

Science & Innovation

Exemplary illustrations based on Silicon Photomultipliers

Massimo Caccia Uni. Insubria & INFN Milano IPRD10, June 8, 2010, Siena

Knowledge Exchange [KE]: To do or Not to do?

Why KE fits experimental HEP?

- in general, technology beyond/@ the state-of-the art is required for pursuing the Physics program. And it is developed in-house...
- challenges are part of our every day life..
- team work is a built-in attitude...
- ...and international collaborations as well
- we do need to fill in the gap between generation of experiments..
- ... and to show a return to society beyond the Higgs particle and the

Why KE is not trivial & natural?

- in general, mutual confidence between the Research Community & industries has not to be given for granted..
- recognition for TT/KE activities is not naturally built in the appraisal scheme
- funding/co-funding is not straightforward
- •Intellectual Property (IP) protection is not a piece of cake

Remarks

In Europe, everybody talks about KE; many are trying hard, a few are greeffective [UK: revenue driven; Switzerland: volume driven]

Emphasis on the Innovation Model (vs. Licensing Model)

- → Knowledge Exchange
- vs TT
- ⇒ Pull vs push
- ⇒ collaborative and contract research!

Remarks

Emphasis on the Innovation Model (vs. Licensing Model)

- ⇒ Knowledge Exchange vs TT
- ⇒ Pull vs push
- collaborative and contract research!

TT stats 2005 of Swiss universities (incl. ETHs) swiTT survey

- 1041 Research agreements through TTOs
 - 322 Invention disclosures
 - 169 New patent filings (priority filings)
 - 916 Active patent cases (end of 2005)
 - 169 New licenses and options for 154 different technologies
 - 762 Active licenses (end of 2005)
 - 27 new start-ups
 - 210 start-ups created betw. 2000 and 2005

2008 update: 1895 contracts for 352 MCHF cash return

RAPSODI RAdiation Protection with Silicon Optoelectronic Devices and Instruments

- Funded by the EC under the Sixth Framework Program (Co-operative research)
- Start-time Oct 2006; End-time: Jan 2009
- Main objectives: Silicon Photo Multipliers development and optimization for three well defined applications: Dosimetry in Mammography, Radon Monitoring, illicit traffic of radioactive material (homeland security)
- Consortium composition: 4 Small and Medium Enterprises + 3 R&D performers

SensL (IE)

PTW (DE)

PICh-SMM PICH SMM (CZ)

forimtech (CH)

UNICO (IT) (Leading organization)

SiPM = High density ($\sim 10^3$ /mm²) matrix of diodes with a common output, working in Geiger-Müller regime

advantages over traditional photo-detectors:

- high sensitivity (single photon discrimination)
- high speed ($T_{rise} \sim 1 \text{ ns}$; $T_{fall} \sim 50 \text{ ns}$)
- 0 compactness, robustness, low operating voltage and power consumption, low cost

Producer	Area (mm²)	Pixel size (µm)	No. cells	V working	DCR	GAIN	PDE (%) (peak λ)
SensL	3 x 3	20 x 20	8640	30	~4 MHz	~10 ⁶	10
Hamamatsu	1 x 1	100 x 100	1000	70	~0.4 MHz	~2 x 10 ⁶	65
CPTA	1 x 1	30 x 30	500	24	~3 MHz	~106	30
STm	3.5 x 3.5	50 x 50	4900	28+1	~1.2 MHz	2 x 10 ⁵	12

SiPM = High density ($\sim 10^3$ /mm²) matrix of diodes with a common output, working in Geiger-Müller regime

advantages over traditional photo-detectors:

- high sensitivity (single photon discrimination)
- high speed ($T_{rise} \sim 1 \text{ ns}$; $T_{fall} \sim 50 \text{ ns}$)
- 0 compactness, robustness, low operating voltage and power consumption, low cost

Producer	Area (mm²)	Pixel size (µm)	No. cells	V working	DCR	GAIN	PDE (%) (peak λ)
SensL	3 x 3	20 x 20	8640	30	~4 MHz	~10 ⁶	10
Hamamatsu	1 x 1	100 x 100	1000	70	~0.4 MHz	~2 x 10 ⁶	65
CPTA	1 x 1	30 x 30	500	24	~3 MHz	~106	30
STm	3.5 x 3.5	50 x 50	4900	28+1	~1.2 MHz	2 x 10 ⁵	12

SiPM = High density ($\sim 10^3$ /mm²) matrix of diodes with a common output, working in Geiger-Müller regime

advantages over traditional photo-detectors:

- high sensitivity (single photon discrimination)
- high speed ($T_{rise} \sim 1 \text{ ns}$; $T_{fall} \sim 50 \text{ ns}$)
- 0 compactness, robustness, low operating voltage and power consumption, low cost

Producer	Area (mm²)	Pixel size (µm)	No. cells	V working	DCR	GAIN	PDE (%) (peak λ)
SensL	3 x 3	20 x 20	8640	30	~4 MHz	~10 ⁶	10
Hamamatsu	1 x 1	100 x 100	1000	70	~0.4 MHz	~2 x 10 ⁶	65
CPTA	1 x 1	30 x 30	500	24	~3 MHz	~106	30
STm	3.5 x 3.5	50 x 50	4900	28+1	~1.2 MHz	2 x 10 ⁵	12

SiPM = High density ($\sim 10^3$ /mm²) matrix of diodes with a common output, working in

Geiger-Müller regime

advantages over traditional photo-detectors:

- high sensitivity (single photon discrimination)
- high speed ($T_{rise} \sim 1 \text{ ns}$; $T_{fall} \sim 50 \text{ ns}$)
- 0 compactness, robustness, low operating voltage and power consumption, low cost

L 1000/	لأن دامرهاي	وأرجال أراب	القالحا المائيكية	الانتان	_ 0.00s			d ₹.1 Similaik	الله الأراض
Annual Property lies	·				Marsil ata	Assertation of the	Artin Marine		
							Carry Carry		
					1			1	
					1		2111	1111	
-									
							-		
ΔX = 0				< = 0.0	1 104			100mV	

Producer	Area (mm²)	Pixel size (µm)	No. cells	V working	DCR	GAIN	PDE (%) (peak λ)
SensL	3 x 3	20 x 20	8640	30	~4 MHz	~10 ⁶	10
Hamamatsu	1 x 1	100 x 100	1000	70	~0.4 MHz	~2 x 10 ⁶	65
CPTA	1 x 1	30 x 30	500	24	~3 MHz	~106	30
STm	3.5 x 3.5	50 x 50	4900	28+1	~1.2 MHz	2 x 10 ⁵	12

Radon Risk If You Smoke

Radon Level	If 1,000 people who smoked were exposed to this level over a lifetime*	The risk of cancer from radon exposure compares to**	WHAT TO DO: Stop smoking and
20 pCi/L	About 260 people could get lung cancer	250 times the risk of drowning	Fix your home
10 pCi/L	About 150 people could get lung cancer	200 times the risk of dying in a home fire	Fix your home
8 pCi/L	About 120 people could get lung cancer	30 times the risk of dying in a fall	Fix your home
4 pCi/L	About 62 people could get lung cancer	5 times the risk of dying in a car crash	Fix your home
2 pCi/L	About 32 people could get lung cancer	6 times the risk of dying from poison	Consider fixing between 2 and 4 pCi/L
1.3 pCi/L	About 20 people could get lung cancer	(Average indoor radon level)	(Reducing radon
0.4 pCi/L	About 3 people could get lung cancer	(Average outdoor radon level)	levels below 2 pCi/L is difficult.)

← 74 Bq/m³

Note: If you are a former smoker, your risk may be lower. pCi/L (pico Curies per Liter)

Radon Risk If You've Never Smoked

Radon Level	If 1,000 people who never smoked were exposed to this level over a lifetime*	The risk of cancer from radon exposure compares to**	WHAT TO DO:
20 pCi/L	About 36 people could get lung cancer	35 times the risk of drowning	Fix your home
10 pCi/L	About 18 people could get lung cancer	20 times the risk of dying in a home fire	Fix your home
8 pCi/L	About 15 people could get lung cancer	4 times the risk of dying in a fall	Fix your home
4 pCi/L	About 7 people could get lung cancer	The risk of dying in a car crash	Fix your home
2 pCi/L	About 4 people could get lung cancer	The risk of dying from poison	Consider fixing between 2 and 4 pCi/L
1.3 pCi/L	About 2 people could get lung cancer	(Average indoor radon level)	(Reducing radon levels below
0.4 pCi/L		(Average outdoor radon level)	2 pCi/L is difficult.)

Note: If you are a former smoker, your risk may be higher.

pCi/L (pico Curies per Liter)

EPA figures

Lifetime risk of lung cancer deaths from EPA Assessment of Risks from Radon in Homes (EPA 402-R-03-003).

^{**} Comparison data calculated using the Centers for Disease Control and Prevention's 1999-2001 National Center for Injury Prevention and Control Reports.

Lifetime risk of lung cancer deaths from EPA Assessment of Risks from Radon in Homes (EPA 402-R-03-003).

^{**} Comparison data calculated using the Centers for Disease Control and Prevention's 1999-2001 National Center for Injury Prevention and Control Reports.

measurement of the indoor Radon concentration: the US map

measurement of the indoor Radon concentration: the US map

measurement of the indoor Radon concentration: the US map

The RADON decay chain

The radon progeny

measurement of the indoor Radon concentration: classes of instruments

A brief survey of the state-of-the-art:

- a. Long term measurements, currently based on alpha track detectors Good for mapping
- b. High sensitivity instruments for the measurements of Radon /surveying concentrations in buildings; in general, these instruments are based on either passive ionization chambers (electrets, more info for instance at http://www.radelec.com/product.html) or active systems, where the Radon progeny is collected on the surface of a semiconductor detector. In general, as a reference figure of merit, sensitivity to a concentration of 100 Bq/m³ over 1 hour sampling can be retained.

 Reasonably Good for RT monitoring
- c. High sensitivity instruments with spectrometric capabilities \Leftarrow In general for professionals
- d. Low cost instruments for the measurements of Radon in soil; the baseline technology can be tracked to the Lucas cell.

Exemplary illustrations of market products

Reference class c instruments:

Name	Producer	Quality (Plch)	Detection principle	Price
Atmos	Gammadat, Sweden	Very high	Multiwire air chamber	13 000EUR
AlphaGuard	Genitron, Germany	High	Impulse ion. chamber	12000EUR
Radim3A	Plch, CZ	High	Daughters collection	4700 EUR
Sarad 2000	Sarad, Germany	Medium	Daughters collection	9000 EUR
RAD7	Durridge,USA	Medium	Daughters collection	555
Reference ca	lass b instruments:			
Radim5	Plch, CZ	Medium	Daughters collection	2200EUR
InAir Sensor	Sarad	low sensitivity	Daughters collection	1200EUR
Ramon	FSPI, USA	low sensitivity	Daughters collection	200 EUR

Brief about the AlphaGuard and the Sarad Indoor Air Monitor

Sensitivity: 3 counts/hour @ 1 Bq/m³

		P30 / P2000 / PQ2000 / PQ2000 PRO	PQ2000 PRO (only)			
So To	Next Page detector	ionization chamber HV = 750 VDC				
N	Mode of operation	3D alpha spectroscopy and current	mode			
Т	Total / active detector volume	0,62 liter / 0,56 liter				
D	Detector filling mechanism	design optimized for fast passive diffusion (10/60 min cycle)	flow mode (1/10 min cycle)			
I	nstrument calibration error	3% (plus uncertainty of primary standard)				
S	System linearity error	< 3% within total range				
Т	ransient response function (time delay)	signal > 30% after 10 m in / signal > 70% after 20 min / signal > 90% after 30 min				
S	Sensitivity of detector	1 CPM at 20 Bq/m³ (0,55 pCi/l)				
	Background signal due to internal detector contamination (delivery status)	< 1 Bq/m³ (0,03 pCi/l)				
C	Operating range	-10 +50 °C (+14 122°F) / 700 1.100 mbar / 0 99 %rH				

Sensitivity: 0.003 counts/hour @ 1 Bq/m³

The RADIM7 - an innovative approach

- Yet based on the detection of the Radon alpha-emitting progeny
- ❖ replace the detector with a high sensitive scintillator + SiPM system ⇒ get to a system with top class performance and middle class price

The detecting system (qualified with 241Am)

The scintillating unit & fiber light conveying bundles

Exemplary illustration spectrum

The detecting system (qualified with 241Am)

• Chamber & electronics

The tile was mounted with the AGH electronics:

Complete chamber:

At the heart of the problem: kill the DCR and fix the stability!

Main figures from a non-trivial exercise:

- stabilized in the 3-40 C
 temperature range

Technical Characteristics of the RADIM7

Measured quantity: Air radon concentration

Functioning principle: The radon diffuses into the detection chamber of the

instrument, which is covered with a layer of felt. The felt absorbs the radon decay products formed in the external air. The radon activity is determined by measuring the α -activity of the decay products of radon, RaA and RaC', collected on the surface of the scintillation detector by a high-intensity

electric field.

Instrument response: (1.1 imp/h)/(Bq/m³)

Minimum concentration: concentration determined with a statistical error equal to

±20%: 25 Bq/m3 for 1-hour measurement

Maximum concentration: about 50 kBq/m³
Time of 1 measurement: sampling time 1 hour

Effect of humidity: a change in the relative humidity from 50% to 90% causes a

change in the sensitivity less than 5%

Electronics: low power, data protection against low voltage of the battery,

autotest

Consumption: during measurement 4 mA, standby consumption approx.3

μΑ

Memory: the results of 7 years of measurement can be stored, i.e.

65000 individual measurements

Power source: Li-Ion, 2.2 Ah
Operating time: minimum of 23 days

Operation and control: control by button and 3 LED

Data reading: the data are read by PC connected to standard USB port

Measuring regimes: Meas regime - measurement of the radon concentration

Test regime - test using the internal generator

BCKG regime - measurement of the number of impulses with

the high voltage turned off

Dimensions and Weight: 200 x 150 x 90 mm, approx. 0.5 kg

Climatic condition: from 3 to 40 °C, from 5 to 90 % of relative humidity.

Mission Accomplished!

A comparison with other instruments of the RADIM family

- 0.8 counts/h/Bq/m³
- logs also environmental parameter
- 10' time window

Concentration (Bq/m3)

The RADIM5b:

- 0.3 counts/h/Bq/m3
- small volume > hourly sampling
- no environmental parameter recorded

Preliminary results from an ongoing collaboration with a Bank group

... and the best is hopefully yet to come!

Flashing a second application: a start-up kit, developed with CAEN-Viareggio

The General Purpose Amplifier [data and figures refer to the prototype]

- 2 channel mother & daughter architecture
- every channel features a 2 stage amplification by wideband (4 GHz) amplifiers, with a tunable gain up to ~ 100
- ❖ active feedback control on V_{bias} for Gain stabilization (0.1 °C)

The General Purpose Amplifier [data and figures refer to the prototype]

- 2 channel mother & daughter architecture
- every channel features a 2 stage amplification by wideband (4 GHz) amplifiers, with a tunable gain up to ~ 100
- ❖ active feedback control on V_{bias} for Gain stabilization (0.1 °C)

The General Purpose Amplifier

[data and figures refer to the prototype]

- 2 channel mother & daughter architecture
- every channel features a 2 stage amplification by wideband (4 GHz) amplifiers, with a tunable gain up to ~ 100
- $\ \ \, \ \ \,$ active feedback control on V_{bias} for Gain stabilization (0.1 °C)

The General Purpose Amplifier [data and figures refer to the prototype]

- 2 channel mother & daughter architecture
- every channel features a 2 stage amplification by wideband (4 GHz) amplifiers, with a tunable gain up to ~ 100
- ❖ active feedback control on V_{bias} for Gain stabilization (0.1 °C)

The General Purpose Amplifier

[data and figures refer to the prototype]

- 2 channel mother & daughter architecture
- every channel features a 2 stage amplification by wideband (4 GHz) amplifiers, with a tunable gain up to ~ 100
- ❖ active feedback control on V_{bias} for Gain stabilization (0.1 °C)

The General Purpose Amplifier [data and figures refer to the prototype]

- 2 channel mother & daughter architecture
- every channel features a 2 stage amplification by wideband (4 GHz) amplifiers, with a tunable gain up to ~ 100
- ❖ active feedback control on V_{bias} for Gain stabilization (0.1 °C)

The General Purpose Amplifier

[data and figures refer to the prototype]

- 2 channel mother & daughter architecture
- every channel features a 2 stage amplification by wideband (4 GHz) amplifiers, with a tunable gain up to ~ 100
- ❖ active feedback control on V_{bias} for Gain stabilization (0.1 °C)

Recording the signal: QDC vs Digitization

The V792N QDC

- ≥16 channels
- > VME 6U format
- ➤ 12 bits
- $> 0 \rightarrow 400 \text{ pC range}$
- ➤ granularity: 100 fC/count

Fig. 2.1: Simplified block diagram of the QAC section

The 720 desktop Digitizer

- ≥2 channels
- > stand-alone
- > 250 Ms/s, 12 bits (up to 5 Gs/s)
- \triangleright -1 → +1V range

Featuring the Digital Pulse processor

... and for your advertisement multi-photon peak spectrum (something like the LHC Media Event)

Reference LED:

- $\lambda_{peak} = 470 \pm 20 \text{ nm}$
- peak current 120 mA
- !uminous intensity = 9500 mcd @20mA
- ❖ 30° half-view angle

Single Photon Timing spectrum

The Cosmic (ray) Tile

- Source ⁹⁰Sr

 Daughter board with SiPM

 Out 1

 GPA

 Out 2

 DT5720

 Digitizer

 Cate

 Cate
 Supply
 Box
- ❖ 100 x 100 x 10 mm³ plastic scintillator tile
- ❖ wls fiber => 2 channels in coincidence

Count rate in coincidence ⇒

← Single channel Dark Count Rate

The Gamma Ray Spectrometer

Source 137Cs

Lyso Crystal

SiPM

Cations:

Two basic configurations, oriented to EduApplications:

The Gamma Ray Spectrometer

Source ¹³⁷Cs

Lyso Crystal

SiPM

Cations:

Two basic configurations, oriented to EduApplications:

Go to the next level:

SiPM as a technology platform for collaborative research

promoted by the Technology Transfer Network, grouping a sub-set of CERN member states

A bit about the SiPM activities Info gathering distributed on Feb.23rd, 2010 In view of organizing a matching event

- a. contact details
- b. main drive for the ongoing activities (likely to be an HEP R&D or experiment)
- c. main expertise (e.g. ASIC design, sw development, TOF measurements, else)
- d. state of the art (feasibility study, proof of principle, prototype, demonstrator, engineered product(!), else)
- e. level of IP protection (honestly speaking: not such a big issue here! I'm truly convinced know-how matters most than a patent for such a project)
- f. binding agreements/possible show-stoppers (e.g. ASIC development with an educational license, contracts in force with companies/other research institutions)
- g. available public documents
- h. pre-existing/running contacts with industries i. companies in the wish-list.

Contact Person	Main drive	Key aspects
P. lacobucci (Napoli)	MU-RAY, volcano radiography with	"large" system management: • active hybrids (+CAEN) • opto-coupling • thermal management
(see G. Saracino's talk)	cosmic muons	Avalanche multiplication in semiconductor devices (A. Irace)
P.S. Marocchesi (Siena)	SPIDER, SiPM in space	SiPM based Cherenkov detector (proto)
(see the poster by M.G. Bagliesi)	(charge identification of cosmic nuclei)	128 ch SiPM ASIC + readout board (+IDE-AS) (HDR- transimpedence)
C. Marzocca (Bari)	DA-SIPM, TOF-PET systems	8 ⇒ 32 ASIC [current buffer, twin output (HDR + fast trigger)]
MG. Bisogni (Pisa)	DA-SiPM, TOF-PET	System aspects optimized for SiPM matrix (DAQ)
(see G.M. Collazuol's talk)	systems	Sensor array on a wafer (+FBK)
V. Bonvicini (Trieste)	FACTOR, calorimetry	Large system aspects

M.Ca	RAPSODI - FP6	 RADON (JPSMM) dosimetry (PTW) (patent) Homeland security (FORIMTECH) start-up kit (CAEN)
W. Kucewicz (AGH-Krakow)	RAPSODI - FP6	2 ch. ASIC for homeland security application
H.G. Moser (MPI MUNICH)	Sensor development	backside illumination (patent)bulk resistor APD (patent)
Chiara Casella (ETH-Zurich)	Axial PET	New conceptsystem aspect
Christophe de la Taille	Calorimetry at ILC	The SPIROC ASIC (36 ch, HDR; CSA + memory cells + TAC)
Erika Garutti & Felix Sefkow(DESY)	Calorimetry @ ILC Time resolution	No feedback yet
Pierre Jarron & Paul Lecoq	TOF for ALICE Crystal Clear	The NINO ASIC for TOF-PET (patent on a time based RO system)
A. Ranieri (Bari) (see A. Gabrielli's talk)	INFN specific project	A SiPM based system for prostate imaging

Who can be interested in what we are doing?

- -sensor producers (e.g., HAMAMATSU, SENSL, IRST-FBK, STm)
- -producers of electronics/services for OEM or dedicated general purpose modules (e.g. CAEN, Bridgeport, ORTEC...)
- -companies developing Not Destructive Test systems, quite often based on X ray detection...
- -companies in powder crystallography
- -homeland security
- -gamma spectrometry companies
- -obviously medical imaging (Big and small (ClearPEM))

in general wheever is concerned with LIDAP and ranging

- disciplines other than HEP: CherenkovTelescopeArray, geologists, biologists (PCH and FCS)
- crystal companies

