuring position at 270 mm from the target (corresponding to the minimal

distance allowed by the mechanical structure of the GARFIELD chamber), are re-

ported in Table 4.1. The angular resolution of each strip is ∆θ ∼ 0.6◦. Properly

biased guard rings are inserted in the inactive interstrip regions, thus minimizing

any field distortion and at the same time reducing the charge split and the cross-

talk between contiguous strips. The thickness of the silicon detectors is around 300

µm, as stated by the manufacturer. Therefore the energy thresholds for particles

punching through the detectors are of about 6 A.MeV for protons and α-particles

and 7-11 A.MeV for light fragments. A resolution of the order of 0.3% for the Si

signals has been obtained from laboratory tests, showing the very good quality of

silicon detectors. This has been confirmed by measuring elastic scattering on Au

targets, both for a 32S beam at 550 MeV , and for the 12C beam at 95 MeV for the

reaction under study.

Finally, as mentioned, the actual geometry of the last detection stage of the RCo

consists of six CsI crystals for each sector. As in the case of GARFIELD CsI, the

resolution obtained with α particles sources for these detectors results of the order

of 3%.

1Purchased from Canberra. The detectors have been cut along the <111> plane and the are
tested to have a very good resistivity uniformity, together with showing a negligible channeling
effect.
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Strip Rint Rext θmin θmax
(mm) (mm) (deg.) (deg.)

8 26.185 35.050 5.362 7.160

7 35.200 42.175 7.191 8.596

6 42.325 49.300 8.626 10.021

5 49.450 56.425 10.051 11.433

4 56.575 63.550 11.463 12.832

3 63.700 70.675 12.861 14.215

2 70.825 77.800 14.244 15.581

1 77.950 85.035 15.610 16.950

Table 4.1: Internal and external radii and polar angle intervals of RCo silicon strips, when the
RCo is in the measuring position at 270 mm from the target.

4.1.3 Digital Electronics

For a complete description of the fully digitized treatment of GARFIELD and

RCo signals developed by the Florence group we remand to ref. [80, 81, 82]. Here

we want only to recall the main features of this treatment, giving only the details

which can be of help for the understanding of the detector operating principles.

As mentioned, signals are coming from the preamplifiers, and they are then directly

fed into a specially designed VME module, which can perform different operations.

In the analog input stage there is a programmable - gain amplifier followed by the

digitizing section (ADC). The data are temporary stored in a First-In-First-Out

(FIFO) memory and processed by a Digital Signal Processor (DSP). The digitizing

section consists in a 12-bit ADC operating at 125 MSamples/s [81]. The ADC out-

put values are continuously written in the FIFO memory which stores up to 8192

samples, corresponding to ∼ 65µs samples. A good estimate of the signal baseline

is mandatory [80, 81] and therefore a suitable portion of the baseline preceding the

signal is sampled and collected. The sampled signals are continuously written (cir-

cular buffer) while the channel is waiting for a trigger, and when the trigger signal

is received, it enables the FIFO memory to be filled up; therefore in the complete

sampled events both the baseline and the signal are included. The DSP reads sam-

pled data and stores them in its internal data memory. For each experiment the

acquisition system loads once the DSP computing program in DSP internal mem-

ory; for each sampled waveform validated by a trigger, the DSP program makes the

pulse analysis and outputs the requested data. For instance the program reproduces
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the behavior of the standard analog semi - Gaussian shaper, previously employed

for the GARFIELD apparatus for all the signals. This requirement was called for in

order to simplify and speed up the calibration of the data collected with digitizing

electronics, substituting the analog shapers. To get more information various other

algorithms have been implemented, such for instance the calculations previously

performed by the analog hardware or off-line including constant fraction timing,

gated integration, amplitude and rise time estimation [82].

4.2 The Measurement

The reaction 12C+12C, exploiting the 12C beam at 95 MeV provided by the LNL

Tandem XTU accelerator has been measured using the GARFIELD + RCo set-up

described in this chapter. Data taking lasted approximately 70 hours with a beam

of intensity ≈ 0.05 pnA on a 12C target 200 µg/cm2 thick. The beam time structure

was pulsed, with a repetition period of 400 ns, and with each ion burst having

approximately a gaussian distribution with a FWHM of ∼2 ns. The beam arriving

on the target is synchronized with the ion accelerating electric field radiofrequency

(RF). The RF signal can be therefore used as reference for time measurement.

We also measured the reaction 12C +179 Au, under the same beam conditions, in

order to have a reference point for the energy calibration of the detectors given by

the elastically scattered 12C ions.

With beam on gold target we were able to check periodically the time structure of

the beam, as we will later describe, while an additional target of AlO2 was present

in the target holder, allowing for the initial beam focalization.

4.2.1 The Trigger Configuration

The choice of the logic of the trigger is always based on the selection of the

reaction mechanism of interest. In the case of this experiment, the main reaction

channel to be selected was fusion-evaporation. Moreover, for the physics motivations

discussed in chapter 1, we were especially interested in achieving a high exclusive

measurement and a quasi-complete event reconstruction in case of complete fusion,

detecting therefore a high percentage of the total charge available in the entrance

channel of the reaction (Ztot = Zproj + Ztarg). Because of the light nature of the

system under study, even a stringent condition on the detection of the total charge

(as high as Zdet ≈ 80%Ztot) can be fulfilled by measuring only a sufficiently heavy
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evaporation residue, which, taking the largest part of the boost provided by the

beam, flies at forward angles and is detected in the RCo. Therefore, we have de-

cided to adopt as main trigger the OR of trigger signals coming separately from

GARFIELD and from the RCO, given that the coincidences can be recovered in the

offline analysis. In particular,the trigger signal coming from GARFIELD is the logic

OR of all CsI(T l) signals, while the so called OR-RCO is the logic OR of all signals

from Si strips. Additional trigger signals were coming from the pulser, which is

used to make routinely control runs to check the stability of the electronics during

the measurement, and especially to be able to compare the results obtained from

experiments performed in different periods and under different conditions.

The last trigger was coming from a collimated plastic scintillator positioned at

θ = 2◦, under the grazing angle for the measured reaction (θgr ≈ 4◦). The adopted

trigger system has been developed by the Florence group, and is described in details

in [93].

4.2.2 Settings and Online Checks

The good timing resolution of the plastic scintillator positioned at θ = 2◦ is used

to control the timing properties of the pulsed beam. The time of flight spectrum is

constructed using the difference between the time signal of the scintillator, related

to the elastically scattered beam, and the time reference RF signal of the pulsed

beam. This is done with beam impinging on a gold target, to maximize the elastic

scattering cross section.

Online controls on currently acquired data can be easily done thanks to the graph-

ical interface called GARFIELD Monitor [89]. The monitor program allows to vi-

sualize an arbitrary number of pre-defined 1- and 2-dimensional histograms, filled

either with raw experimental data or with preprocessed variables (simple combina-

tions of two or more experimental parameters, linear calibrations). In particular,

online checks are devoted at the beginning of the measurement to the setting of

pedestals and software thresholds. The monitor program can compute all pedestals

for ADC/QDC modules on-demand, and the results can be further manually ad-

justed using the graphical interface. Finally the pedestals are loaded by the acqui-

sition system.

The acquisition dead-time, due to the large number of acquired parameters and to

the complexity of the data acquisition system, was kept under control by carefully

setting pedestals and thresholds and monitoring the beam intensity and focalization,

to keep under control the trigger rate. An average dead time of ∼ 30% was regis-
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tered during the measurement. Finally, during all the measurement, the gas pressure

stability in the GARFIELD drift chambers and in the RCo ionization chamber was

checked, together with the stability of all detectors voltages. Chosen pressure val-

ues were p = 20 and p = 48 mbar respectively for the GARFIELD backward and

forward chambers, and p = 50 mbar for the RCo IC.

4.3 Data Reconstruction

A “raw”event is a list of acquisition data parameters characterized by the same

event number. The event reconstruction consists in the analysis of the acquired

parameters in order to reconstruct physical particles, thus attributing to the event

a multiplicity of detected particles, each characterized by its charge, mass (when

possible), direction of flight (i.e., the geometrical position of the hit detector), and

finally its energy loss and/or residual energy, to be further used to recover the

information on the incident energy.

4.3.1 Identification Methods

In our GARFIELD+RCo set-up, particles can be identified through various tech-

niques, which we detail in the following.

∆E − E correlations

For particles impinging on GARFIELD, the ∆E − E correlation between the

energy loss in the µSGC and the residual energy in CsI(T l) can be used, which pro-

vides charge identification up to Z ∼ 23, with a threshold of the order of 0.8 A.MeV .

The principle at the basis of the ∆E −E identification technique is well known: in

the non relativistic limit, the Bethe expression for the energy loss of a charged par-

ticle in an absorber of given density is a function of the particle charge, mass and

incident energy [90]. Under the assumption that the dependence of the energy loss

on the ratio E/A, i.e. on the incident energy per nucleon of the impinging particle,

is a power law with the exponent left as a free parameter, the Bethe expression

can be worked out analytically [91], and a relation between the energy loss in the

thickness of the first layer of detection and the energy deposited in the second layer

can be obtained. Such a relation is usually called a particle identification function

(pif ). However, it is experimentally well known that it is quite difficult, by manag-

ing one only parameter (the exponent of the power law dependence) to find a unique

pif able to linearize the ∆E − E correlation of each used telescope, in the whole
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range of residual energies and for a wide range of charges. Therefore, the addition of

other free parameters to take into account possible deviations (due to low residual

energies, high charge of the fragments, various instrumental effects, etc.) has been

described in [91], and the proposed phenomenological correlation for ∆E−E signals

has been adopted and implemented in an event by event identification in ref.[92].

This identification technique allows for a fit of the experimental ∆E−E correlations

for each charge, and, if the ∆E energy resolution is sufficiently good, also for each

mass. Results for the fit parameters (seven for each detector in ref.[92]) depend

therefore on the considered detector.

As anticipated, in the measurement presented in this work, this kind of correlation

does not add substantial information to what can be reconstructed by analyzing the

signals coming from GARFIELD CsI(T l) alone.

On the contrary, the possibility to build such correlations for signals coming from

the RCo has been essential in this analysis: for the RCo there are two possible

∆E − E matrices to be built. For particles stopped in the silicon detectors we can

make use of the correlation between the signals coming from the IC (∆E) and the

ones from Si strips, proportional to the residual energy. This allows only for charge

identification, up to Z ∼ 24, with a threshold of the order of 0.7 A.MeV under

standard gas pressure conditions. In the specific case of this measurement, as it will

be later discussed, this information allows us to select the reaction mechanisms, by

gating on detected evaporation residues, which, at this beam energy, are stopped in

the 300µm of Si. For particles punching through the silicon detectors, a ∆E − E
matrix is built with signals from Si strips, as proportional to an energy loss, and

signals from CsI(T l) as a measure of the residual energy. In this latter case, also the

isotopic identification of detected particles can be achieved. In this measurement,

only light particles up to Z ∼ 2 were sufficiently energetic to punch through the

silicon detectors and to reach the CsI(T l). ∆E − E matrices for signals registered

by the RCo are shown in fig.(4.4) and (4.5). An offset of 500 channels has been

always added to the signals, for a better presentation of all figures.

Fast vs. slow correlations for CsI detectors

For GARFIELD (and for particles punching through the 300µm of RCo silicon

detectors) particles identification can be achieved through a pulse shape analysis

technique, namely exploiting the correlation between the so-called fast and slow

components of CsI(T l) signals. CsI(T l) scintillators are known to have a light

output signal whose shape varies as a function of the type of incident radiation.
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Figure 4.4: Typical ∆E − E IC vs. Si matrices for particles detected in the RCo. Telescope
numbers are given in the figure. Data are from: the 32S +48 Ca reaction at 17.5 A.MeV in the
upper panel; the 12C +12 C reaction under study in the lower one.

Indeed, two kinds of physical processes allows the light production in a CsI(T l)

crystal, each with a different time decay constant, and this results in the two different

light components [90]. The DSP is able to filter the pre-amplified CsI(T l) signal

with two different time constants, thus trying to disentangle these two components:

the short-gate integration of the signal yields the fast quantity, which is related to the

short component of the light emission, while the overall integration give the so-called

long. The correlation between fast and long is used to build an identification scatter

plot, while the long quantity, being basically proportional to the total light output,

is used for energy calibration purposes. In particular, the identification scatter

plot shows a better isotopic separation when correlating new quantities obtained

from a linear mixing of fast and long, which partially removes the trivial linear



4.3 Data Reconstruction 115

Figure 4.5: ∆E−E Si vs. CsI(T l) matrix for particles punching through the RCo Si detectors.
The telescope number is given in the figure. Data are from the 12C +12 C reaction under study.

correlation between these two quantities, coming from the fact that part of the

signal produced by the long-time fluorescence of the CsI(T l) is necessarily integrated

within the short gate. In our case we choose to correlate fast to a re-computed

slow = 3.5(long − 4fast) as it is done in ref.[80, 94]. In fig.(4.6) fast vs. slow

scatter plots for a chosen GARFIELD CsI are shown. Isotope ridges are clearly

visible in the plots, and can be identified up to Z = 3. Signals associated to the

detection of γ are characterized by a linear correlation of fast and slow, and can also

be easily distinguished.

Energy - rise time correlations for Si detectors

An additional possibility of identifying the reaction products both in charge and

mass consists in an application of a pulse shape technique to the signals coming

from the Si detectors of the RCo. In this case, the exploited correlation is the one

between the energy signal and the so called rise time, defined in our case as the time

interval needed by the signal to go from 20% to 80% of its full amplitude. Scatter

plots of this kind are shown in fig.(4.8) for chosen Si strips. As it can be seen from

the figure, the charge identification is easily achieved for all charged products, with

a threshold corresponding approximately to the energy needed by the fragment to

pass through the first ∼ 30 µm of the detector. This corresponds to a threshold

of about 2.5 A.MeV . As can be also seen from the figure, we have recently shown

the possibility of mass identification via pulse shape on Si signals for fragments

with charge up to Z = 14. These encouraging results have motivated new efforts,
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Figure 4.6: Typical fast vs. slow scatter plots for particles detected by GARFIELD CsI(T l)
crystals in different measurements. For the same detector (CsI 8 sector 6), upper panel: light
particles produced in the reaction 32S+48Ca at 17.5 A.MeV ; lower panel: data for the 12C+12C

reaction under study.

which are currently undertaken, in order to optimize the response of Si detectors

and to enlarge as much as possible the range in which isotopic identification can be

achieved.

4.3.2 Identification Procedures

Having discussed which are the correlations which can be built with signals

registered by GARFIELD and by the RCo, we recall hereafter the scheme of the

usually employed procedure to identify all reaction products in charge and, when

possible, in mass.
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Figure 4.7: Upper panel: typical Si energy vs. rise time correlation for a chosen Si strip,
indicated in the figure legend. In the lower panel, zoomed view on a region where mass identification
has been achieved (up to Z = 14) by measuring the 32S +48 Ca reaction at 17.5 A.MeV ;

General identification procedure

The identification procedure is described in the following in the most general

case, valid for any of the signal correlations previously introduced. Different steps

are necessary:

• in a bidimensional scatter plot several points are sampled by hand on the

ridges of well defined isotopes. Some isotopes are easy to identify, either due

to their abundance (4He) or to their separation from other masses (1,2,3H).

Charge, mass and coordinates of the sampled points are organized in a table;

• the parameters characterizing the detector response to the charge Z and mass

A are determined by fitting the coordinates of the previously sampled points
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Figure 4.8: Si energy vs. rise time correlation for a chosen Si strip, indicated in the figure
legend, with data for the 12C +12 C reaction under study. Besides the scattered 12C ions, one
can also see the contribution of different direct reactions proceeding through discrete states of the
involved nuclei.

with the analytical (or semi-empirical function) describing the correlation be-

tween the two variables. Results for the fit parameters are stored in a table;

• an event by event identification is performed, by means a χ2 minimization.

In each event, each detected particle is identified by minimizing the squared

distances of its coordinates in the scatter plot under study, with respect to

the values provided by the analytic expression for the same correlation with

parameters read from the map built in the previous step for each detector.

In case of mass and charge identification, the procedure is usually repeated

twice: in the first step the charge is attributed, under the assumption of a

mass A = 2Z, and in the second step the minimization of the distance is done

with respect to the mass coordinate.

Obviously, in the case of a large number of detectors/telescopes, the most time

consuming step of the identification procedure is the first one, because of the neces-

sity to sample a huge number of points on each isotope branch in order to obtain

in the second step a reliable set of parameters. We underline at this point the

importance of having analytical expressions for the correlations, which allow for ex-

trapolation of the functional forms to isotopes which cannot be sampled because of

the low statistics, as it can be the case for backward detectors.
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Results for RCo ∆E − E matrices

For the data presented in this work, this procedure has been followed for the

identification of particles detected in the RCo, for both possible ∆E − E correla-

tions [92]. As mentioned, analytical particle identification functions are available

in this case, which derive from the Bethe expression for the energy loss. Typical

results for charge (from IC vs. Si matrices) and charge and mass (from Si vs. CsI

matrices) distributions are shown in fig.(4.9) for the same telescopes of fig.(4.4) and

(4.5). A similar procedure will be used for GARFIELD ∆E − E matrices.

Figure 4.9: Results of the identification procedure on typical ∆E − E matrices for particles
detected in the RCo in the reaction 12C+12C. In the top panel, charge distribution obtained from
the IC vs. Si matrix shown in fig.(4.4); in the bottom panel, charge and mass distributions from
the Si vs. CsI matrix of fig.(4.5).

Semi-automatic procedure and results for GARFIELD fast vs. slow correlations
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In the case of fast vs. slow correlations for signals of GARFIELD (and RCo)

CsI, we have taken advantage of the semi-automatic procedure described in details

in ref. [94], where the analytical function which can be used as a particle identifica-

tion function is reported.

The first big advantage of this procedure is a great reduction of the time dedicated

to the manual sampling of points along the various isotope ridges. Indeed, this can

be done in an automatic way within the ROOT environment [95]: ridges are seen as

successive monodimensional gaussian distributions, close to each other, and peaks

are searched firstly along the x-axis (the slow variable is in abscissa), then along

the y-axis (fast). Finally, a peak observed on the y-projection is validated only

if a peak in the x-projection falls in the same cell of the bidimensional plot. This

gives a series of coincident peaks, lying on isotope ridges, to which a label (A,Z)

can be assigned. In order to connect with each other the peaks in a given (A,Z)

series (called a cluster), we make use of a tracking method, which is essentially a

local method of pattern recognition [96]. The propagation of the track starts from

a seed (the leftmost point of each cluster), and is based on a local linear equation

between each pair of points along the ridge and on a quality criterion, which allows

to distinguish good track candidates from ghosts. When several points are possible

candidates to propagate a trajectory, the method selects the point giving the min-

imum change of the angular coefficient of the straight line connecting the previous

two points belonging to the ridge. The procedure is continued until the end of the

tracking area has been reached, or no further suitable points can be found. The

next important result presented in [94] is the analytical function proposed for the fit

of the experimental fast-slow correlations. The proposed function is based on the

consideration that a power law relation can been employed [97] for the total light

output of a crystal as a function of the energy. As mentioned, the long component of

the CsI signal is proportional to the total light output, and the fast and long com-

ponents are expected to be almost linearly correlated with each other. This results

in a power-law behavior for both fast and slow as a function of the energy, and,

consequently, in a power-law relationship between them. We can therefore write:

slow(fast, A, Z) = a1 fast
a2 with a1, a2 ≥ 0 (4.1)

where an exponential behavior can be attributed to each of the coefficients a1 and

a2:

a1 = [d1 + d2 exp(−d3Zeff )] exp(−d4Zeff )

a2 = [d5 − d6 exp(−d7Zeff )] (di ≥ 0, i = 1, 7)
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In the proposed approach, the use of a dependence on the quantity Zeff = (AZ2)1/3

is the most effective way to take into account the charge and the mass of the ana-

lyzed isotope ridge.

The last step of the analysis is the event by event identification procedure, as de-

scribed for the most general case. By using the table of fit parameters obtained

for all CsI, for each detected particle an integer Z and real A value are deter-

mined by choosing the minimum distance of the experimental point (slow, fast)

from the curve slow(fast, A, Z) of eq.(4.1) for all the possible (A,Z) values. Re-

sults for the application of this procedure to the identification of particles detected

by GARFIELD in the experiment presented in this work are shown in fig.(4.10),

where also the points determined and connected along different isotope ridges by

the semi-automatic procedure are shown.

Pulse shape analysis on Si - signals.

As far as the energy - rise time matrices for signals from the RCo Si strips are

concerned, we are currently developing an extension of the semi-automatic procedure

described for the CsI fast vs. slow scatter plots. The additional information which

can be obtained by performing the identification on these matrices is the mass of

particles detected in the RCo and stopped in the Si detectors. At present, this

information has not been extracted, as the information on the charge coming from

the analysis of IC vs. Si matrices is sufficient to select the reaction channel, in a

preliminary but safe way.

4.3.3 Energy Calibration

As anticipated in the introduction of this chapter, for the data-set which is ana-

lyzed in this work the energy calibration has not been completed for all the detectors

of the experimental set-up.

In particular, at present, only light charged particles detected by GARFIELD CsI

have been calibrated in energy. As described in the previous section, such particles

are identified by the analysis of fast vs. slow correlations, where the quantity slow

is obtained from the long component of the signal, proportional to the light output,

which in turn depends on the released energy via a power law.

The energy calibration of these particles results therefore from the fit of the detector

light output, provided that we have a sufficient number of points of known energy

to constrain the free fit parameters [94]. Such points have been gathered over sev-

eral years of experience of the collaboration working with CsI(T l) detectors, using
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Figure 4.10: Application of the semi-automatic procedure for the identification of particles
detected in GARFIELD CsI through fast vs. slow scatter plots, for the reaction under study. In
the top panel: on various isotope ridges points determined and connected by the semi-automatic
procedure are shown. The black line labelled fragments delimits the upper limit of identification,
and signals for Z > 3 fragments would fall in a common ridge above this line. Under the lower
black line, γ signals are measured. The ridge corresponding to the double hit of α particles is also
indicated. In the bottom panel: resulting mass distributions for Z = 1 and 2 isotopes.

elastically scattered isotopes ranging from Z = 1 to Z = 28.

In particular, during dedicated calibration runs for this experiment, we have mea-

sured elastic scattering on Au target for 12C at the same 95 MeV beam energy as

for the reaction on 12C under study, and at a lower energy of 60 MeV . In this

latter case, the measurement of elastically scattered ions on backward GARFIELD

detectors is also kinematically allowed. In fig.(4.11) we show the superposition of

fast vs. slow scatter plots for a CsI detector of the current set-up, in which the
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spots for elastically scattered 12C ions at the two different energies are evident.

Figure 4.11: Superposition of fast vs. slow scatter plots for a GARFIELD CsI detector, where
elastic scattering for 12C +179 Au at 95 and 60 MeV beam energy is measured.

4.4 Data Selection

Given the present status of energy calibration for the data-set analyzed in this

work, only static conditions can be employed in order to select the reaction channel.

The channel we aim to select is fusion-evaporation, which implies the detection of an

evaporation residue. Thus, at a first approximation, the request of the detection of

a sufficiently “heavy” fragment at forward angles, i.e. in the RCo, could be enough

to select the desired channel. With the usual notation, we call Zbig the charge of the

biggest fragment, detected in our case by the RCo. For the analyzed reaction, an ad-

ditional difficulty is arising from the very light nature of the system: also according

to our simulations (whose results are presented in chapter 3), evaporation residues

for the reaction 12C +12 C at 95 MeV beam energy can be as light as the projectile

itself, and even lighter. Without having at disposal the information on the fragment

momentum, we can not therefore distinguish between an event in which a Zbig ∼ 6

fragment is measured following the decay of a fused source, from an event in which

the fragment is the remnant of the projectile after a less dissipative collision, as

inelastic scattering, transfer or pick-up. In all these latter cases, fragments detected

by the RCo would bear a longitudinal momentum (parallel to the beam direction)

close to the one of the incoming 12C projectile. Moreover, the total detected charge
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would be close to the charge of the projectile, i.e. we will only measure a low per-

centage of the total charge available in the entrance channel of the reaction.

On the contrary, if such fragments are detected in coincidence with light parti-

cles emitted at GARFIELD angles, they may indeed be produced in the fusion-

evaporation channel. Having at disposal the information on the momentum we

could build the correlation between the total detected charge and the total longitu-

dinal momentum. Because of total momentum conservation, the total longitudinal

momentum associated to this kind of event will be close to the one of the projectile,

but the total detected charge will be much higher than for peripheral collisions.

As discussed in section 4.2.1, however, the simple request of the RCo - GARFIELD

coincidence may be too stringent, since we expect to measure events in which only a

fragment with charge close to the charge of the fused system (Zproj + Ztarg = 12) is

detected by the RCo, and we want to attribute such events to the fusion-evaporation

channel.

Following this line, we have firstly decided to adopt a criterion on the completeness

of the detected event: we have therefore asked for the detection of at least the 80% of

the total charge available in the entrance channel of the reaction, which corresponds

in our case to the request Zdet ≥ 10.

In particular, the request of completeness can be fulfilled by measuring a sufficiently

heavy evaporation residue alone in the RCo, OR by measuring in the RCo an evap-

oration residue with charge bigger than the charge of the projectile (to avoid any

spurious contribution from less dissipative collisions), but in coincidence with other

particles in GARFIELD (and/or in the RCo), OR finally by measuring an event

with a Zbig ≤ 6 biggest fragment but with a sufficiently high multiplicity of charged

particle detected by GARFIELD (and/or by the RCo).

We can therefore write for our final request on data:

Zdet ≥ 10 AND (Zbig ≥ 6 OR mGARF > 0) (4.2)

where mGARF is the multiplicity of particles detected by GARFIELD.

In fig.(4.12) we show the experimental charge distribution resulting from data after

Z - identification and with the only request of completeness of the detected events,

together with the distribution obtained by applying the condition given in (4.2).

As can be seen in the figure, the shape of the distribution obtained with the

proposed criteria is compatible with what we expect from the charge distribution

following a fusion-evaporation reaction: two different charge regions can be ob-

served, the region of light evaporated particles and the residue region, with average

charge bigger than the charge of the projectile. As expected, the additional request
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Figure 4.12: Experimental charge distribution of reaction products for 12C +12 C at 95 MeV ,
detected in the RCo. The dashed line histogram corresponds to the inclusive charge distribution as
it results from Z - identification from ∆E−E correlations built with RCo IC and Si signals, with
the only request of completeness of the detected events (Zdet ≥ 10); the filled-area histogram gives
the charge distribution corresponding to the final selection criterion Zdet ≥ 10 AND (Zbig ≥
6 OR mGARF > 0), which allows us to select the subset of fusion-evaporation events to be used
for the analysis.

(Zbig ≥ 6 OR mGARF > 0) mainly excludes from the selection events associated

to the detection of a Zbig ∼ 6 fragment, which at present we cannot safely identify

as evaporation residues. For a detailed comparison of this and other experimen-

tal observables with the evaporation code predictions, thus further justifying the

proposed criteria, we remand to chapter 5. Here we want only to notice that this

selection may exclude from the data-set some charge partitions also corresponding to

the desired channel. We obviously plan to recover the events corresponding to these

partitions, by completing the detector calibration, and performing the same analysis

proposed in this work with the data-set corresponding to new selection criteria. As

it is common to other intermediate and high-energy experiments, this selection can

be done by asking conditions on the total detected charge (as already done in this

work), the total longitudinal momentum, and directly inferring the “shape” of the

measured event from a momentum tensor analysis, and the value of the so-called

flow-angle [98].
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4.5 The Experimental Filter

Before comparing the experimental data to model predictions, it is necessary to

filter simulated events by a software replica of the experimental set-up.

The first operation to be performed is a randomization of the reaction plane for

simulated events: this is necessary because in the simulations the initial angular

momentum usually has a fixed space orientation, and following the kinematics of

the decay in presence of angular momentum, this implies that particle emission takes

place preferentially in the plane perpendicular to the initial J vector. In order to have

the desired effect of reaction plane randomization, but without loosing correlations

among particles resulting from the kinematics implemented in the code (which we

will be able to compare to data), we can simply add to the ϕ value of each particle

in a given event a random ϕin quantity. This will leave constant the difference ∆ϕ

for each considered couple of simulated particles in the same event.

At this point, the filter has still to take into account:

• the geometrical coverage of the experimental set-up;

• the energy thresholds for detection and identification of particles in charge and

mass in hit detectors;

• energy losses due to dead layers and to the interaction with the detector ma-

terial in case of multi-stage telescopes;

• the presence of unsolvable double-hit, i.e. the detection of two particles in

the same telescope, without any possibility of recovering the information on

particle species or energy;

• the smearing out of the predicted energy with which the particle can be de-

tected due to the finite energy resolution of the apparatuses.

Angular ranges covered by GARFIELD and the RCo, typical values for thresholds

and detector resolutions have been given in the sections about the experimental set-

up and the energy calibration. Taking all this into account, typical values for the

set-up efficiency calculated by filtering the code predictions for the reaction under

study are:

• an efficiency of the order of 90% for the detection of at least one particle

per event, which is a good indication of the nearly 4π coverage of the set-up,

together with the low detection thresholds due to the use of gas detectors;
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• a final percentage as high as 30% for the reconstruction of quasi-complete

events fulfilling the physical request discussed in the previous section for the

selection of the fusion-evaporation channel.

In fig.(4.13) we show the effect of the experimental filter on the predictions for a

global observable as the residue charge distribution. Evaporation residues are the

less energetic reaction products, and therefore the most difficult to detect. As it

is evident from the figures, this observables is not substantially modified by the

filter, and only a global reduction of the statistics is observed. Together with the

high numerical values for the calculated efficiency, this ensures that a representative

sample of physical events can be measured by our experimental set-up for the chosen

reaction.

Figure 4.13: Effect of the experimental filter for the GARFIELD+RCo set-up on the predictions
of the Hauser-Feshbach code for the evaporation residue charge distribution. Residues are measured
at forward angles, by the RCo detector. Code calculations are shown with a dashed line, filtered
calculations with a continuous line.





Chapter 5

Comparison to Model Predictions

In this chapter we present the results of the data analysis for the reaction
12C+12C at 95.6 MeV beam energy, measured at LNL with the GARFIELD + RCo

experimental set-up. The apparatuses and the measurement have been described in

the previous chapter, together with the techniques and procedures adopted to go

from “raw” data to a set of “physical” events. As previously discussed, we have

adopted the following selection criterion:

Zdet ≥ 10 AND (Zbig ≥ 6 OR mGARF > 0) (5.1)

where Zdet is the total detected charge (corresponding to ≈ 80% of the available

charge in the entrance channel of the reaction), Zbig is the charge of the biggest

fragment detected at forward angles (in the RCo) and mGARF is the multiplicity

of particles detected in GARFIELD. This criterion has been applied in order to

sort from the collected events an experimental subset of events compatible with the

fusion-evaporation channel, and, therefore, which we can compare to the predictions

of our Monte Carlo Hauser-Feshbach code for the evaporation of the compound nu-

cleus 24Mg, at e∗ = 2.6 A.MeV , issued in case of complete fusion for the measured

reaction. As described in chapter 3, where a theoretical study of the decay of an

equilibrated 24Mg under these conditions is presented, the angular momentum in-

put distribution for the fused system in this reaction can be assumed as a triangular

distribution, with a maximum value J0 max = 12 ~ coming from the systematics.

Because of parity conservation, only even values of J0 extracted from the trian-

gular distribution are allowed as an input for the CN angular momentum in the

calculations. Finally, code predictions are filtered through a software replica of the

experimental set-up, as discussed in chapter 4.

The comparison of various experimental observables and code calculations is used
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to put experimental constraints on the free parameters of the level density model

implemented in the code. The results presented in this chapter will also allow us to

get an insight into possible deviations from a statistical behavior of the hot fused

source formed in the collision, due to the persistence of structure effects as clustering.

5.1 Light Charged Particles and Level Density

In the following, we will present the results for the comparison between experi-

mental data and code predictions for observables which can be built up with light

charged particles detected in GARFIELD, by using the information coming from

the RCo in the selection criterion given in (5.1).

In particular, these observables include energy, angular and multiplicity distributions

for protons and α particles. All kinematic observables are given in the laboratory

reference frame.

The adopted normalizations are clarified hereafter:

• for each of GARFIELD CsI detector, the different solid angle coverage is taken

into account, and spectra are always integrated on the azimuthal angle ϕ;

• the global normalization factor for all proton/α energy and angular distribu-

tions is the total yield of protons/α detected in GARFIELD. The contribution

of CsI5 is always excluded from the computation of this normalization factor,

because of the reduced efficiency of this detector, as it is shown in chapter 4.

Inclusive spectra (summing the contributions of all CsI) are therefore normal-

ized to a unitary area, while the integral of the spectrum for a single detector

bears the information on the percentage of the total yield which comes from

that detector;

• multiplicity distributions are normalized to the number of events fulfilling the

request given in (5.1), and correspond therefore to probability distributions.

Code predictions for two different values of the level density model free param-

eter Ecl are presented in this section: we recall that this parameter determines how

rapidly the level density parameter a(E∗) grows for increasing E∗ from the value

given in [67], necessary for the reproduction of low-energy spectroscopic information,

up to the asymptotic value calculated with the expression given in [74], coming from

evaporation after fragmentation studies, which represents therefore a constraint at
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higher energy. By tuning the value of this parameter in order to reproduce exper-

imental data we can therefore give an additional constraint to the LD parameter

functional form in the “energy” region from ∼ 1 up to ∼ 2÷ 3 A.MeV .

The values used in the calculations are Ecl = (3 · A) MeV and Ecl = (8 · A) MeV .

The same color scheme is employed throughout all the figures of this chapter: code

predictions for the first case are always presented in red, predictions for the second

one in blue. We also recall that a higher value of Ecl implies, at a given excitation

energy, a lower value of the level density parameter a(E∗), and therefore a higher

nuclear temperature. For both choices of Ecl, in our level density model, the asymp-

totic value for a(E∗) for nuclei with mass A ∼ 20 is a ≈ A/5.

In fig.(5.1) we show experimental inclusive protons and α particles energy spectra.

As it is evident from the figure, the proton energy spectrum is in very good agree-

ment with model calculations for the case Ecl = (3 · A) MeV , both concerning the

slope (sensitive to the LD parameter value) and the low-energy barrier region (sen-

sitive to adopted values for transmission coefficients and Coulomb barriers). On the

contrary, the same choice for the level density model cannot reproduce the energy

spectrum of α particles, which differs from the calculations both in the high- and

low-energy regions. Even the alternative case of Ecl = (8 · A) MeV does not allow

for a reproduction of the slope of the α spectrum, and a higher value of Ecl would

be needed to obtain an agreement. Finally, the reproduction of the slope of the

energy spectrum for α particles may be achieved only at the cost of both a wrong

reproduction of the proton energy spectrum, and of an unphysical choice for the

value of Ecl, since, as discussed in chapter 3, Ecl is upper-limited by the nuclear

limiting energy as evaluated in ref.[39], which cannot in turn exceed the average

binding energy per nucleon.

In fig.(5.2) we present the results for protons and α particles angular distribu-

tions. The centers of the bin for these distributions correspond to the average θ angle

of each of GARFIELD CsI detector. The reduced efficiency for CsI5 is evident in

the figure. For this observable, as we expect from the theory, code predictions are

less sensitive to the choice of the level density parameter. The experimental angu-

lar distribution is well reproduced for protons for both possible values of the Ecl
parameter. As far as α particles are concerned, the agreement is found to be good

for the forward detectors (θ ≤ 90◦), while a general underestimate of the α yield

is evident in the calculations for backward laboratory angles. As for the case of α

energy distribution, a higher value of Ecl goes in the right direction to reproduce

the experimental data, but the maximum possible value Ecl = (8 · A) MeV is still
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Figure 5.1: Energy spectra for protons and α particles detected in all GARFIELD CsI: in
ordinate dY/dEk, in abscissa the kinetic energy Ek in MeV in the laboratory frame. Experimental
data are given by dots, statistical errors are calculated and shown with bars. Model predictions
are shown with lines. The red line corresponds to a chosen value of Ecl = (3 · A) MeV , the blue
one to Ecl = (8 ·A) MeV .

not high enough.

Finally, in fig.(5.3), we plot the multiplicity distributions of detected protons and

α particles. As it is evident from the figure, the global behavior of these distribu-

tions is reproduced by the code predictions, and also this observable is less sensitive

to the level density model. In particular, for the proton multiplicity distribution,

almost no differences can be observed between the Ecl = (3 · A) and (8 · A) MeV

cases. Concerning this observable, we have verified that the inversion of the number

of protons per event corresponding to the highest probability, which is np = 0 for

the experimental sample and np = 1 for the calculations, can be at least partially

attributed to the reduced efficiency of CsI5. Indeed, in the figure we also plot the

prediction for the same observable calculated by excluding the contribution of pro-

tons detected in CsI5, i.e. artificially putting to zero the efficiency of this detector

in the software replica of the apparatus (red dashed line, for the Ecl = (3 ·A) MeV

case). This exclusion allows for a reproduction of the experimentally measured high-
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Figure 5.2: Angular distributions for protons (upper panel) and α particles (lower panel) de-
tected in GARFIELD: in ordinate dY/ sin θdθ, in abscissa the average θ angle of each of GARFIELD
CsI detectors. Experimental data are given by black dots, model predictions are shown with dots
connected by a line to guide the eye. The red line corresponds to Ecl = (3 ·A) MeV , the blue one
to Ecl = (8 ·A) MeV . The reduced efficiency for CsI5 is evident in the figure.

est probability of having an event without any detected proton in GARFIELD.

As far as α particles are concerned, we can observe a slightly better reproduction of

data for calculations with Ecl = (3 ·A) MeV for lower nα values, characterized by a

larger statistical weight, while the choice Ecl = (8 ·A) MeV goes in the direction of

getting a better reproduction of lower statistics contributions, and the same effect

is visible in the angular distribution, where code results for Ecl = (8 · A) MeV are

closer to experimental data for backward GARFIELD detectors.

As a first summary of the presented comparisons, the proposed selection crite-

rion given in (5.1) has allowed us to isolate from the total reaction cross section a

contribution which can be identified with the formation and decay of a fused source:

this makes possible the comparison between experimental data and our decay code

predictions, in which the dynamics of the entrance channel is not taken into account.

Global observables as multiplicity distributions for light charged particles can be in-
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Figure 5.3: Multiplicity distribution of protons (left panel) and α particles (right panel) detected
in GARFIELD. Experimental data are given by black dots, model predictions are shown with dots
connected by a line to guide the eye. The red lines correspond to Ecl = (3 · A) MeV , the blue
one to Ecl = (8 · A) MeV . In the left panel, the red dashed line is obtained by excluding the
contribution of protons detected in CsI5. Always in the left panel, results for calculations with
different Ecl values are almost indistinguishable.

deed well reproduced. However, from the results shown in fig.(5.1,5.2) for energy

and angular distributions, we infer that no unique choice for the level density model

implemented in the code allows for a good reproduction of observables concerning

both protons and α particles emission from this source. The source does not show a

fully equilibrated behavior, and this is particularly evident in the case of α particles

emission. Given the N = Z even-even nature of the 12C projectile and target in the

entrance channel of the reaction, we are then tempted to attribute any deviation

from a statistical behavior in the decay of this source to α-clustering effects, and

therefore to constrain the level density model in order to have a good reproduction

of proton observables, with the purpose of investigating more in details α particle

emission. This brings us to the choice of Ecl = (3 ·A) MeV , and calculations shown

in the rest of this chapter are always performed under the assumption of this value

for the Ecl parameter in our level density model.
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5.2 Out-of-Equilibrium Effects

We can have a closer insight in the kinematics of the decay of the fused source by

combining the information from angular and energy distributions: in fig.(5.4) and

(5.5) we show respectively the energy spectra for protons and α particles detected

in the different GARFIELD CsI. As it is evident from fig.(5.4), code calculations

for the chosen level density model globally reproduce proton energy spectra, for all

GARFIELD CsI, and only a slight increased experimental production at backward

angles can be observed. On the contrary, as expected, no reproduction is achieved

for α particles energy distributions at any CsI angle. Moreover, for more forward

detectors, a bump in the α energy spectrum can be observed, which is less evident

in the inclusive spectrum of fig.(5.1). Such a structure suggests the presence of a

non-equilibrium component in α-emission.
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Figure 5.4: Energy spectra for protons detected in the different GARFIELD CsI: in ordinate
d2Y/ sin θdθdEk, in abscissa the kinetic energy in MeV in the laboratory frame. Experimental
data are given by dots, statistical errors are calculated and shown with bars. Model predictions
are shown with red lines, corresponding to the Ecl = (3·A) MeV choice. Going from the uppermost
left plot to the lowermost right the average θ angle of the detector is decreasing. The name of the
considered CsI is reported in each figure. The reduced efficiency for the CsI5 is evident in the
figure.
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Figure 5.5: The same as in fig.(5.4), for detected α particles.

In order to investigate if a particular decay channel is associated to this compo-

nent, we plot in fig.(5.6) the energy spectra for α particles detected in all GARFIELD

CsI, in coincidence with a residue of chosen charge detected at forward angles (in the

RCo), always for the subset of events fulfilling the selection criterion given in (5.1).

In the left panel of the figure, the usual global normalization factor is employed for

each distribution, i.e. all spectra are divided by the total yield of detected α parti-

cles, such that the sum of the contributions corresponding to all detected residues

gives back the inclusive α energy spectrum shown in fig.(5.1). By looking at the

left panel we can identify three lower statistics contributions, corresponding to a

detected residue with charge Zres = 4 (purple dots), 5 (red) and 10 (green). Higher

statistics contributions come from Zres = 6, 7, 9 (respectively, blue, yellow and light

blue dots) and the dominant contribution is the one from α detected in coincidence

with Zres = 8, in which a bump in the energy spectrum is appearing. Two differ-

ent autocorrelations have to be considered to compare the energy spectra shown in

the left panel with each other: one is the relative probability for the production

of residues with different charges, and the other one is a trivial effect of charge

conservation. The maximum number of α particles which may be emitted in the

decay of the fused source is given by nmaxα = (ZCN − Zres)/2. To get rid of these
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effects, in the right panel of the figure we show the same energy spectra, multiplied

by a normalization factor given for each residue as c(Zres) = [Y (Zres)/Nev · nmaxα ]−1.

With this normalization, all spectra are found to be grouped together, with the

exception of the one for α particles detected in coincidence with Zres = 10. This

may be attributed to our selection of the reaction channel, and in particular to the

requirement Zdet ≥ 10, which is fullfilled by the detection of a Zres = 10 fragment

even if detected alone.
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Figure 5.6: Experimental energy spectra for α particles detected in all GARFIELD CsI, in
coincidence with a residue of given charge detected at forward angles (in the RCo). In ordinate
dY/dEk, in abscissa the kinetic energy in MeV in the laboratory frame. The adopted colore scheme
is given in the legend of the figure. Left panel: normalization to the total number of detected α,
independently on the charge of the residue. Right panel: the same energy spectra, multiplied by
a normalization factor given for each residue as c(Zres) = [Y (Zres)/Nev · nmaxα ]−1, in order to get
rid of autocorrelations (probability of a given Zres residue, maximum number nmaxα of α particles
allowed by mass and charge conservation) and to be able to compare the spectra in coincidence
with different residues with each other. More details are given in the text.

As a result of this analysis, we can confirm that the energy bump in the α energy

spectrum is mainly associated to decay channels in which an oxygen residue is mea-

sured at forward angles. We may think at this point that artificially removing these
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channels from the data-set (and coherently removing them from the output of the

calculations) could provide a better reproduction of α particles observables. This is

only partially true, as we show in in fig.(5.7), where α particles observables are ob-

tained under the request that no residue with charge Zres = 8 is detected/produced

at RCo angles. As expected, no bump appears in the energy spectrum on the left

panel of fig.(5.7), but the experimental slope can not still be reproduced by a calcu-

lation with the same input level density necessary to reproduce proton observables.

Moreover, as far as the angular distribution is concerned, we still observe an extra

experimental yield of backward emitted particles with respect to the code predic-

tions, which suggests that these two deviations from a statistical behavior may have

different physical origins.
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Figure 5.7: Energy (left panel) and angular distribution (right) for α particles detected in
GARFIELD CsI which are not in coincidence with a Zres = 8 residue. Experimental data are
given by dots, statistical errors are given with bars. Model predictions are shown with a red line,
corresponding to a chosen value of Ecl = (3 ·A) MeV .

In order to isolate kinematically these two different contributions to the out-

of-equilibrium behavior, namely, the bump in the energy spectrum of α particles

detected in GARFIELD at more forward angles and the extra-yield of backward
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emitted α, we can exploit the symmetry of the entrance channel of the reaction in

the center-of-mass reference frame. In fig.(5.8) we plot the correlations between the

energy per nucleon ECM/A and the emission angles θCM in the CM reference-frame

for reaction products in 12C(@7.9A.MeV )+12C collisions: dashed lines represent the

loci for constant kinetic energy per nucleon Ek/A in the laboratory RF, increasing

of one A.MeV units starting from the first curve in the lowermost left corner of the

ECM/A−θCM plane; red lines give the portion of the plane covered by the detection

of reaction products in the RCo, while each of the regions delimited by two black

lines is associated to the detection in one of GARFIELD CsI, starting from CsI8

up to CsI1, going from left to right.

The green square in the right part of the plane identifies the energy-angular

region in which an extra yield of α particles is observed, corresponding to α par-

ticles detected in GARFIELD backward CsI and with average kinetic energies of

Ek/A ∼ 2. A.MeV in the laboratory RF. Due to the symmetry of the entrance

channel, we expect therefore that α particles falling in this region have a counter-

part contribution, which is identified by the green square in the left part of the

plane, centered at 180◦− θCM with respect to the right one. As we understand from

the figure, this contribution corresponds to forward emitted α particles, which are

detected in the RCo, flying at energies very close to the energy of the beam. Because

of the current status of the energy calibration for the RCo detector, we are not able

at the moment to compare the energy spectra of α particles detected in the RCo

to the statistical decay code predictions, but, from the kinematics considerations on

fig.(5.8), we expect to find a significative deviation from an equilibrium behavior at

very forward angles. This deviation may be connected to the contribution of pre-

equilibrium emission followed by incomplete fusion, linked to the α cluster nature of

the 12C projectile. Therefore, what we observe as an extra-yield of α particles emit-

ted at backward angles, may be originated from the same pre-equilibrium emission,

but linked to the target, which is also a 12C nucleus.

The small blue square on the left of the ECM/A − θCM plane identify α particles

which are detected in GARFIELD CsI8, in the energy region where a bump in

the spectrum is evident (Ek/A ∼ 14 ÷ 15 A.MeV ). With the same 180◦ − θCM
reflection, the counterpart of this contribution can be identified by the blue square

on the right, which corresponds to α particles mainly detected in CsI5, with aver-

age energies of Ek/A ∼ 4 A.MeV in the laboratory frame. Indeed, a small bump

around Ek ∼ 16 MeV can be observed in the energy spectrum for this detector,

previously shown in fig.(5.5), in spite of its globally reduced efficiency. The two

regions identified by blue squares correspond to central emission angles in the CM
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Figure 5.8: Energy per nucleon ECM/A vs. emission angle θCM plane in the CM reference-frame
for reaction products in 12C(@7.9 A.MeV ) +12 C collisions: loci for constant Ekin/A in A.MeV

in the laboratory RF are given by dashed lines; red lines give the portion of the plane covered
by the detection in the RCo; black lines represent the coverage of GARFIELD CsI, as indicated
in the figure. Couples of green and blue squares identify symmetric contributions in the CM RF
obtained by a 180◦ − θCM reflection. Green squares identify the contribution of α pre-equilibrium
emission in the entrance channel, from the projectile (left) and from the target (right); blue squares
identify the contribution of α emission giving rise to bumps in the energy spectra of GARFIELD
CsI8 and CsI5, linked to cluster emission from the fused source.

RF, and can therefore be associated to more dissipative collisions. Moreover, we

have shown in fig.(5.6) that the bump in the α energy spectrum mainly corresponds

to decay channels in which an oxygen is detected as an evaporation residue: we are

then led to associate the presence of this bump to α cluster emission on the path

towards thermalisation of the hot source formed in the collision, which in turn can

be related to the possible preformation of α particles.

Concluding, we have kinematically isolated two different contributions to the out-

of-equilibrium behavior in α particle emission: one seems to suggest the presence
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of pre-equilibrium emission due to the α cluster nature of the reaction partners,

and the other may stem from the possible preformation of α particles in the fused

source. Once the energy calibration of reaction products detected in the RCo will

be completed, we expect to be able to have a further confirmation of the presence of

pre-equilibrium emission in the entrance channel. Comparison to code predictions

for the emission at very forward angles could also allow an estimation of the decrease

in the size of the fused source, because of pre-equilibrium emission. The decay of

the average source in case of incomplete fusion can be simulated with the code, and

this contribution can be added to the calculations for the decay of 24Mg.

Finally, both these effects are taken into account in existing decay codes as MCFx [99],

and comparison of our data to the predictions of such codes, or the direct implemen-

tation of pre-equilibrium emission in our Hauser-Feshbach code, represent interesting

perspectives for this data-analysis, as discussed in more details at the end of this

thesis.

5.3 Charge Distribution and Staggering

In fig.(5.9) we show the total experimental charge distribution of reaction prod-

ucts and the multiplicity distribution of charged particles and fragments, detected

both in GARFIELD and in the RCo. Both observables are obtained under the usual

selection condition (5.1), and are normalized to the number of events fulfilling this

condition. Model calculations for the same distributions are shown together with

data, both for our Monte Carlo Hauser-Feshbach code and for the GEMINI model,

including the emission of IMF following the transition state formalism. Hauser-

Feshbach calculations globally reproduce the charge distribution, in particular the

observed trend of the odd-even staggering, with the exception of the yield of Z = 4

fragments, which are completely missing in the code predictions. This can be at-

tributed to a different isotopic population of Z = 4 fragments, which are mostly

produced as unstable 8Be residues in the calculation, which further decay in two

α particles. On the contrary, in the experimental data-set, 7Be and 9Be isotopes

are produced, as it is visible from the pulse shape correlations shown in chapter 4

for fragments stopped in the RCo silicon detectors. This suggests the interest of a

detailed comparison of calculated and experimental isotopic distributions, when the

information on the mass can be extracted from data, i.e. for Z < 6 products in

the case of this experiment. This comparison has not been included in this work,

because of the current incomplete status of the charge and mass identification of

reaction products from the Si energy vs. risetime correlations.
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One of the decay mechanisms which may populate the intermediate region between

the evaporated light charged particles and the residues, including the Z = 4 iso-

topes, could be the emission of intermediate mass fragments. As mentioned, this

decay channel is implemented in GEMINI following the transition state formalism.

From the comparison of the experimental charge distribution with the GEMINI code

prediction, we see that the inclusion of this decay channel indeed populates the inter-

mediate charges region. A general overestimate of the yield of Z = 3, 4, 5 fragments

can be observed, together with a better reproduction of the yield of Z = 6, and fi-

nally with the inversion of the relative yield of Z = 7 and 8, which, on the contrary,

is correctly reproduced by Hauser-Feshbach calculations. As far as the total multi-

plicity of charged particles and fragments is concerned, the mean multiplicity and

the trend of the multiplicity distribution as a function of nC are well reproduced

both by our calculations and by GEMINI. The inclusion of IMF emission causes

a general overestimate of higher multiplicity events, maybe because of secondary

emission from fragments produced above the threshold for particle decay.

The comparison to GEMINI finally suggests that the inclusion of a decay chan-

nel other than light charged particles evaporation following the Hauser-Feshbach

formalism could in principle improve the description of the charge and mass re-

gions intermediate between the light evaporated particles and the residues. For

instance, the inclusion of a simultaneous decay channel, which could be described

in terms of the Fermi break-up formalism, would also go in this direction. This is

discussed in more details in the conclusions of this thesis. Nevertheless, the slight

better agreement we find in the residue region between experimental data and the

Hauser-Feshbach predictions with respect to the GEMINI ones, suggests the reli-

ability of our description of the sequential evaporation channel, and its dominant

contribution. Moreover, as we have shown in chapter 3, the slope of energy spectra

of emitted particles, which have been used to constrain the level density model,

is not strongly affected by the inclusion of other decay channel, and therefore the

obtained constraints on the functional form of a(E∗) can be considered reliable.

Finally, in fig.(5.10), we show the ratio of the experimental charge distribution Y (Z)

to a smoothed Ys(Z), which is obtained by means of a parabolic smoothing over 5

successive points, as it is done in [31], in order to put in evidence odd-even effects.

The same ratio is evaluated for the Hauser-Feshbach and GEMINI code predictions.

As it is evident from the figure, the result for Y (Z)/Ys(Z) for our decay code cor-

rectly reproduces the trend of the observed staggering for Z ≥ 7, as far as the

statistics allows for a safe computation of the smoothed yield. In particular, the
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Figure 5.9: Upper panel: charge distribution of reaction products; lower panel: total multiplicity
distribution of detected particles. Normalization is to the total number of considered events.
Experimental data are given by dots, Hauser-Feshbach model predictions for the case Ecl = (3 ·
A) MeV are shown with red dots connected by a line. GEMINI calculations (including the emission
of IMF following the transition state formalism) are also shown by empty dots connected by a
dashed line.

peak at Z = 6 cannot be reproduced by the calculations, which may also suggest

that the production of Z = 6 fragments can be partially related to the entrance

channel of the reaction. In GEMINI calculations, the relative probability associated

to Z = 7 and 8 is inverted with respect to the experimental case, and the oscillating

trend is not correctly reproduced for Z ≤ 7. For both Hauser-Feshbach and GEM-

INI predictions, the amplitude of the oscillations, when the relative yield for two

neighbouring charges is correct, is slightly overestimated.

As mentioned, a better reproduction of the charge (and mass) distribution for reac-

tion products could be in principle achieved, by implementing in the code competi-

tive decay channels as IMF emission or Fermi break-up, coupled to our description

of the sequential evaporation channel. Also the inclusion of pre-equilibrium emission

in the entrance channel could improve the reproduction of the experimental yield of

Z = 6, provided that this yield reflects some memory of the entrance channel of the
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Figure 5.10: Staggering in the charge distribution of reaction products: in ordinate, ratio of the
charge distributions Y (Z) of fig.(5.9) to their smoothed Ys(Z), obtained by means of a parabolic
smoothing over 5 successive points, as it is done in [31]. Experimental data are given by black
dots, connected by a thin black line to guide the eye; Hauser-Feshbach model predictions for the
case Ecl = (3 · A) MeV are shown with red dots connected by a red line. GEMINI calculations
are shown by empty dots connected by a dashed line.

reaction. A different sorting of the events included in the analysis will be finally pos-

sible, according to dynamic rather than static conditions as the one given in (5.1),

once the energy calibration for particles and fragments detected in the RCo will be

completed. This will allow to recover some charge partitions which are excluded by

the present selection criterion.

The mentioned possible improvements in the decay code, together with the new

sorting of the events, could help us in achieving a better reproduction of the charge

distribution, thus quantitatively reproducing the observed staggering. A reconstruc-

tion of the population of discrete states at the last but one step of the decay chain

by means of the correlation function technique, as it is done in [35], will allow us

to put constraints on odd-even effects also at finite temperature, thus extracting

information on the temperature dependence of the pairing interaction. In particular

we will be able to check if the pairing dependence of the level density as extracted

from the fit of low-lying resonances in [67] is compatible with independent informa-

tion on charged particle evaporation, proceeding from high-energy levels lying in the
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continuum through discrete states.





Conclusions and Perspectives

Summary of contents

The aim of this thesis has been an attempt to progress towards the reconstruction

of nuclear thermal properties by means of fusion-evaporation reactions. In partic-

ular, thermal properties of light nuclei have been addressed, for which a strong

influence of nuclear structure is expected even at high excitation energy. Proper-

ties as the excitation energy dependence of the nucleon effective mass, symmetry

energy, pairing correlations and the specificity of the chosen mass and excitation

energy region (A ∼ 20, e∗ ∼ 3 A.MeV ) are discussed in chapter 1 of this work. The

compound nucleus theory, through which thermal properties can be experimentally

accessed, is detailed in chapter 2.

To pursue the proposed investigation, two main efforts were undertaken in this the-

sis. On the theory side, a dedicated Monte Carlo Hauser-Feshbach code has been

developed, which is at most constrained to existing data on ground state proper-

ties and low excitation energy spectra. Indeed, the code explicitly includes all the

experimentally measured particle unstable levels, available from the online archive

NUDAT2, and the implemented level density model ensures a good reproduction of

this information. The reliability of the code has been tested, and the predictions for

global observables linked to the decay of a compound nucleus source were found to

be in good agreement with the results obtained with other existing statistical codes

(GEMINI++, PACE4), which are commonly in use in the nuclear physics commu-

nity. On the other hand, the inclusion of the information on discrete levels allows

the calculation of more exclusive observables to be compared to data, as correlation

functions in relative momentum, which cannot be done with existing codes. A de-

tailed description of the statistical decay code, together with the code predictions

for different observables of interest, is reported in chapter 3.

Simulations performed with the newly developed code have been used to submit an

experimental proposal to the PAC - Physical Advisory Committee - of Laboratori

Nazionali di Legnaro - LNL - INFN, and the reaction 12C +12 C at 95 MeV beam
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energy, provided by the LNL Tandem XTU accelerator, has been measured, using

the GARFIELD+Ring Counter(RCo) apparatuses. The measurement, the experi-

mental apparatuses, the adopted procedures for data reduction, detector calibration

and for the selection of the reaction channel are discussed in chapter 4 of this thesis.

Finally, in chapter 5, different results of the data analysis and of the comparison to

the code predictions are reported.

Conclusions

In this work the selection of the fusion-evaporation channel out of the entire data

set is only preliminary. At the moment, it is based on criteria on the completeness

of the detected events and on the need to eliminate the direct channels contribution

without having at disposal the energy calibration of the forward detector, in which

evaporation residues are measured together with the scattered projectile (or its rem-

nant) in less dissipative collisions. Starting from this preliminary selection, we were

able to isolate from the total reaction cross section a contribution which can be iden-

tified with the formation and decay of a fused source. We estimate that the chosen

selection criterion selects a subset of fusion events, though this subset is expected

to be statistically representative. Global observables linked to the decay of this

source, as the charge distribution of reaction products, as well as the multiplicity of

light charged particles, are well reproduced by the calculations performed with the

Hauser-Feshbach code, thus suggesting the formation and decay of an equilibrated

source. In particular, a very good agreement with the code predictions is found for

the energy and angular distributions of emitted protons detected in GARFIELD

(θlab ≥ 30◦). This allows to constrain the level density model implemented in the

code, by fixing its only free parameter Ecl at the value Ecl ≈ (3 · A)MeV . The

parameter Ecl determines the rapidity with which the energy dependent level den-

sity parameter a(E∗) goes from the value necessary to reproduce the information

on discrete levels, which represents a constraint in the energy region e∗ ≤ 1 A.MeV

for A ∼ 20, up to the value coming from studies on evaporation after fragmenta-

tion (e∗ > 2 A.MeV ), covering a transition region of ∼ 20 MeV for nuclei in this

mass region. We want to underline the importance of our result on the excitation

energy dependence of a(E∗), which is obtained in this work making use of a level

density model strongly constrained by spectroscopic information at low excitation

energy. This makes the obtained constraint on the level density parameter more sig-

nificant, since it removes the general concern of making use of a somewhat arbitrary

functional form for the level density, which is usually approximated as the one of a
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system of non-interacting nucleons.

Besides the good reproduction of these equilibrium features, strong deviations from

the predicted behavior are put in evidence for α particles, which we tentatively at-

tribute to α-clustering effects. We have shown in the analysis that two different

contributions to this out-of-equilibrium behavior can be isolated kinematically: one

is the extra yield of backward emitted α particles, which corresponds, because of

the symmetry of the target-projectile system in the entrance channel, to forward

emitted α particles, detectable in the RCo (5◦ ≤ θlab ≤ 17◦), with energy close to

the beam energy. This seems to suggest the contribution of pre-equilibrium emission

followed by incomplete fusion, linked to the α cluster nature of the reaction partners.

Because of the current status of the energy calibrations for the RCo detector, we

are not able at the moment to compare the energy spectra of α particles emitted at

very forward angles to the code predictions, in order to verify our kinematic consid-

erations.

A different mechanism seems to be at the origin of an energy bump, which is ob-

served in the spectrum of α particles detected in the forward GARFIELD CsI: we

have shown in the analysis that these particles are typically detected in coincidence

with a Zres = 8 fragment, and, taking into account the symmetry of the system, we

have shown that they are emitted at central θ angles in the center-of-mass reference

frame, and at reduced energies with respect to the beam energy. These α particles

can be associated therefore to more dissipative events, corresponding to the decay of

a fused source, preferentially leaving an oxygen residue. We may therefore attribute

the presence of this energy bump to cluster emission on the path towards thermali-

sation of the hot source formed in the collision, due to the possible preformation of

α particles.

Perspectives

In the near future, we plan to complete the energy calibration of the RCo de-

tector. This will allow us to make use of kinematic rather than static conditions

to select the reaction channel, thus enlarging the set of events which can be used

for the analysis, relaxing the strict conditions which we have made use of in this

work. Having at disposal a set of completely calibrated events, we will be able to

further verify the adequacy of the model, and, in particular, to reveal the presence

of the expected deviations in the spectrum of forward emitted α particles, connected

to pre-equilibrium emission followed by incomplete fusion. Finally, we will also be

able to calculate more exclusive observables as relative momentum distributions for
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couples of coincident particles. From the experimental correlation functions, we will

be able to recover the information on the population of discrete states at the last

but one step of the decay chain. Also this information can be compared to the code

predictions, and the comparison will allow us to put stringent constraints on finite

temperature properties. In particular, we plan to perform the same analysis as in

ref.[35], in order to confirm/infirm the results on the presence of staggering in finite

temperature distributions, and to get information on the temperature dependence

of the pairing interaction.

We also plan to compare our experimental data to the predictions of existing codes

as MCFx [99], which makes use of the exciton model formalism and includes pre-

equilibrium emission, both in the entrance channel of the reaction and as a possible

consequence of cluster preformation in the fused source. This can be done through

direct collaboration with the code owners.

Even more interesting would be in the future to directly implement in our decay code

the exciton model formalism, which is based on assumptions completely compatible

with the Hauser-Feshbach formalism. The advantage with respect to the compari-

son or coupling to existing codes would be the use of the same physical ingredients

(in particular, level density and transmission coefficients) in a unified description of

both equilibrium and out-of-equilibrium properties. This would allow to put even

more stringent constraints on the physical quantities of interest.

An interesting perspective is also the implementation in our code of a simultaneous

break-up channel, which could be described for instance in terms of the Fermi break-

up formalism, taking into account densities of excited states [100]. As it is shown

in this work, this would in principle improve the description of the charge and mass

regions intermediate between the light evaporated particles and the residues. In

particular, this inclusion will be necessary if we plan to investigate the properties of

light systems at even higher excitation energy, where channels other than sequential

decay are opening.

We have briefly discussed in this work the connection between the disappearance of

compound nucleus states and the opening of multifragmentation: this translates in

a high energy constraint on the level density parameter a(E∗), which has to go to

zero at a limiting excitation energy. This constraint could be deduced from the com-

parison of the predictions of a statistical code, in which both the evaporative and

the fragmentation regimes can be attained, with experimental data for reactions at

the threshold of multifragmentation. The feasibility of this project is demonstrated

in Appendix B of this thesis, where we show some preliminary results on the cou-

pling between the Microcanonical Multifragmentation Model - MMM [69] and our
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Hauser-Feshbach code, which can be implemented in MMM as a secondary decay

code, making use of the same level density model described in this work, with the

addition of the decreasing part in the functional form a(E∗), to mimic the existence

of the nuclear limiting energy. The addition of the high energy constraints on a(E∗)

going to zero would mean to have at disposal a series of constraints, coming from

independent measurements, covering the whole excitation energy range for the level

density parameter. This is a promising long range perspective, which we plan to

follow through direct collaboration with the MMM code owners.

On the experimental side, the results presented in this work will be at the basis of the

submission of new proposals, concerning the study of different reactions involving

light nuclei. In particular, it would be interesting for instance to populate the same
24Mg compound nucleus with a different entrance channel, in order to disentangle

the effects linked to the cluster structure of projectile and target in the reaction

studied in this work. However, given the light nature of the system, it is easy

to understand that very few projectile-target combinations can be proposed, with-

out turning to unstable isotopes. Because of that, a letter of intents [101], based

on calculations done with our newly developed code, has been submitted by the

NUCL-EX collaboration on occasion of the last SPES International Workshop, held

at LNL in November 2010. In this LoI, the reaction 17F (@100 MeV ) +7Li, leading

in case of complete fusion to a 24Mg source at e∗ ∼ 2.5 A.MeV was explicitly listed

among other possible ones to be studied. More generally, the future availability of

light exotic beams, both at SPES (LNL, Italy) and SPIRAL2 (GANIL, France), will

provide an inviting opportunity to investigate at the same time different physical

issues: the open field of investigation goes from the competition of different reaction

mechanisms, projectile break-up and fusion (given the weakly bound nature of the

projectiles), to an extension to reactions with radioactive beams of the study on the

statistical behavior of hot light nuclei presented in this work, including the isospin

dependence of the nuclear level density [102].

Great efforts are currently undertaken in the nuclear physics community concern-

ing the R&D of new performant detectors, which have also to be able to overcome

the experimental difficulties related to measurements with low intensity and lower

energy radioactive beams. In particular, as it is also discussed in our LoI, the

coupling of new generation detectors for charged particles and γ (and neutrons) is

highly desirable in our future studies on these topics, in order to have the maximum

of information from the same experimental set-up, especially to ensure the selection

of the reaction channel of interest.
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Reference Frame Rotational Transformations

The angular momentum vector J0 of the decaying hot nucleus is given, and its

space orientation in the CM RF (z-axis parallel to the beam velocity) is specified

by the spherical coordinates angles (θJ0 ;ϕJ0).

Jd is the angular momentum vector of the daughter nucleus, and its orientation is

given by the angles (θ;φ) in the RF whose z-axis is parallel to J0 (J0 RF, fig.(A.1)).

We want to derive an expression for the angles (θJd ;ϕJd) as a function of (θJ0 ;ϕJ0)

and (θ;ϕ), which will give us the orientation of vector Jd in the CM RF.

This means writing the equations of the J0
rot−→CM rotation of RF.

Figure A.1: Left side: CM e J0 reference frames; right side: components of vector Jd in the
two coordinate systems. The use of the notation (x

′′
, y

′′
, z

′′
) for the axes of J0 is made clear in

the text.

In order to derive the equations for the rotational transformation we have to

write the J0 RF versors in terms of the initial CM RF ones. Let us decompose the

transformation into two successive rotations, the first one by (ϕJ0) in the xy plane

and the second one by (θJ0) in the zx plane. From now on we will write: ϕJ0 = ϕ0;



154 APPENDIX A

θJ0 = θ0.

Figure A.2: On the left: rotation by ϕ0 in the xy plane; on the right: rotation by θ0 in the zx
′

plane.

For the first rotation in fig.(A.2) we have:

û
′

x = cosϕ0 ûx + sinϕ0 ûy (2)

û
′

y = − sinϕ0 ûx + cosϕ0 ûy

The z-axis is still perpendicular to the transformed x
′
-axis.

For the following rotation (on the right side of fig.(A.2)) we find:

û
′′

x = − sin θ0 ûz + cos θ0 û
′

x (3)

û
′

z = cos θ0 ûz + sin θ0 û
′

x

The (û
′′
x, û

′′
y , û

′′
z ) versors of J0 RF can be therefore written as:

û
′′

x = cos θ0 cosϕ0 ûx + cos θ0 sinϕ0 ûy − sin θ0 ûz (4)

û
′′

y = û
′

y = − sinϕ0 ûx + cosϕ0 ûy

û
′′

z = û
′

z = sin θ0 cosϕ0 ûx + sin θ0 sinϕ0 ûy + cos θ0 ûz

A generic vector v, given in the J0 RF, can be written in the CM RF thanks to
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the transformations derived in (4):

v = v
′′

1 û
′′

x + v
′′

2 û
′′

y + v
′′

3 û
′′

z (5)

= (v
′′

1 cos θ0 cosϕ0 − v
′′

2 sinϕ0 + v
′′

3 sin θ0 cosϕ0) ûx

+(v
′′

1 cos θ0 sinϕ0 + v
′′

2 cosϕ0 + v
′′

3 sin θ0 sinϕ0) ûy

+(−v′′1 sin θ0 + v
′′

3 cos θ0) ûz

Vector v components in J0 are:

v
′′

1 = sin θ cosϕ (6)

v
′′

2 = sin θ sinϕ

v
′′

3 = cos θ

and for their expressions in CM we have:

v = v1 ûx + v2 ûy + v3 ûz (7)

where

v1 = sin θ cosϕ cos θ0 cosϕ0 − sin θ sinϕ sinϕ0 + cos θ sin θ0 cosϕ0

v2 = sin θ cosϕ cos θ0 sinϕ0 + sin θ sinϕ cosϕ0 + cos θ sin θ0 sinϕ0

v3 = − sin θ cosϕ sin θ0 + cosθ cos θ0

Given the (v1, v2, v3) components, the angles which give us the orientation of v in

the CM RF can be therefore written as:

θv CM = arccos (v3) (8)

→ θv CM ∈ [0; π]

ϕv CM = arctan

(
v2

v1

)
→ ϕv CM ∈ [−π/2; π/2]

In our case, CM angles (θJd ;ϕJd) of Jd can be obtained thanks to the equations

derived in this Appendix.
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Constraining the Level Density at High Excitation Energy

In this Appendix we present some preliminary results obtained by implementing

the level density model discussed in chapter 3 of this work in the Microcanonical

Multifragmentation Model [69], through direct collaboration with the code owners.

In this thesis work, we have been able to give a constraint on the level density pa-

rameter dependence on excitation energy, for nuclei in the mass region A ∼ 20, by

comparing our Hauser-Feshbach calculations to exclusive fusion-evaporation data

for the reaction 12C (@95 A.MeV ) +12 C.

In particular, we have constrained the increase of this parameter, starting from

the low energy value determined in [67], necessary to fit the spectroscopic informa-

tion on discrete levels, up to an asymptotic value, which is in turn constrained by

fusion-evaporation or evaporation after fragmentation data [74]. At the energy of

the reaction under study, the evaporative regime is by far the dominant, and no

competitive break-up channels were implemented in our decay code: this obviously

means that the code can be used to obtain predictions for the output of reactions

at energies below the onset of multifragmentation (or break-up for lighter nuclei).

What we expect at higher energies, where the fragmentation regime can be at-

tained, is that compound nucleus states start disappearing. This can be described

in terms of the existence of a limiting nuclear temperature (or excitation energy per

nucleon) [39]. A usual way to mimic the existence of a limiting temperature in mul-

tifragmentation applications is to add an exponential cut-off to the LD used in the

calculations. This is also the case of MMM, where the following parameterization

for ρ(E∗) is adopted:

ρ(E∗) =

√
π

12a1/4E∗ 5/4
exp(2

√
aE∗) exp(−E∗/τ), (9)

with a(A) = 0.114A+ 0.098A2/3 MeV −1 and τ = 9 MeV .

It is clear that such a procedure is not satisfactory. Indeed the application of
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an exponential cut-off affects in an uncontrolled way the level density for all exci-

tation energies, even below the fragmentation threshold. In order to have a unique

coherent description of compound nucleus decay, instead of applying a cut-off to

the LD in the whole excitation energy range, it is necessary to coherently ascribe

the disappearance of CN states to a decrease of a(E∗) with increasing energy, when

approaching the limiting excitation energy, while keeping an unmodified expression

for ρ(E∗). This means that, after a certain energy, the value for the LD parameter

has to fall to zero, the more abruptly the more rapid is the threshold process of the

onset of multifragmentation. The aim of this Appendix is to show that, if such a

decreasing trend for the LD parameter is implemented in the level density model,

in a decay code where both the evaporative and the fragmentation regime can be

reproduced, then the comparison to data for reactions at the threshold of multi-

fragmentation may provide an additional high energy constraint on a(E∗) going to

zero. The addition of this high energy constraint would mean to have at disposal

a series of contraints, coming from independent measurements, covering the whole

excitation energy range for the level density parameter.

We show in the following the results of MMM calculations for the decay of a

(A,Z) = (80, 40) source, by varying the input excitation energy per nucleon in

the range e∗ = 1÷ 8 A.MeV , and by making use of the different input level densi-

ties shown in fig.(B.1), referred to as case 1,2 and 3, and later detailed1. Also the

standard ρ(E∗) implemented in MMM is plotted as a reference in fig.(B.1).

In particular, we give the results for two different observables, linked to the onset

of multifragmentation: the charge distribution at the break-up stage of the de-

cay, and the average excitation energy of primary fragments as a function of their

charge. Both these observables are therefore given before secondary decay of ex-

cited fragments take place. For each input level density, we also report in a table

the average multiplicity of decay products per event NF (including nucleons), an

asymmetry coefficient between the first and second biggest fragment, calculated as

asym = (Z1 big −Z2 big)/(Z1 big +Z2 big) and finally the percentages of evaporation,

fission and multifragmentation - like decays, defined in an arbitrary way with respect

to the number N3 of Z ≥ 3 fragments, being respectively N3=1, 2, ≥ 3.

1All MMM calculations presented in this Appendix are performed with a fixed value of the
freeze-out volume, which is an input parameter of the model, and is set in this case at the V =
3V0 value. A free volume parameterization, taking into account intrinsic fragment volumes, is
implemented in this version of MMM. This approximation is more realistic than the one used in
the standard version, where fragments are assumed to have equal intrinsic volumes. The variation
of the freeze-out volume with the initial excitation energy should also be taken into account.
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Figure B.1: For the (A,Z) = (80, 40) nucleus, level density ρ(E∗) functional forms used as an
input for the MMM calculations presented in this Appendix: in red, the standard LD of eq.(9)
implemented in MMM is given as a reference. In green: ρ(E∗) resulting from the suppression of
the exponential cut-off in the standard MMM expression of eq.(9), case 1; in blue, ρ(E∗) from
eq.(10), with a decrease of the LD parameter obtained by a Fermi function factor acting at the
limiting Elim of ref.[39], case 2; in pink, ρ(E∗) from eq.(10), with a linear decreasing behavior of
the LD parameter starting from Ecl = (2 · A) MeV , case 3. More details for each case are given
in the text.

Case 1

Firstly, we have run MMM with its standard LD expression of eq.(9), by simply

suppressing the exponential cut-off factor, i.e. taking τ = 1010 MeV as an input

value, in order to verify the effect of an unlimited growth of the LD on primary

partitions.

As anticipated, we can observe in fig.(B.1) that the use of a cut-off deforms the level

density behavior even in the region where this latter is constrained by evaporation.

What we observe from the observables reported in fig.(B.2) and from the values

reported in table B.1 is that:

• the percentage of evaporation-like events decreases when the source excitation

increases;

• coherently, by increasing e∗, the percentage of multifragmentation events in-

creases as expected, even if the onset of multifragmentation occurs only at
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e∗ A.MeV NF asym evap fission mult

1. 2.020256 0.961142 9.996537e-01 3.462604e-04 0.000000e+00

2. 2.158084 0.954625 9.830935e-01 1.690648e-02 0.000000e+00

3. 2.412448 0.931568 9.031242e-01 9.585344e-02 1.022328e-03

4. 2.768824 0.862999 7.161684e-01 2.709144e-01 1.291727e-02

5. 3.234441 0.732020 4.490304e-01 4.681276e-01 8.284198e-02

6. 3.809924 0.570686 2.186998e-01 5.270340e-01 2.542663e-01

7. 4.444491 0.439892 9.173253e-02 4.400822e-01 4.681853e-01

8. 5.040623 0.349554 3.911129e-02 3.078288e-01 6.530599e-01

TABLE B.1: Results for MMM calculation for the input level density of case 1: NF is the
average event multiplicity, including nucleons; asym is an asymmetry coefficient between the first
and second biggest fragment, defined as asym = (Z1 big−Z2 big)/(Z1 big+Z2 big); the percentages
of evaporation, fission, and multifragmentation - like events are defined with respect to the number
of Z ≥ 3 fragments, respectively as N3=1, 2, ≥ 3, or 0 events.

e∗ = 5 A.MeV , which is higher than expected for a source of this size;

• break-up fragments internal excitation increases with the source excitation, but

the value of this quantity is found to be much higher with respect to MMM

predictions for an input LD with the exponential cut-off, and with respect to

what is known from calorimetry on multifragmentation data [18, 19];

The following conclusion can be drawn from this illustrative example: if the

growth of the LD is not moderated, when partitioning the system, even at high

energy, it is more preferable to spend the available energy into internal excitation

rather than spending it in producing fragments. The onset of multifragmentation is

therefore delayed, and the excitation energy stored in primary fragments is high.

Case 2

As a second try, we have implemented in MMM our level density model, described

in chapter 3, and given by:

ρ(E∗) =
exp

[
2
√
a (E∗ −∆)

]
12
√

2σa1/4 (E∗ −∆)5/4
(10)
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Figure B.2: MMM predictions for the decay of a (A,Z) = (80, 40) source, with the LD model
described in case 1, and for different input source excitation energies ranging from e∗ = 1 up to
8 A.MeV . In the top panel, charge distribution at the break-up stage of the decay; in the bottom,
average excitation energy of primary fragments as a function of their charge. Normalization is to
the number of simulated events.
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e∗ A.MeV NF asym evap fission mult

1. 2.016237 0.477561 8.969124e-02 9.103088e-01 0.000000e+00

2. 2.662606 0.770432 5.303867e-01 4.273421e-01 4.227116e-02

3. 3.168366 0.706050 4.155123e-01 4.463352e-01 1.381525e-01

4. 3.696269 0.605499 2.707188e-01 4.616309e-01 2.676503e-01

5. 4.382287 0.48167 1.228095e-01 4.316833e-01 4.455072e-01

6. 5.104719 0.395731 6.147925e-02 3.235202e-01 6.150005e-01

7. 5.789191 0.34422 4.514071e-02 2.350612e-01 7.197981e-01

8. 6.405834 0.321400 4.476896e-02 1.843206e-01 7.709105e-01

TABLE B.2: As in Table B.1, results for MMM calculation for case 2.

where a(E∗) is such that a(Ecl) ≈ a∞, with a∞ = A/14.61 · (1 + 3.114 · A−1/3 +

5.626 · A−2/3). As discussed in chapter 3, the Ecl parameter represents the energy

limit at which the asymptotic value of the LD parameter is reached, and it has to

be Ecl ≤ Elim, where Elim is the limiting excitation energy. We are then interested

in this case in exploring the behavior of a(E∗) when E∗ approaches Elim. For the

limiting excitation energy we adopt the following energy-dependent form, obtained

from a fit on the results presented in [39]:

Elim(A) =

{
(8 · A) MeV for A ≤ 40

(4.99− 61.68/
√
A+ 487.3/A) · A MeV for A > 40

(11)

which yields Elim(80) ≈ 4 A.MeV for our source.

We have then assumed that Ecl ≈ Elim, i.e. that the asymptotic value of the

LD parameter is reached at the limiting excitation energy, and the fall to zero of

a(E∗) has consequently to be abrupt at this limiting value. In order to mimic the

rapid decrease of the LD parameter we have multiplied a(E∗) by a Fermi function:

f(E∗, T, µ) = 1/(1 + exp(E∗ − µ)/T ), where µ and T are two arbitrary parameters

controlling the decreasing behavior. Values of the parameters in our calculations

are: T = 10 MeV , µ = 1.1 Ecl.

Results for this case, shown in fig.(B.3) and reported in table B.2, confirm that the

addition of the cut-off in the LD parameter causes a shift towards lower energies of

the onset of multifragmentation, which now represents the dominant contribution

starting from e∗ = 5 ÷ 6 A.MeV . Primary fragments are still very excited at the

break-up stage.
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Figure B.3: The same as in fig.(B.2), with the LD model of case 2.

Case 3

Starting from the same LD model of eq.(10), with the same parameterizations

for a∞(A) and Elim(A), we have assumed in this last case that the asymptotic value
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e∗ A.MeV NF asym evap fission mult

1. 2.02534 0.630422 4.660628e-01 5.339372e-01 0.000000e+00

2. 2.190603 0.892525 8.390649e-01 1.594730e-01 1.462077e-03

3. 3.036082 0.563509 1.324091e-01 7.686728e-01 9.891818e-02

4. 4.308974 0.378543 1.311145e-02 2.631145e-01 7.237741e-01

5. 5.619426 0.291714 1.517168e-03 5.053639e-02 9.479464e-01

6. 6.953861 0.247165 3.285614e-04 1.023234e-02 9.894391e-01

7. 8.304090 0.219006 8.280077e-05 2.860390e-03 9.970568e-01

8. 9.641605 0.187680 4.780964e-05 1.024492e-03 9.989277e-01

TABLE B.3: As in Table B.1, results for MMM calculation for case 3.

of a(E∗) is reached at an excitation energy value Ecl lower than Elim. The decrease

of a(E∗) then starts beyond Ecl, and is such that a(Elim) is equal to zero. As a first

guess, we have adopted the value Ecl = (2 · A) MeV , and implemented a simple

linear decrease of a(E∗) from a(Ecl) = a∞(A) to zero. Results for this case shown

in fig.(B.4) and reported in table B.3 show that the onset of multifragmentation

correponds to e∗ = 4 A.MeV , which is in agreement with what expected for a

source of this size, and break-up fragments are generally less excited than in case 2,

because of the limited growth of ρ(E∗).

Final remarks

The preliminary results reported in this Appendix show that the decrease of

the LD parameter strongly affects the onset of multifragmentation. The interesting

perspective of this work is to be able to experimentally constrain this decrease, by

comparing data for reactions at the threshold of fragmentation to the predictions

of multifragmentation codes, in which a level density model of the type described

in this work is implemented. Finally, the Hauser-Feshbach code presented in this

thesis can be used as a secondary evaporation code for excited fragments produced

at the break-up stage. Such an approach allows us to obtain a unified description

of evaporation and multifragmentation, coherently ascribing the transition between

these two regimes to the behavior of the LD parameter a(E∗).



Appendix B 165

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0  5  10  15  20  25  30  35  40

dN
/d

Z

Z

Ex=1 MeV/u
Ex=2 MeV/u
Ex=3 MeV/u
Ex=4 MeV/u
Ex=5 MeV/u
Ex=6 MeV/u
Ex=7 MeV/u
Ex=8 MeV/u

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  5  10  15  20  25  30  35  40

Ei
nt

/A
 (M

eV
)

Z

Ex=1 MeV/u
Ex=2 MeV/u
Ex=3 MeV/u
Ex=4 MeV/u
Ex=5 MeV/u
Ex=6 MeV/u
Ex=7 MeV/u
Ex=8 MeV/u

Figure B.4: The same as in fig.(B.2), with the LD model of case 3.
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