MOTIVAZIONI DELLA PROPOSTA NUCL-EX termodinamica Studio sperimentale di un fluido nucleare di van der Waals – Collisioni fra ioni pesanti Scopi: studiare la termodinamica di un sistema nucleare (finito, carico, 2 componenti) osservabili per identificare la transizione di fase Studio: sistemi a diverse energie di eccitazione reazioni periferiche – funzioni di eccitazione reazioni centrali - energia di eccitazione ben definita

- 🗞 equilibrio
 - comportamento critico
- 🔹 segnali termodinamici

Collisioni fra ioni pesanti: Apparati a 4π

 $\cdot Z_i$, k_i , θ_i , φ_i sono misurati per quasi tutti i prodotti carichi, evento per evento, con buona risoluzione energetica (pochi %) e basse soglie energetiche (rivelatori a gas). Le masse m_i sono misurate per frammenti leggeri

•Frammenti e particelle sono rivelati a ~10¹⁴ fm/c, con le stesse caratteristiche di 10³ fm/c, poiche' la propagazione in vuoto non permette interazioni con la materia

•Analisi statistiche multidimensionali su osservabili globali per evento permettono di selezionare gli eventi in classi di centralita'

•Il sistema che decade puo' essere identificato e la sua energia di eccitazione ottenuta per calorimetria dal bilancio energetico:

$$\boldsymbol{E}^{*} + \boldsymbol{m}_{0} = \sum_{i=1}^{M} (\boldsymbol{m}_{i} + \boldsymbol{k}_{i}) + \boldsymbol{M}_{n} (\boldsymbol{m}_{n} + \boldsymbol{k}_{n})$$

Multics&Miniball Garfield

<u>Indra,</u> Isis<u>, Fasa,</u> EOS, Lassa, <u>Nimrod</u>, ...

Transizione di fase liquido-gas

Elettronica digitale risultati ottenuti con un telescopio Si-CsI del RCo

Elettronica digitale - grafici on-line giugno 2006

8 scintillatori CsI(Tl) su 180 (due settori in avanti) trattati in modo digitale dal nostro FADC/DSP nell'esperimento con Garfield - Giugno 2006

fascio ALPI - LNL: ³²S + ⁶³Cu @ 16,5AMeV

Grafici on-line della misura di giugno 2006 Camera a ionizzazione – Si del RCo

Programma futuro – termodinamica

Studio dell'apertura del canale di multiframmentazione
Esperimenti a LNL (Garfield + RCo) FAZIA ???
Studio dell'evoluzione del canale di multiframmentazione
Esperimenti a LNS (Garfield + RCo + rivelatori supplementari)

FAZIA ???

INFORMAZIONI SPERIMENTALI COINCIDENTI

 Una migliore informazione quantitativa
 Informazioni sperimentali <u>coincidenti</u> sono necessarie su:

- Partizione critica del sistema, fluttuazioni
- •energia di eccitazione calorimetrica
- •temperatura isotopica
- vicinanza dei prodotti di decadimento
 - Rivelazione a 4π di massa e carica !!

Multics NPA 2004

Cosa ancora e' attuale per misure future? Una dimensione ulteriore dell'EoS

sono necessari fasci di ioni stabili ed esotici (SPES?? -FRIBS??) per investigare a fondo la transizione di fase variando:

le proprieta' Coulombiane e il contenuto di isospin (N/Z) della sorgente che frammenta

sistematica di misure che potrebbero essere effettuate a LNL nella situazione attuale

Reaction	Elab A.MeV	θ graz.	σ _{fus} (mb)	A,Z,N/Z c.n.	E* AMeV	T MeV	T _{lim} MeV
April 2002 beams							
(14,28)Si + (28,58)Ni	19	6	425	80-39-1,05	3,8	6,5	6,7
(16,32)S + (28,58)Ni	17	7	470	84-41-1,05	3,6	6,3	6,8
(20,40)Ca + (28,58)Ni	16	7	480	91-45-1,02	3,7	6,4	6,0
(28,58)Ni + (28,58)Ni	13	9	565	109-53-1,06	3,2	6,0	5,2
(29,63)Cu + (28,58)Ni	12	9	630	116-54-1,15	3,0	5,7	5,9
(35,79)Br + (35,79)Br	10	13	760	156-69-1,26	2,5	5,3	5,5
(20,48)Ca + (28,64)Ni	16	6	570	103-44-1,34	3,8	6,4	8,3

sistematica di misure che potrebbero essere effettuate se a LNL si realizzasse

la situazione prevista per il 2007

Reaction	Elab AMeV	θ graz.	σ _{fus} mb	A,Z,N/Z c.n.	E* AMeV	T MeV	T lim MeV
Future beams (6 new cryostats)							
(14,28)Si + (28,58)Ni	27	4	300	77-38-1,03	5,0	7,4	6,9
(16,32)S + (28,58)Ni	26	4	305	80-39-1,05	5,2	7,6	6,6
(20,40)Ca + (28,58)Ni	24	5	320	86-42-1,05	5,3	7,6	6,5
(28,58)Ni + (28,58)Ni	21	5	350	99-48-1,06	5,1	7,5	5,8
(28,58)Ni + (32,70)Ge	21	6	350	112-52-1,15	5,0	7,4	6,4
(28,58)Ni + (42,92)Mo	21	7	330	136-63-1,16	4,6	7,1	5,6
(28,58)Ni + (47,104)Ag	21	8	340	152-69-1,2	4,4	6,9	4,9
(29,63)Cu + (28,58)Ni	20	5	377	106-50-1,12	4,8	7,3	6,2
(35,79)Br + (28,58)Ni	17	6	440	126-58-1,17	4,0	6,6	6,3
(35,79)Br + (46,102)Pd	17	9	370	166-75-1,21	4,0	6,7	5,0
(20,48)Ca + (28,64)Ni	24	4	380	97-42-1,31	5,4	7,7	8,1

apparato GARFIELD + RCo

- •Soglie d'energia basse (camere a ionizzazione come ΔE)
- •Alta granularita': 400 ΔE-E telescopi θ ≈4°-150°
- •Identificazione in massa (1<=Z<=8) fino a $\vartheta \approx 30^{\circ}$
- •Elettronica digitale per discriminazione in forma del segnale CsI (identificazione in massa per $Z \le 4$) e per Pulse shape Silici

The nuclear symmetry energy

• Is the isovector part of the energy density functional

$$E_{sym}(\rho) = \frac{1}{2} \frac{\partial^2 e(\rho, \delta)}{\partial \delta^2} \bigg|_{\delta=0}$$
$$\delta = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}$$

Studio dell'energia di simmetria

- E' la parte isovettoriale del funzionale densita' d'energia
- Dipende dalla temperatura perche' la densita' dei livelli dipende

dall'energia e dall'isospin

Y.Alhassid et al. MC Shell Model

The nuclear symmetry energy

- Is the isovector part of the energy density functional
- Depends on temperature because of the energy and isospin dependence of the level density
- Ha importanti applcazioni astrofisiche
 Ex: favorisce l'esplosione di SN

H.Bethe, P.Pizzocchero, Astroph.Journ. 350 (1990) L33

L'energia di simmeria di un nucleo eccitato $\sigma^2(A)|_Z \approx <A > T/(2C_{sym}(A))$

puo' essere ricavato da osservabili isotopiche misurate in una sorgente ben definita

L'energia di simmeria di un nucleo eccitato $\sigma^2(A)|_Z \approx <A > T/(2C_{sym}(A))$

- puo' essere ricavato da osservabili isotopiche misurate in una sorgente ben definita
- Ma il contributo da stati instabili per emissione di particella deve essere sotto controllo

R.Charity et al PRC63(2001)024611

L'energia di simmeria di un nucleo eccitato $\sigma^2(A)|_Z \approx <A > T/(2C_{sym}(A))$

- puo' essere ricavato da osservabili isotopiche misurate in una sorgente ben definita
- Ma il contributo da stati instabili per emissione di particella deve essere sotto controllo
- Cio' porta ad effetti importanti di staggering

Scopo delle misure proposte

 misurare la popolazione di stati instabili attraverso le funzioni di correlazione

Scopo delle misure proposte

- misurare la popolazione di stati instabili attraverso le funzioni di correlazione
- Punto di riferimento per la densita' dei livelli attraverso modelli evaporativi (Gemini,SMM-MSU,ABLA07...)

Z=75 A=168-186 E=2 MeV/A

B.Tsang et al., in "Dynamics and Thermodynamics with nuclear Degrees of freedom", Springer 2006

Scopo delle misure proposte

- misurare la popolazione di stati instabili attraverso le funzioni di correlazione
- Punto di riferimento per la densita' dei livelli attraverso modelli evaporativi (Gemini,SMM-MSU,ABLA07...)
- Un nuovo codice evaporativo e' in corso di realizzazione (tesi di dottorato di G. Baiocco Bologna

B.Tsang et al., in "Dynamics and Thermodynamics with nuclear Degrees of freedom", Springer 2006

Campagna sperimentale ad Alpi

Reaction	E_{Beam}	N-Z	θ_{gr}	A_s	Z_s	E_s^*	N/Z	N-Z	σ
	(A MeV)	Target				(A MeV)	source	source	(mb)
$^{32}S + {}^{40}Ca$	17.7	0	5.0	65	32	4.2	1.0	1	400
$^{32}S + {}^{48}Ca$	id.	8	4.9	73	33	4.0	1.25	7	460
$^{32}S + ^{48}Ti$	id.	4	5.4	73	35	4.0	1.09	3	440
$^{32}S + {}^{58}Ni$	id.	2	6.7	84	41	3.8	1.05	2	430
$^{32}S + {}^{64}Ni$	id.	8	6.6	90	41	3.6	1.20	8	485
$^{32}S + ^{58}Fe$	id.	6	6.2	84	39	3.8	1.15	6	465

In ogni gruppo si varia il contenuto di isospin della sorgente ed il suo N-Z (isoscaling e staggering pari-dispari)

Sono necessari 12 giorni di misura per ogni combinazione proj-target

Previsione 2011-2012

• • • • • • • • • • • • • • • • • • •	man. App. LNL 2v.x 7 p. x (6 gg*0.13 +.2)	8,0 KE
LNL –MI	turni di misura LNL 2 t. * 9 p. * (5 gg*.13+.2)	15,5 KE
	riunioni collaborazione n p. * (1 gg*.13+.2)	3,0 KE
	ruin. analisi, an. fuori sede, n p.*(5gg*.13+.2)	4,5 KE
Consumo		30,0 KE

• Apparati

15,0 KE

- ME responsabile + mobilita' scientifica
- TOTALE

76,0+?