
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 137.204.1.40

This content was downloaded on 02/11/2015 at 09:45

Please note that terms and conditions apply.

Pre-equilibrium Emission and α-clustering in Nuclei

View the table of contents for this issue, or go to the journal homepage for more

2015 J. Phys.: Conf. Ser. 580 012011

(http://iopscience.iop.org/1742-6596/580/1/012011)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/580/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


 

 

 

 

 

 

Pre-equilibrium Emission and αααα-clustering in Nuclei 

F Gramegna1, D Fabris2, T Marchi1, M Degerlier3, O V Fotina4;5, V L Kravchuk6,  

M D'Agostino7, L Morelli7, S Appannababu1, G Baiocco7, S Barlini8, M Bini8, A 

Brondi9, M Bruno7, G Casini8, M Cinausero1, N Gelli8, R Moro9, A Olmi8, G 

Pasquali8, S Piantelli8, G Poggi8, S Valdrè8 and E Vardaci9 

 
1 INFN - Laboratori Nazionali di Legnaro, Legnaro (Padova), Italy  
2 INFN sezione di Padova,Padova, Italy 
3 Nevsehir Haci Bektas University, Science and Art Faculty, Physics Dep. Nevsehir, Turkey  
4 Physical Department, Lomonosov Moscow State University, Moscow, Russia 
5 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow,Russia  
6 National Research Center "Kurchatov Institute", Moscow, Russia.  
7 Dipartimento di Fisica, Università di Bologna and INFN sezione di Bologna, Bologna, Italy  
8 Dipartimento di Fisica, Università di Firenze and INFN sezione di Firenze, Firenze, Italy  
9 Dipartimento di Fisica, Università di Napoli and INFN sezione di Napoli, Napoli, Italy  

 

E-mail:gramegna@lnl.infn.it 

Abstract. The study of nuclear states built on clusters bound by valence neutrons in their molecular 
configurations is a field of large interest, which is being renewed by the availability of exotic beams: 

clustering is, in fact, predicted to become very important at the drip-line, where weakly bound 

systems will prevail. Although for light nuclei at an excitation energy close to the particle separation 

value there are experimental evidences of such structure effects, this is still not the case for heavier 

nuclear systems. Many attempts have been done using preformation alpha clustering models, but 

there is still a lack of experimental data capable to give a direct feedback. In particular, searching 

for alpha clustering effects in medium mass systems is still a challenge, which can give new hints 

in this subject. In the past we have studied the reactions 250, 192 and 130 MeV 16O + 116Sn, 

observing a significant increase in the fast emitted α-particle yield. This effect was ascribed to the 

presence of pre-formed α-clusters in the 16O projectile nucleus. In order to investigate these aspects, 

in a model independent way, a new experimental campaign has been performed with the 

GARFIELD + RCo set up, to compare results from two different reactions: a double magic α-cluster 

(16O) and a non-magic α-cluster projectile (19F) at the same beam velocity (16AMeV) have been 

chosen, impinging respectively on 65Cu and 62Ni targets, thus leading to the same 81Rb* compound 

nucleus. The angular distributions and the light charged particles emission spectra in coincidence 

with evaporation residues have been measured and analyzed. The preliminary results of the data 

analysis and the main features of the theoretical model used for their interpretation are presented. 

1.  Introduction 

 

The idea that cluster of nucleons might be pre-formed prior to emission from nuclei has been discussed 

since many years and was originally proposed by Hafstad and Teller in 1938 [1].  More recently a large 

interest has been re-addressed to the problem of clustering in nuclei, due to the study of weakly bound 
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nuclei at the drip lines, where clustering might be the preferred structural mode, especially in the case 

of light nuclei [2].  Examining the binding energies of nuclei in their ground state as a function of the 

mass number, the particular behaviour found shows a systematic trend, well described by the liquid drop 

model as due to a shell structure effect. In particular the specific property of the nucleon–nucleon force, 

for which a saturation arises due to the coupling to zero of both the spin and the isospin quantum 

numbers, produces a very strong binding of α-particles which can therefore be recognized as a unique 

cluster subsystem in nuclei. The α-particle is the main ingredient in the concept proposed by Ikeda in 

his diagram [3], where highly clustered states are predicted at excitation energies around the energy 

threshold for the decomposition into specific cluster channels. In the extended Ikeda diagram, moreover, 

it is suggested that in neutron-rich systems neutrons may act as valence particles which can be exchanged 

between the α-particle cores, in a similar way electrons are exchanged in atomic molecules. In the 

nuclear case the covalent neutrons stabilize the unstable multi-cluster states, giving rise to nuclear 

structures which may be described by molecular concepts. These concepts are well reproduced in model 

independent approaches like the Fermionic Molecular Dynamics (FMD) by Feldmeier et al. [4,5] or the 

Antisymmetrized Molecular Dynamics (AMD) with effective N-N forces by Horiuchi and Kanada-

En’Yo [6-7].  

Up to now, these structures are mainly described by theory, but still a lack of experimental data is 

present, mainly due to the low intensity of exotic beams presently available.  Therefore, while waiting 

for the availability of the next generation of radioactive beam facilities like SPES [8], HIE-ISOLDE [9] 

and SPIRAL2 [10], it is of particular interest to search for α-clustering effects in non-traditional 

observables, like those deriving from pre-equilibrium process studies, which may bring new information 

on the cluster formation process.  

2.  Previous measurements 
 

In a previous campaign the formation of the 132Ce compound nucleus by means of 16O induced reaction 

on 116Sn at various incident energies has been studied with the aim of identifying the amount of pre-

equilibrium emission in asymmetric entrance channel reactions. During this campaign an extra yield 

was observed for pre-equilibrium α-particle emission, which was not reproduced by a Hybrid Exciton 

Model based prediction [11]. The model was using a modified version of the PACE2 code, where the 

main variation was the introduction of a non-equilibrium stage before the complete thermalization and 

compound nucleus formation. The relaxation process which occurs during the fusion reaction is firstly 

accounted for by the exciton model, based on the Griffin prescription [12], in which the description of 

the angular distribution of the fast emitted particles is still an intricate question [13]. The main parameter 

to be set is the initial number of excitons (n0=nparticles+nholes), that can be estimated from the empirical 

trend described in the work by N. Cindro et al. [14] and it is mainly related to the projectile properties.   

In the case of the considered 16O induced reactions this number is n0=17=16p+1h.  

Starting from such initial exciton number, a general good description was obtained by model 

prediction when compared to double differential cross section proton energy spectra at all the incident 

energies considered. On the contrary, an enhanced fast α-particle production was observed 

experimentally, especially at the most forward measured angles, which was not accounted for by the 

calculated distributions. A possible explanation of this enhanced α-particle emission might be the effects 

induced by the α-cluster structure in the 16O projectile [15]. 

 This effect has therefore been taken into account in the model introducing a pre-formation cluster 

probability. The combination of different initial configurations has been considered: in particular a 

second configuration has been chosen in which the 16O projectile is supposed to be divided into a 12C 

core plus an α particle. The probability of occurrence of this last pattern with respect to the original one 

(i.e.16O projectile as a whole) is the free parameter to be determined from the comparison to the 

experiment. The data have been better reproduced with a quite sizeable probability (up to 50%) of α-

cluster pre-formation. However, while the shape of the energy spectra seems to be better described, still 
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problems are present in the reproduction of total multiplicities of light charged particle, which needs to 

be understood. Results are shown in Fig.1 where the experimental multiplicity obtained at 250MeV 
16O+116Sn are compared with the predicted values both for the evaporative and the fast emission part. 

As it can be noticed the calculated values of the total (mainly evaporative) multiplicities for alpha and 

protons are too large and this is due to the PACE2 prediction which seems to underestimate the neutron 

emission. Similar results have been observed in literature [16]. 

 

 

Figure 1. Comparison with calculated and experimental multiplicity for the 16O+116Sn reaction at 

250 MeV. On the left pre-equilibrium multiplicity, on the right total (pre-equilibrium plus evaporative 

multiplicities).  The calculations have been performed with the Hybrid Exciton Model +PACE2 code 

(see text) with different pre-formation cluster probability (0%, 10% and 50%).  

 

For what it concerns the fast emission still an overestimation is observed for proton multiplicities, while 

more reasonable values are obtained with α-particles. However, the percentage of fast α-particles with 

respect to the total ones emitted in the experimental data is not at all reproduced by the calculation 

([Mα
pre/Mα

tot]exp~0.5;[ Mα
pre/Mα

tot]theo~0.1). Further experimental data and more exclusive observables 

are therefore needed to compare models and data for a better understanding of the whole process. 

In order to obtain, in a model independent way, a confirmation of possible effects of α-cluster structure 

in the projectile, two different entrance channel reactions have been studied in an energy range where 

fast emission was predicted: in particular a double magic α-cluster (16O) and a non-magic α-cluster 

projectile (19F) have been chosen, impinging respectively on 65Cu and 62Ni targets, thus leading to the 

same 81Rb* compound nucleus. 

3.  The Experiment 

The two fusion reactions 16O + 65Cu and 19F+62Ni have been studied at 16AMeV incident energy in order 

to directly compare their light charged particle emission spectra and yield ratios. The same projectile 

velocity was chosen since the pre-equilibrium emission is expected to mostly depend on this parameter 

[17]. In this situation, even with an expected small difference in the evaporative part due to the excitation 

energy (E*=209 MeV and E*=240 MeV respectively for 16O and 19F induced reactions), the fast 

emission process is predicted to be almost the same for both reactions. Any observed difference and 

overproduction of fast α-particle between the two cases would suggest, in a model independent way, a 

possible influence of the projectile α-structure effect. 

The experiment has been performed at the Legnaro National Laboratory where the ALPI-TANDEM 

XTU accelerator complex was used for the 16O and 19F beam production and acceleration. The 

experimental apparatus was the GARFIELD array, implemented with the Ring Counter (RCo) at the 

most forward angles, fully equipped with digital electronics [18]. The GARFIELD set-up consists of 

two large drift chambers employing micro-strip gas chamber (MSGC) as amplified ∆Ε stage and CsI(Tl) 
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scintillators as residual energy detectors. It can identify light charged particles and fragments in an 

angular range from θ = 29° to θ =151°. The RCo is a three–stage annular detector made by Ionization 

Chamber as first stage, a reverse mounted nTD strip silicon detector as second one, CsI(Tl) crystals as 

final stage. It covers the angular range between θ = 5° and θ =17°. 

The coupled GARFIELD plus RCo apparatus can perform complete high quality particle identification 

(both Z and A) and energy determination in a nearly 4π coverage (θ = 5°-151°) for light charged particles 

and, in the most forward direction (θ = 5°-17°) even for fragments with charge up to Z=14. Z 

identification is provided up to Z=28-30 in the whole subtended angular range. 

4.  Preliminary Results 

 

Fully identified light charged particles have been measured both in single and in coincidence with 

Evaporation Residues (ERs), detected in the RCo in the range θ = 8.6°-17° (just beyond the grazing 

angle). The ERs have been selected setting the proper gates in the IC-Si ∆Ε−Ε spectra.  

 

Figure 2.  Double differential energy spectra in the laboratory frame (normalized to the maximum) 

for α-particles (left panel) and for protons (right panel) for the two reactions 256 MeV 16O + 65Cu (blue 

line) and 304 MeV 19F+62Ni (red line) at two different detecting angles (θ =29°-41°, θ =139°-151°).  

 

In this preliminary analysis, only the double differential energy spectra obtained in coincidence with 

ERs for α-particles and protons and detected in the GARFIELD drift chambers have been sorted out. 

The α-particle and proton spectra, normalized to the maximum, obtained for the two systems have been 

compared, as shown, as an example, in Fig.2. The two reactions show very similar proton spectra on the 

whole angular range, except for a small difference at the most forward angle, which can be ascribed to 

the slightly larger excitation energy of the 19F induced reaction. A much more evident difference is, on 

the contrary, observed in the case of the α-particle emission spectra, especially at the most forward 

GARFIELD detection angles. The calculated emission spectra performed with an evaporative code like 

PACE2 (or PACE4), which mainly takes into account the difference in the excitation energy of the 

Compound Nucleus, confirms a small difference for the two systems and compatible to that one 

experimentally observed in the proton decay channel. When compared to the data, they also support the 

idea that a second fast emission source is needed for both systems, to better describe mainly the α-

particle decay channel. In the meanwhile that the data sorting and calibration procedure will be 

concluded, which will permit an complete experimental comparison between the two systems, a first 

evaluation of the expected amount of fast emission in the two cases was performed by means of  the 

prediction of the Hybrid Exciton Model. The calculation was done starting from an initial exciton 

number of n0=17(16p+1h) in the case of 16O+65Cu. With this configuration the calculation seems to 

reasonably describe the shape of the α-particle spectra, except for an underestimation at the most 
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forward angle in GARFIELD, but, with the same initial parameter, it strongly overestimates the proton 

pre-equilibrium emission. In Fig.3 the comparison of the calculation is shown for α-particles and protons 

in the 16O+65Cu system at the most forward GARFIELD angular range (θ= 29°-41°). 

Performing the same comparison in the case of the 19F+62Ni reaction, where an initial exciton 

configuration of n0=20(19p+1h) was used, a quite similar result is obtained, as shown in Fig. 4 for the 

same angular range as in Fig.3. In the 19F induced reaction case, the experimental fast α-particle 

overproduction is even larger than in the 16O induced reaction, while the fast protons are, again, largely 

overestimated. A tentative explanation for the observed difference between the α-particle decay in the 

two systems may be the lower energy needed to break up the 19F nucleus into α+15N (4.01 MeV) with 

respect to the 16O to be divided into α+12C (7.2 MeV). 

 

Figure 3. Comparison of experimental laboratory energy distribution (black dots) at θ=29°- 41° of α-

particles  (left panel) and protons (right panel) for the system 16O+65Cu with preliminary calculations 

from the Hybrid Exciton Model (red line total, green line evaporative (PACE2), orange dots evaporative 

(PACE4), blue line pre-equilibrium). The normalization has been done at the area (exp. – total). 

 

Figure 4.  Same as Fig.3 for the 19F+62Ni system. 

 

By changing the initial configuration parameter (i.e. diminishing the exciton number) the description of 

the α-particle slightly improves, but, on the contrary, this worsen the proton description. Once again, 

like it was observed in the 16O+116Sn case, a unique initial parameter in the Hybrid Exciton model is not 

able to describe both the proton and α-particle channels suggesting that some more attention has to be 

paid to the clustering structure effects. For example in the used calculation no deuteron emission is 

considered, which may strongly influence the relative proton decay probability.  However part of the 

problem may be also in the total multiplicity, which is mainly related to the evaporative code used after 

the fast process steps [16], as observed in our previous data. This is to be further analysed. 
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5.  Conclusions  
 

In order to probe possible α-clustering effects in medium nuclei we are studying the secondary 

particle emission from the 256MeV 16O+65Cu and 304MeV 19F+62Ni systems. From the preliminary 

comparison between the two reactions a difference has been evidenced related to the fast α-decay 

channel, which can be linked to the difference in the projectile structure. In the meanwhile that the data 

analysis and calibration for the whole apparatus is completed, the experimental spectra detected in 

GARF in coincidence with ERs have been compared with the Hybrid Exciton Model proposed by O.V. 

Fotina [11,15]. At least in the GARFIELD angular range analysed up to now, using an initial exciton 

number estimated by the empirical trend reported in [14], the α-particle spectra seem to be reasonably 

reproduced as far as the shape is concerned, except for a small part at the most forward angles. On the 

contrary, using the same initial parameters, the fast emission of protons is largely overestimated. In a 

similar way, the model was not able to reproduce both protons and α-particle with the same initial 

parameters in our previous measurement related to the 16O+116Sn reaction study: in that case, however 

a better description of protons was obtained, while some added pre-formation probability was needed to 

describe the α-particle spectra. Moreover, looking more into details, an overestimate of the charged 

particle total multiplicity was also evidenced for that system, together with a lower weighting factor 

between fast and thermal emission especially for α-particles ([Mα
pre/Mα

tot]exp~0.5;[ Mα
pre/Mα

tot]theo~0.1).  

This demonstrates that a more complete analysis is needed to understand the process: in particular, 

due to the better performances reached in the present experiment in terms of identification and 

resolutions, the possibility of studying all different light charged particles decay channels will be 

possible. Moreover the larger angular range in which the particles have been identified will permit to 

better disentangle and study the pre-equilibrium emission. It will be needed to extract multiplicities, 

angular distributions and to study exclusive α−α, α−Ν correlation channels. From the theoretical point 

of view the Hybrid Exciton Model calculations has to be upgraded, following all particles and studying 

the coupling of fast emission with different evaporation codes. Moreover, it is under study the possible 

application of other theoretical approaches, like for example the dynamical AMD [19] code. 

Due to the high resolution of the apparatus, even more peripheral collisions like the decay of the 

projectile (break-up) can be studied, in order to compare the 16O and 19F cases for what concern their α-

structure through a complete reconstruction of the projectile–like decay. 
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