THE DYNAMICAL DIPOLE IN FUSION WITH EXOTIC BEAMS

A letter of intent for SPES subscribed by 32 authors (sent to SPES panels on april,19 2010)

two nuclei collide with different initial N/Z

Isospin Equilibration: Dynamical Dipole in Fusion Reactions

Charge Equilibration Dynamics:
Stochastic → Diffusion (nucleon exchange)
vs.
Collective → Dipole Oscillations of the di-nuclear System
ruled by fusion dynamics

GC Rome april 29,2010 Slides prepared using DiToro's proposal at SPES-WS-2008

1

DDR is an alternative way to particle preequilibrium to dissipate energy and cool the system on the way to Fusion ---> link to SHE physics

GC Rome april 29,2010

STOCHASTIC MEAN FIELD TRANSPORT EQUATION: VLASOV + NN-COLLISIONS and PAULI CORRELATIONS

Baran, DiToro, M.Colonna Phys.Rep. 410 (2005) 335

THEO: Baran, Brink, M.Colonna, Di Toro, PRL.87(2001)

Bremsstrahlung:
Quantitative estimations
$$\frac{dP}{dE_{\gamma}} = \frac{2e^2}{3\pi\hbar c^3 E_{\gamma}} \left(\frac{NZ}{A}\right)^2 |D''(\omega)|^2$$

EXP: D.Pierroutsakou et al. PRC71(2005)

DDR: a brief experimental story

Flibotte et al., Phys.Rev.Lett. 77, 1448 (1996)

1 charge asym	³² S + ³² Mo	6 to 9 AMeV Fusion
		events:
		same CN selection

D.Pierroutsakou et al. PRC71(2005)

2 36Ar + 96Zr 16AMeV Fusion events: charge 40Ar + 92Zr same CN selection sym B.Martin et al., PLB 664 (2008) 47

3 Charge asym and Sym A.Corsi et al PLB679 (2009) 197

an experiment done by NUCLEX in 2009 O+116Sn at 12AMeV

GC Rome april 29,2010

D.Pierroutsakou et al., Medea Exp. at LNS

The "Monster" ¹³²Sn Dynamical Dipole: Symmetry Energy

Baran and Rizzo PRC2009

SPES is fine from the bombarding energy point of view (rise-fall)

Our proposed experiments at SPES; (M.Colonna and C.Rizzo started specific calculations)

$$133Cs + {}^{48}Ca \rightarrow {}^{181}Re(with \frac{N}{Z} = 1.42, 1.4D(0) = 1.2fm)$$

$$142Cs + {}^{40}Ca \rightarrow {}^{182}Re(with \frac{N}{Z} = 1.58, 1.0D(0) = 36fm)$$

Cs (and alkali beams) should be easier and more intense beam

$$124Sn + {}^{48}Ca \rightarrow {}^{172}Yb(with \frac{N}{Z} = 1.48, 1.40)$$

$$132Sn + {}^{40}Ca \rightarrow {}^{172}Yb(with \frac{N}{Z} = 1.64, 1.00)$$

Sn is the reference case for Rib Facility and SMF calculations cfr. Maj LOI for Spiral2 (also italians there) cfr. Monster DDR calculations cfr. Inglima LOI for SPES

There are predictions (from SMF) that the DDR depends on the mass asymmetry, too

Doubts and open points: -mass symm and mass asym need different E/A to reach the same Ex!

What kind of apparatus?

for ER selection and LCP sampling? PHOSWICH+GARFIELD+..

idea: anticorrelation DDR vs. PREEQ ? idea: correlation DDR vs. Fusion yield?

and for energetic gammas: HECTOR from Milan TRASMA and SERPE from LNL-LNS (responsible people are open to detector transfer to Legnaro)

PROBLEMS

-needed big gamma efficiency otherwise we are lost! (comments by Alessia DiPietro SPES Su.Sci.) -needed wide coverage to address the ang.distr. issue -experiment duration with RIB (weeks, even with 10⁸pps=0.016pnA !)

Yield: Entrance Channel Asymmetry Symmetry Energy → frequency (collective response delay with Asy-stiff) Damping Mechanisms

Centroid: Restoring Force \rightarrow symmetry energy at sub-saturation Dinuclear deformation \rightarrow fusion dynamics

Angular distribution: symmetry energy effect for large rotation → high spin selections

-competition with Neutron Emission

- tuning of In medium NN cross sections
- relaxation of the Dinuclear Mean Field and binary event competition

Other phenomenon: Excitation Function should exhibit a Rise and Fall with Beam Energy (low deceleration at low velocity whilst DDR is Overdamped at Fermi energies)

The "Monster" ¹³²Sn DDR: Angular Distributions

