
1Eletroweak asymmetries from SLDG. BellodiaaPhysis Department, Queen Mary University of London,Mile End Road, London E1 4NS, United KingdomWe present a summary of the results on eletroweak asymmetries performed by the SLD experiment at theStanford Linear Collider (SLC). Most of these results are �nal and are based, unless otherwise stated, on the full1993-1998 data set of approximately 550,000 hadroni deays of Z0 bosons, produed with an average eletronbeam polarization of 73%.1. IntrodutionIn the Standard Model, the vertex fator for theweak neutral urrent interation in the Z0 ! f �fproess is given by:�ig2 os �W �(gfV � gfA5); (1)where g is the eletroweak oupling onstant, �Wis the eletroweak mixing angle, gfV and gfA arethe vetor and axial-vetor ouplings respetively.These latter ones an also be expressed in terms ofthe left- and right-handed ouplings, and reeiveexat spei�ations by the Standard Model:gfL = I3 �Q sin2 �W ; gfR = Q sin2 �W : (2)Here I3 denotes the third omponent of the weakisospin and Q is the fermion harge.The strength of these ouplings an be deter-mined experimentally by the measurement of twophysial observables: the amount of parity viola-tion Af in the oupling of the Z0 to the fermionf :Af = 2gfV gfA(gfV )2 + (gfA)2 = (gfL)2 � (gfR)2(ggL)2 + (gfR)2 ; (3)and the rate of prodution of quark avour f asa fration of the total hadroni width (Rf ):Rf = �(Z0 ! f �f)�(Z0 ! hadrons) / (gfL)2 + (gfR)2: (4)The Standard Model preditions for Af for all thefermion families are given in Table 1. The lep-

ton asymmetries are sensitive probes of the ele-troweak mixing angle sin2 �W . For the quarks,the b system is partiularly interesting. Sine(gbL)2 ' 30(gbR)2, the Rb and Ab measurementsare omplementary in the omplete determina-tion of the Zb�b vertex. Preise measurements ofAf for the di�erent fermions test the universalityof the theory between the generations within eahfamily.The Born level di�erential prodution ross se-tion for e+e� ! Z0 ! f �f with longitudinallypolarized eletrons and unpolarized positrons is:d�d os �f � (1�AePe)(1 + os2 �f ) + (5)2Af (Ae � Pe) os �f ;where �f is the polar angle of the outgoingfermion f with respet to the inident eletronbeam diretion and Pe is the eletron beam polar-ization. It is possible to measure Af by formingasymmetries in os �f and Pe.The forward-bakward asymmetry is de�ned as:AfFB = �fF � �fB�fF + �fB = 34AeAf ; (6)(where F refers to os �f > 0), and it dependsfrom both the initial and the �nal-state ouplings.With a polarized beam it is possible to isolate Afalone by forming the left-right forward-bakwardasymmetry:~AfFB = (�fFL � �fBL)� (�fFR � �fBR)(�fFL + �fBL) + (�fFR + �fBR) = 34 jPejAf :(7)



2Table 1Coupling parameters and asymmetries for the fermion families for sin2 �W = 0:23.Fermions I3 Q gfL gfR Af ÆAf=Æ sin2 �W�e,��, �� 1/2 0 0.5 0 1 0e, �, � -1/2 -1 -0.27 -0.23 0.155 -7.9u, , t 1/2 2/3 0.35 -0.16 0.667 -3.5d, s, b -1/2 -1/3 -0.43 0.08 0.935 -0.6Here the dependene on the initial oupling disap-pears, allowing a diret measurement of the �nalstate oupling parameter Af , with a statistialadvantage of (Pe=Ae)2 � 25 ompared to AFB .The initial state oupling is determined most pre-isely via the left-right ross setion asymmetry:ALR = 1Pe �L � �R�L + �R = Ae; (8)whih gives a very preise measurement ofthe eletroweak mixing angle, due to ÆAe �8Æ sin2 �W (see Table 1).2. The SLD experiment at SLCThe SLAC Linear Collider (SLC) delivered ex-ellent performane in the 1997-98 run, reahingpeak luminosities of 3 � 1030 m�2s�1. Approx-imately 350,000 Z0 deays were olleted, morethan doubling the SLD data set to a total ofaround 550,000 for 1993-1998.A general desription of the SLD detetor an befound in [1℄. Here we will only mention several ofthe unique features that allowed SLD to performmany ompetitive eletroweak and heavy avourmeasurements:� a highly longitudinally polarized (average� 73%) eletron beam;� a small and stable beam spot(1.5�m�0.8�m�700�m), essential for iden-tifying weakly-deaying heavy mesons;� good partile identi�ation provided bythe �Cerenkov Ring Imaging Detetor(CRID) [2℄;� a high preision 3D CCD-based pixel vertexdetetor [3℄, whih allows determination ofthe interation point to a 4�m�4�m�11�m

Table 2History of polarization measurements at SLD [8℄.Year Z0 stat Pe ÆPe=Pe1992 11K :224� :006 2:7%1993 50K :630� :011 1:7%1994-5 100K :772� :005 0:7%1996 50K :762� :004 0:5%1997-8 343K :729� :004 0:5%preision, and provides impat parameterresolution of 7.7�9.6�m (r�� rz) for high-momentum traks.2.1. Polarization MeasurementThe eletron polarization plays a ruial partin the SLD physis program. The polarization isprimarily measured with a Compton polarimeter.The eletron beam is brought into ollision with airularly polarized laser beam 33m downstreamfrom the IP. From the asymmetry in the Comp-ton sattering ross setions with di�erent spinon�gurations, it is possible to extrat the ele-tron polarization. Two additional ounters areused to ross-hek the measurement [4{7℄. Datafrom the Compton polarimeter is aquired on-tinuously during normal SLC operation. Sineit takes � 3 minutes to omplete a measure-ment, eah hadron event is assoiated with atime-weighted polarization average of the mea-surements taken within an hour of the event. Theyear-by-year average measurements are summa-rized in Table 2.The positron polarization has been measureddiretly with a M�ller polarimeter in the End Sta-tion A and found to be (�0:02�0:07%), whih isonsistent with zero.



33. Measurement of ALRThe ALR measurement is partiularly simple,sine all it requires is the ount of the Z hadronievents produed with left- and right-handed ele-tron beam. This leads to the anellation of pos-sible systemati e�ets and hene to a very smallsystemati error.ALR is obtained from the raw asymmetry Am a-ording to:ALR = 1Pe NZ(L)�NZ(R)NZ(L) +NZ(R) = 1PeAm; (9)where NZ(L)(NZ(R)) is the number of hadronievents produed with a left-(right-)handed ele-tron beam. Pe is the luminosity-averaged ele-tron polarization, de�ned as:Pe = (1 + �) 1NZ NZXi=1 Pi; (10)where Pi is the polarization measurement asso-iated in time with a Z0 event and � is a fatorthat orrets for the di�erene in polarization be-tween the Compton interation point and the Z0prodution point. In 1997-1998 � was found to be� = �0:0012� 0:0010.Sine the SLC does not run exatly at the Z0 pole,the extrated number for ALR(ALR(Ebeam)) hasto be extrapolated to the right energy and or-reted for eletroweak interferene (� 2% levelorretion):A0LR = (1 + �)ALR(Ebeam); (11)where A0LR is the asymmetry at the Z0 pole.The systemati errors of this measurement omefrom unertainties in the orretion fators ap-plied and are listed in Table 3.Combining statistial and systemati errors, the�nal result on ALR, using the 1993-8 data setis: A0LR(� Ae) = 0:15138� 0:00216, whih orre-sponds to a measurement of sin2 �eff = 0:23097�0:00027 [9℄.4. Leptoni Coupling AsymmetriesThe eletron polarization allows a diret mea-surement of the �nal-state asymmetry parame-ter Al for lepton l using the left-right forward-bakward asymmetry on lepton �nal states. If

lepton universality is assumed, the results for allthree avours an be ombined to yield a determi-nation of sin2 �effW , whih in turn an be ombinedwith the more preise result of ALR, independentfrom it sine it is based only on hadroni events(bar a very small admixture 0:3� 0:1% of �+��events).Figure 1 shows the os � distributions for e+e�,�+�� and �+�� andidates for 1997-1998 data.The numbers of seleted events for this periodare respetively 15K, 11K and 11K. The pre-1997 results are similar but have smaller aep-tane (j os �j � 0:8). The improved aeptaneof VXD3 allowed for eÆient trak �nding up toj os �j = 0:9.Results for all data sets ombined, taking intoaount small e�ets due to orrelations in sys-temati unertainties are:Ae = 0:1544� 0:0060 (12)A� = 0:142� 0:015A� = 0:136� 0:015:These measurements are statistially limited.Systemati errors arise from polarimetry, bak-grounds, radiative orretions, �� polarization ef-fets, inorret harge assignment. These resultsare onsistent with lepton universality and henean be ombined with the ALR result, yielding:Al = 0:15130� 0:00207; (13)whih is equivalent to the determinationsin2 �effW = 0:23098� 0:00026; (14)where the total error and orrespondent system-ati error (�0:00010) are more preise than thoseobtained with any other tehnique [10℄.5. Heavy Flavour Tagging at SLDMeasurements of quark ouplings require se-letion of individual avours from the sample ofhadroni Z deays. For bottom and harm events,this is done by searhing for displaed seondaryverties. The event is split into two hemispheresusing the thrust axis, and a topologial vertexalgorithm is applied to eah to identify \seed"verties using traks that are onsidered to have



4Table 3Table of systemati errors of the ALR measurement.Fator Systemati errorPolarization measurement 0:5%O�set due to IP e�ets 0:15%Experimental and Bakground asymmetry 0:07%Eletroweak and beam energy orretion 0:39%Total 0:65%(�syst(A0LR) = 0:001)
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Figure 1. Distributions of the leptoni os � fore+e�, �+��, �+�� andidates from the 1997-8data set.

ome from B or D meson deays. These traksare then used to alulate a momentum and in-variant mass for the hemisphere. The invariantmass is orreted for missing transverse momen-tum, estimated from the di�erene between thevertex momentum and ight diretion from theIP. This quantity is shown in �g. 2. A typialbottom tag requires M > 2 GeV, for 98% purityand 50% eÆieny.A neural net based on the pT -orreted vertexmass and other related variables (vertex momen-tum, trak multipliity and deay length) im-proves the performane of the tagging. Figure 3shows the output Sb of the neural net, whih isideally lose to 1 for b hemispheres and lose tozero for  hemispheres. A typial b tag requiringSb > 0:75 gave a hemisphere b-tagging eÆienyof 62% and purity of 98:3%. A  tag using a utSb < 0:30 gives � = 18% and � = 84%.6. Aq measurementsThe quark asymmetry measurements use thetags desribed above to selet events of a par-tiular avour (b, , s). In addition, we need tobe able to determine whih of the hemispheresontains the quark and whih the antiquark.For Ab and A SLD has developed a number oftehniques that will be desribed in the following.A. Ab with Jet ChargeThe method is based on the orrelation be-tween the primary quark harge and the netharge of high momentum traks in the jet. b�bevents are seleted by applying a vertex mass utMvtx > 2 GeV. The momentum-weighted trak
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Figure 2. Distribution of the pt-orreted mass.harge is alulated from:Q = Xtraks qi � sign(~pi � T̂ )j(~pi � T̂ )j�; (15)where qi and ~pi are the harge and momentumvetor of trak i, T̂ is the thrust axis diretionand � was hosen to be 0.5 to maximise theanalyzing power of the tag. The orret hargeassignment probability is alibrated from dataand its value, event by event, is fed into a max-imum likelihood funtion [11℄. On average thisprobability is � 69%. The b purity is mea-sured from data using the double-tag tehnique,whereas the bakground subtration and hemi-sphere harge orrelation are derived from thesimulation. Figure 4 shows the polar angle distri-butions of the signed thrust axis for left-handedand right-handed eletron beams. The SLD �nalresult is: Ab = 0:907� 0:020stat � 0:024syst.B. Ab and A with a Lepton TagAb and A an be measured by tagging bottomand harm events using their semileptoni de-
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Figure 5. Tails of the L/D distribution for muonsin data (dots) and Monte Carlo(histograms).Events in the entral bin have been ut out, sinethey do not arry any disriminating information.sum of all seondary traks >5 GeV/. A leanreonstrution of the seondary vertex harge,improved by the inlusion in the alulation ofVertex Detetor trak segments alongside fully�tted traks, tags the heavy quark harge (see�g. 6).Another quark harge assignment method isto use the dominant b !  ! s ! K� and! s! K� deay hains, with CRID identi�edkaons. The additional ontribution from this tagis found to be small for b hemispheres, but isvery e�etive for  hemispheres. Therefore, theAb analysis used the vertex-harge tag only, whilethe A analysis used both the vertex-harge andthe kaon-harge tags (with no assignment in aseof onit between the two). Event avour om-position and quark harge assignment probabilityare determined simultaneously from data usinga hemisphere double-tag tehnique (uds eÆien-ies and hemisphere orrelations are taken fromMonte Carlo, whereas world average values are
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(�) quarks with high purity. A b tag with massrequirement Mvtx > 2 GeV is used to veto D(�)from B deays.The �rst analysis exlusively reonstruts sixmodes: D+ ! K��+��, D0 ! K��+ andD�+ ! D0�+ with D0 deaying into K��+,K��+�0, K��+�+��, and K�l+�l (l = e; �).The eÆieny is only 4%, with however highpurity and analyzing power. The �nal result for1993-98 data is A = 0:690�0:042stat�0:021syst.The inlusive D�+ ! D0�+s analysis exploitsthe fat that a high momentum D� in a � jetwould travel very lose to the jet axis, and sowould the �+s , due to the low Q2. �s andi-dates having momentum transverse to the jetaxis p2T < 0:01 (GeV/)2 are hene seleted, witha signal to bakground ratio of 1:2 [14℄. We mea-sure: A = 0:685� 0:052stat � 0:038syst.The overlapping andidates between the twoanalyses are removed from the inlusive analysisfor the ombined A result.E. Ab and A SummaryThe individual Ab and A measurements wereombined, taking into aount systemati orrela-tions. Due to event sample overlaps, a statistialorrelation matrix was built, aounting for thedi�erent weight of eah event used in the analy-sis [15℄. For Ab the orrelations obtained were: i)Lepton vs Jet-Q 22%, ii) Lepton vs Vtx-Q 15%,iii) Jet-Q vs Vtx-Q 32%.The ombined preliminary SLD Ab and A resultsare:Ab = 0:916� 0:021 (16)A = 0:670� 0:027Figs. 7 and 8 list the SLD individual measure-ments and averages, along with the indiret mea-surements derived from the LEP AFB numbers,assuming a measured Ae from the SLD and LEPombined Alepton result of Ae = 0:1501� 0:0016.F. As measurementThis measurement is important to test the uni-versality of quark ouplings. Heavy quark deays
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Ab Measurements

Ab

LEP Average 0.880 ± 0.018

DELPHI NN 0.883 ± 0.032 ± 0.021

OPAL JetC 0.894 ± 0.049 ± 0.036

L3 JetC 0.843 ± 0.090 ± 0.050

DELPHI JetC 0.892 ± 0.042 ± 0.016

ALEPH JetC 0.911 ± 0.024 ± 0.014

OPAL Lept 0.851 ± 0.038 ± 0.021

L3 Lept 0.873 ± 0.058 ± 0.029

DELPHI Lept 0.918 ± 0.052 ± 0.022

ALEPH Lept 0.886 ± 0.035 ± 0.020

SLD Average 0.916 ± 0.021

SLD VtxQ 0.921 ± 0.018 ± 0.018

SLD K± tag 0.855 ± 0.088 ± 0.102

SLD Lepton 0.924 ± 0.030 ± 0.023

SLD JetC 0.907 ± 0.020 ± 0.024

SM
0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

Figure 7. Summary of the SLD and indiret LEPmeasurements of Ab.are suppressed by requiring the events to ontainno more than one trak with normalized impatparameter in the transverse plane d=�d > 2:5.Charged kaons are seleted with p > 9 GeV/and neutral kaons with p > 5 GeV/. An eventis tagged as s�s if one hemipshere ontains a K�andidate and the other ontains an oppositelyhargedK� (orK0s ), with a purity of 73% (60%).The harge of the identi�ed kaons is used to tagthe sign of the initial s quark, with a orret signprobability of 97.5% forK+�K� events and 85%for K�K0s . s quark os � distributions for left-and right-handed eletrons are shown in �g. 9.The bakground from ud events as well as the an-alyzing power are onstrained from the data [16℄.We measure: As = 0:895� 0:066stat � 0:062syst.7. Interpretation of the resultsThe SLD measurement of ALR represents abenhmark for determinations of the weak mix-ing angle and is preise enough to put a meaning-ful onstraint on the Higgs mass. Fig. 10a illus-

Ac Measurements

Ac

LEP Average 0.608 ± 0.032

OPAL D* 0.628 ± 0.104 ± 0.050

DELPHI D* 0.635 ± 0.083 ± 0.025

ALEPH D* 0.617 ± 0.080 ± 0.024

OPAL Lepton 0.575 ± 0.054 ± 0.039

L3 Lepton 0.774 ± 0.314 ± 0.160

DELPHI Lepton 0.645 ± 0.080 ± 0.061

ALEPH Lepton 0.580 ± 0.047 ± 0.040

SLD K & vtx-Q 0.673 ± 0.029 ± 0.024

SLD Lepton 0.589 ± 0.055 ± 0.053

SLD D*,D+ 0.690 ± 0.042 ± 0.021

SLD soft π* 0.685 ± 0.052 ± 0.038

SLD Average 0.670 ± 0.027

SM

0.4 0.5 0.6 0.7 0.8 0.9

Figure 8. Summary table of the SLD and indiretLEP measurements of A.trates the dependene of sin2 �effW on the Higgsmass. It is lear that the SLD sin2 �effW resultof 0.23097 prefers a low Higgs mass and thatmass onstraints for this value bene�t from thesteeper slope of the urve. By performing a �2 �tto the Higgs mass using the SLD measurementof the eletroweak mixing angle (see �g. 10b)we alulate one-sided on�dene upper limits ofmH < 133 GeV (95% CL) and mH < 205 GeV(99% CL), in modest agreement with the ur-rent diret searh lower limit from LEPII of 114.1GeV.The SLD data are also onsistent with lepton uni-versality. Fig. 11 summarizes the urrent worldmeasurements of sin2 �effW . All the available lep-toni data are onsistent, but the results deriv-ing from quark asymmetries provide an average(0:23230�0:00029) that is 3.3� di�erent from thelepton asymmetries average (0:23113� 0:00021).This same e�et shows up in the Ab \anomaly".The SLD measurements of Ab, A and As are allin good agreement with the Standard Model, and
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Figure 11. SLD and LEP sin2 �effW results.



10and SLD ALR+LEP Al and shown are the 68%and 95% on�dene level ellipses of the ombined�t. The origin of the plot gives the SM expe-tation value and the red line the dependene ofthis value on Higgs and top quark mass assump-tions. The onsisteny between the various mea-surements and the SM is only at the 1.0% level.A general �t for the left- and right-handed Zb�b
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Figure 12. The Zb�b oupling analysis result fol-lowing Takeuhi et al.and Z� ouplings in the SM ontext [18℄ showsa good agreement with SM preditions for thelatter ones, whereas the Zb�b shows a departurewhih mainly a�ets the right-handed ouplingvalue (3� lower than SM expetations). This ispartiularly diÆult to aommodate beause nopresently known model an produe a deviation

at this level.Another more general way to look at the ele-troweak results is to do an S-T analysis [19℄ (see�g. 13). The �t ellipse is onsistent with the

Figure 13. Global eletroweak �t in the S and Tplane.banana-shaped region allowed by the SM, as longas the Higgs mass is small. It is also onsistentwith S = T = 0, thus exluding models preditinglarge deviations from these values.8. ConlusionsThe past ten years have been a \golden age"for preise eletroweak measurements, and withits unique eletron beam polarization and high-performane vertex detetor, SLD has given im-portant ontributions.There is generally good agreement with the Stan-dard Model, although there are still some lin-gering inonsistenies with leptoni and hadronideterminations of sin2 �effW and with the Ab mea-surement. These are still open questions that may
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Figure 14. S-T analysis desribing eletroweakdata available at Lepton-Photon '89.be answered by future physis programs, if thereis a return to eletroweak physis at the Z pole.To onlude, we an better appreiate the suessof the SLD and LEP experiments and the rele-vane of their legay if we ompare the presentlevel of preision in the understanding of the sub-jet, (see �g. 13), with the situation ten years ago,as given in �g. 14, where the urrent plot is shownfor referene in the dashed inset.9. AknowledgementsWe thank the personnel of the SLAC aeler-ator department and the tehnial sta�s of ourollaborating institutions for their outstanding ef-forts on our behalf. This work was supported bythe U.S. Department of Energy and National Si-ene Foundation, the UK Partile Physis and As-tronomy Researh Counil, the Istituto Nazionaledi Fisia Nuleare of Italy, the Japan-US Cooper-ative Researh Projet on High Energy Physis,and the Korea Siene and Engineering Founda-tion.
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