Search for R-parity violation at LEP

Silvia Costantini University of Rome "La Sapienza" and INFN Rome L3 Collaboration

• R-parity

• Pair-production of gauginos, sleptons and squarks

- topologies and selections
- results and limits

• Sneutrino single production

- effects in fermion pair production
- direct RPV decays
- Spontaneous R-parity breaking
- Conclusions

R-parity: multiplicative discrete symmetry in SUSY:

$$R_P = (-1)^{2S+3B+L}$$

 $R_P = 1$ for standard particles $R_P = -1$ for supersymmetric particles

The most general MSSM superpotential has also L- and B-violating terms:

$$\mathbf{W}_{\mathbf{R}} = \lambda_{\mathbf{i}\mathbf{j}\mathbf{k}}\mathbf{L}_{\mathbf{i}}\mathbf{L}_{\mathbf{j}}\overline{\mathbf{E}}_{\mathbf{k}} + \lambda_{\mathbf{i}\mathbf{j}\mathbf{k}}'\mathbf{L}_{\mathbf{i}}\mathbf{Q}_{\mathbf{j}}\overline{\mathbf{D}}_{\mathbf{k}} + \lambda_{\mathbf{i}\mathbf{j}\mathbf{k}}''\overline{\mathbf{U}}_{\mathbf{i}}\,\overline{\mathbf{D}}_{\mathbf{j}}\,\overline{\mathbf{D}}_{\mathbf{k}} + \varepsilon_{\mathbf{i}}\mathbf{L}_{\mathbf{i}}\mathbf{H}_{2}$$

48 new coupling constants (9 + 27 + 9 + 3)*i*, *j*, *k*: generation indices

giving rise to LSP decays:

R-parity conserved:

- SUSY particles are pair-produced (the initial state e^+e^- has $R_P = 1$) and decay in cascade to the LSP
- $\mathbf{LSP} = \tilde{\chi}_1^0$ (neutral and colourless)

R-parity violated:

- single production of SUSY particles is allowed (ex. $e^+e^- \rightarrow \tilde{\nu}$)
- LSP decays
- LSP can be any particle: $\tilde{\chi}_1^0, \tilde{\chi}_1^{\pm}, \tilde{\ell}_R, ...$

Direct and indirect decays:

RPV not excluded by experimental data:

λ_{133}	<	0.003	V_e mass	$\tilde{\mathbf{m}} = 100 \; \mathbf{GeV}$
λ'_{111}	<	0.00035	$(\beta\beta)_{0\nu}$	$\tilde{\mathbf{m}} = 100 \; \mathbf{GeV}$
λ_{13k}	<	0.06	$\mathbf{R}_{ au}$	$\tilde{\mathbf{m}} = 100 \; \mathbf{GeV}$

 $\begin{array}{ll} \lambda_{11k}^{\prime}\lambda_{11k}^{\prime\prime} < 10^{-22} \quad and \quad \lambda_{ijk}^{\prime}\lambda_{lmn}^{\prime\prime} < 10^{-10} \quad (\text{at } \tilde{m} = 100 \ \text{GeV}) \\ \text{to avoid a fast proton decay } p \rightarrow \pi^0 e^+ \end{array}$

Less stringent limits on other couplings

Test the validity of SUSY limits also in the RPV scenario

Assumptions:

• Only one λ (λ' , λ'') \neq 0

• LSP decay length below 1 cm:

 $-\lambda \ (\lambda',\lambda'') > 10^{-5}$ for gauginos

 $-\lambda \ (\lambda', \lambda'') > 10^{-7}$ for sfermions

Results based on:

Year	\sqrt{s} (GeV)	\mathcal{L} (pb ⁻¹) / Exp.
1996	161–172	20
1997	183	55
1998	189	180
1999	192–202	230
2000	200–208	220

About 700 pb⁻¹per experiment

Sensitivity to cross sections of 0.02-0.05 pb per experiment (with $\varepsilon \sim 30\% - 40\%$)

Results are preliminary

Cross section values at $\sqrt{s} = 206 \text{ GeV}$

Signal events

Process	σ (pb) for tan β = 1	1
$ ilde{\chi}_1^0 ilde{\chi}_1^0$	1	$m_0 = 50 \text{ GeV}$
$(\mathbf{M}_{\tilde{\chi}_1^0} = 40 \mathrm{GeV})$	0.02	$m_0 = 500 \; GeV$
$ ilde{\chi}_1^+ ilde{\chi}_1^-$	0.15	$m_0 = 50 \text{ GeV}$
$(\mathbf{M}_{\tilde{\chi}_1^{\pm}} = \mathbf{103 \ GeV})$	0.25	$m_0 = 500 GeV$
$ ilde{\mu}_{R}^{+} ilde{\mu}_{R}^{-}$	0.1	$m_0 = 50 \text{ GeV}$
$(M_{\tilde{\mu}_R} = 85 \text{ GeV})$		

Background events

Process	σ
$\mu^+\mu^-, au^+ au^-$	7 pb
qā	80 pb
$e^+e^-f\bar{f}$	20 nb
$\mathbf{W}^{+}\mathbf{W}^{-}$	20 pb
Wev	3 pb
ZZ	1 pb

RPV Decays and Topologies

Particle		Indirect decays		
	λ_{ijk}	λ'_{ijk}	$\lambda_{ijk}^{\prime\prime}$	via $ ilde{\chi}_1^0$
$ ilde{\chi}_1^0$	$\ell_i^- \nu_j \ell_k^+, \nu_i \ell_j^+ \ell_k^-$	$\ell_i^- \mathbf{u}_j \mathbf{\bar{d}}_k, \mathbf{v}_i \mathbf{d}_j \mathbf{\bar{d}}_k$	$ar{\mathbf{u}}_iar{\mathbf{d}}_jar{\mathbf{d}}_k$	—
$ ilde{\chi}_1^+$	$v_i v_j \ell_k^+, \ell_i^+ \ell_j^+ \ell_k^-$	$ u_i u_j \mathbf{\bar{d}}_k, \ell_i^+ \mathbf{\bar{d}}_j \mathbf{d}_k$	$\bar{\mathbf{d}}_i \bar{\mathbf{d}}_j \bar{\mathbf{d}}_k, \mathbf{u}_i \mathbf{u}_j \mathbf{d}_k,$	$\mathbf{W}^* \widetilde{\mathcal{X}}_1^{0}$
			$\mathbf{u}_i \mathbf{d}_j \mathbf{u}_k$	
$ ilde{\ell}^{-}_{kR}$	$ u_i \ell_j^-, v_j \ell_i^-$		—	$\ell_k^- \widetilde{\chi}_1^0$
\tilde{v}_i, \tilde{v}_j	$\ell_j^-\ell_k^+,\ell_i^-\ell_k^+$	$\mathbf{d}_j ar{\mathbf{d}}_k, -$	—	$ u_i \widetilde{\chi}_1^0, u_j \widetilde{\chi}_1^0$
ũ _{iR}	_	_	$ar{\mathbf{d}}_{j}ar{\mathbf{d}}_{k}$	${f u}_i \widetilde{\chi}_1^0$
$\tilde{\mathbf{d}}_{iR}, \overline{\tilde{\mathbf{d}}_{kR}}$	_	$\bar{\mathbf{v}}_i \mathbf{d}_i, \ell_i^- \mathbf{u}_i$	$ar{\mathrm{u}}_iar{\mathrm{d}}_k,ar{\mathrm{u}}_iar{\mathrm{d}}_j$	$\mathbf{d}_{i}\widetilde{\chi}_{1}^{0},\mathbf{d}_{k}\widetilde{\chi}_{1}^{0}$

Main selections:

Coupling	Topologies	Eff. (%)
λ	2ℓ+ <i>F</i> ∕	10-40
	4 ℓ	30-50
	4 ℓ+ 𝗗	20-50
	leptons + jets	20-70
λ'	4 jets	15-65
	4 jets + <i>E</i> /	20-60
	jets + leptons	15-75
	jets + leptons+ <i>E</i> /	30-50
$\lambda^{\prime\prime}$	multijets + <i>E</i> /	30-50
	multijets + leptons	15-55
	multijets (up to 10 q)	25-50

RPV detectable: leptons, leptons and jets, jets

OPAL, $\sqrt{s} = 183$ GeV, selected by $4l + \not\!\!\!/$ Compatible with $e^+e^- \rightarrow ZZ \rightarrow e^+e^-\tau^+\tau^-$

$\sqrt{s} = 189 - 208 \text{ GeV}$ Overlap not taken into account!

Experiment	Coupling	Data	SM exp.
ALEPH	λ	752	800
	λ'	2810	2981
	$\lambda^{\prime\prime}$	1108	1090
DELPHI	λ	65	69
	$\lambda^{\prime\prime}$	1100	1124
L3	λ	72	71
	λ' (189 GeV only)	382	391
	$\lambda^{\prime\prime}$	6070	6203
OPAL	λ	1025	1112
	λ' (no 192–202 GeV)	170	158
	$\lambda^{\prime\prime}$ (189 GeV only)	167	155

No significant excess of data events

- \rightarrow cross section upper limits
- \rightarrow limits on MSSM parameters
- \rightarrow lower limits on masses

All limits are at 95% C.L.

L3, 95% C.L. upper limits on pair-production cross sections, indirect decays

189–208 GeV data

Coupling	Process	σ limit (pb)
λ	$ ilde{\chi}^0_1 ilde{\chi}^0_1$	0.02 -0.07
	$ ilde{\chi}^+_1 ilde{\chi}^1$	0.08 -0.15
	$\mathbf{\tilde{e}}_{R}^{+}\mathbf{\tilde{e}}_{R}^{-}$	0.06 -0.08
	$ ilde{\mu}_{R}^{+} ilde{\mu}_{R}^{-}$	0.05 -0.06
	$ ilde{ au}_{m{R}}^{-+} ilde{ au}_{m{R}}^{}$	0.06-0.07
	$\tilde{\tilde{v}}\tilde{v}$	0.07-0.08
λ"	$ ilde{\chi}^{0}_{1} ilde{\chi}^{0}_{1}$	0.11 -0.18
	$ ilde{\chi}_{1}^{\scriptscriptstyle +} ilde{\chi}_{1}^{\scriptscriptstyle -}$	0.14 -0.16
	$\tilde{\mathbf{e}}_{\boldsymbol{R}}^{+}\tilde{\mathbf{e}}_{\boldsymbol{R}}^{-}$	0.05 -0.18
	$\tilde{\mu}_{R}^{+}\tilde{\mu}_{R}^{-}$	0.05 -0.10
	$ ilde{ au}^+_{m{R}} ilde{ au}^{m{R}}$	0.13-0.16
	$\tilde{\tilde{v}}\tilde{v}$	0.12-0.15
	q ̃q	0.15-0.17

Limits derived for the coupling with the lowest sensitivity: final states with taus, no b-tagging

5 free parameters in the CMSSM: M₂, μ, tan β, m₀, A Cross sections and masses depend on them

ALEPH, 189-208 GeV

OPAL, $\sqrt{s} = 192 - 202 \text{ GeV}$ λ

Mass (GeV)	λ	ijk	λ'_{ijk}		$\lambda_{ijk}^{\prime\prime}$	Exp.
	Dir.	Ind.	Dir. Ind.	Dir.	Ind.	
$M_{\tilde{\mathbf{e}}_{\mathbf{R}}}$	69-89	79-96	93	96	92-96	ADLO
$M_{ ilde{\mu}_{R}}$	61-75	87-96	90	86	85-86	ADLO
$M_{ ilde{ au}_R}$	61-75	86-95	76	75	75	ADLO
$M_{\widetilde{v}_e}$	94-95	98-99	91	99	88-99	ADL
$oldsymbol{M}_{ ilde{ u}_{\mu, au}}$	65-95	78-89	78	70	65-70	ADL
$M_{\tilde{\mathbf{u}}_R}$				80	79	L
$M_{ ilde{\mathbf{d}}_{R}}$				56	55	L
$M_{\tilde{t}_1}$		87-91	85	77	72-77	ADL
$M_{\tilde{b}_1}$		90	80	55	48-72	ADL

Take into account different processes at the same MSSM point

Mass (GeV)	λ _{ijk}	λ'_{ijk}	$\lambda_{ijk}^{\prime\prime}$	Exp.
$\mathbf{M}_{ ilde{\chi}_1^0}$	34-40		38-40	ADL
$\mathbf{M}_{\tilde{\chi}^0_2}$	84		80	L
$\mathbf{M}_{\widetilde{\chi}_{1}^{\pm}}$	103	103	103	ADL
$M_{\tilde{\ell}_R}$	83		89	L
$M_{\widetilde{v}}$	153		149	L

 $\tilde{\chi}_1^{\pm}$ kinematic limit reached for every λ , λ' , λ''

Sensitivity to high \tilde{v} masses up to \sqrt{s} . Limits on $|\lambda|$

Additional contributions to σ and A_{fb} from λ_{ijk}L_iL_jE_k
 Fit SM + possible new physics effects
 No deviations found

• Study of $e^+e^- \rightarrow \tilde{\nu} \rightarrow \nu \, \tilde{\chi}_1^0, \ \ell \, \tilde{\chi}_1^{\pm}$

More sensitivity with $\nu \tilde{\chi}_1^0$, $\ell \tilde{\chi}_1^{\pm}$ than with SM fits

ALEPH, 189-208 GeV e $\gamma \rightarrow \tilde{v}_j \ell_k$ via λ_{1jk} or λ_{231}

Possible additional bilinear term $\varepsilon_i L_i H$ giving rise to: $\tilde{\chi}_1^{\pm} \rightarrow \tau^{\pm} J$ (J massless Majoron)

DELPHI, 183-202 GeV

- RPV searches at LEP cover almost every SUSY process
- Same sensitivity as in standard searches: SUSY results do not depend on assumptions of R-parity conservation
- New limits with about 700 pb⁻¹ for experiment, at different \sqrt{s} values up to 208 GeV
- New lower mass limit on lightest neutralino: $M_{\tilde{\chi}_1^0} > 40$ GeV at 95% C.L., for every m₀ and tan β