

Siena 2001

Christian Haag IEKP 🔲

• heavy quark expansion formalism predicts difference between lifetime of b- baryons and mesons to depend on $1/m_b^2$

 \blacksquare meson-meson differences depend on $1/m_{h}^{3}$

→ the predicted lifetime hierarchy is

$$\tau_{\Lambda_{b}} < \tau_{B^{0}} \sim \tau_{B_{s}} < \tau_{B^{\pm}}$$

b-lifetimes and their ratios allow tests of QCD and B-decay dynamics

→ b-lifetimes are used for $|V_{cb}|$ analyses (dominant B-decay width is b-c-transitions) and as input for time-dependent B-decay analyses (oscillations, mixing, CP-asym.)

Methods

- Reconstruction of b-vertex \Rightarrow decay-length *l*
- Momenta of associated tracks \Rightarrow momentum *P* of b-hadron

e⁺

• Decay–time *t* of b–hadron from:

exclusive analysis:

 full reconstruction of b-decay by selecting specific decay channels (statistics limited but very pure samples)

semi-inclusive analysis:

 reconstruction of b-vertex and selection of specific decay channels by exploiting charge correlations with decay-pions

inclusive analysis:

 topological reconstruction of b-vertex regardless of decay channel (error systematics dominated)

ALEPH

exclusive:

The lifetimes of B^0 and B^- were measured by reconstructing semileptonic decays where the lepton is associated with a D^{*+} or D^0 meson.

 D^0 's were identified by one of the following decay channels:

 $D^{0} \rightarrow K^{-} \pi^{+}$ $D^{0} \rightarrow K^{-} \pi^{+} \pi^{-} \pi^{+}$ $D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$ $D^{0} \rightarrow K^{0}_{S} \pi^{+} \pi^{-}$

150 D^{*+} and D^{0} were then distinguished by the invariant mass of D^0 candidate for the four existance or nonexistence of a slow pion 0 ⊑ 1.7 1.9 1.8 1.8 around the nominal mass difference of 145.4 MeV. subsamples in the $D^0 l^-$ Mass (GeV/c²) event selection (²) 100 d) K⁰_Sππ 80 (3/2) 60 (4/ 200 € c) Κππ⁰ <u>s</u> 175 150 Events within 2σ of the fitted **D**⁰ mass were selected 125 100 for the B-vertex reonstruction resulting in 1880 $D^{*+}l^{-}$ 75 and 2856 $D^0 l^-$ candidates with $B^0(B^-)$ purities of 85%(80%). 50

Lifetime-fit

For the measurement an unbinned likelihood fit was performed using the following likelihood function:

$$\begin{split} L &= \prod_{i=1}^{N_{B^{*}i}} \left[f_{-}^{*} (\tau_{B^{-}}^{*} / \tau_{\bar{B}^{0}}^{*}) F(t_{i}, \sigma_{i}, \tau_{B^{-}}^{*}) + f_{0}^{*} (\tau_{B^{-}}^{*} / \tau_{\bar{B}^{0}}^{*}) F(t_{i}, \sigma_{i}, \tau_{\bar{B}^{0}}^{*}) + f_{bkg}^{*} F_{bkg}^{*}(t_{i}) \right] \\ &\times \prod_{i=1}^{N_{B^{*}i}} \left[f_{-}^{0} (\tau_{B^{-}}^{*} / \tau_{\bar{B}^{0}}^{*}) F(t_{i}, \sigma_{i}, \tau_{B^{-}}^{*}) + f_{0}^{0} (\tau_{B^{-}}^{*} / \tau_{\bar{B}^{0}}^{*}) F(t_{i}, \sigma_{i}, \tau_{\bar{B}^{0}}^{*}) + f_{bkg}^{0} F_{bkg}^{0}(t_{i}) \right] \end{split}$$

f's fraction of the samples calculated from measured branching ratios

F's exponential distribution convoluted by resolution and energy correction function taking into account missing energy

proper time distributions of background determined from simulated events

with:

X

Results

proper time distributions for the two samples with the fit overlaid

Most relevant systematic error sources:

- B momentum reconstruction (missing neutrino)
- Background treatment $(BR(B \rightarrow D^{**}l_{\mathcal{V}}))$
- decay length resolution

$$\tau_{B^{+}} = 1.648 \pm 0.049(stat.) \pm 0.035(syst.) \ ps$$

$$\tau_{B^{0}} = 1.518 \pm 0.053(stat.) \pm 0.034(syst.) \ ps$$

$$\frac{\tau_{B^{+}}}{\tau_{B^{0}}} = 1.085 \pm 0.059(stat.) \pm 0.018(syst.)$$

0.19

0.19

0.2

0.21

ΔM (GeV)

0.22

0.2

0.21

ΔM (GeV)

0.22

15% are resonant background consisting of $B^- \to D^{*+} \pi^- l^- \bar{\nu}$, $\bar{B^0} \to D^{*+} \pi^0 l^- \bar{\nu}$ and $\bar{B_s} \to D^{*+} K^0 l^- \bar{\nu}$ 49% combinatorial background, made up by events with fake slow pions, fake leptons or both

Resolutions and fit

The four resolution functions (one for the signal and three for different background sources) were calculated.

 τ_{B^0} has been extracted by maximising the following log-likelihood-function:

$$\ln L = \sum_{i=1}^{M^{a}} \ln L_{i}^{a} + \sum_{j=1}^{M^{b}} \ln L_{j}^{b} - N^{a} - N^{b}$$

were $\ln L_i^a$ and $\ln L_j^b$ are the individual event log-likelihoods taken over all the observed M^a opposite sign and M^b same sign events in the data sample.

DELPHI Inclusive Analysis (PRELIMINARY!):

Reconstruction using neural networks:

For track classification neural network techniques were used. Some important input variables were:

- Impact parameter-based probabilities that the track belonged to the primary (PV) or secondary (SV) vertex
- Track rapidity
- momentum of tracks in the *b*-rest frame
- Particle identification information

Separation of tracks from primary (PV) and secondary vertex (SV)

Separation of tracks from b– vertex and B–D cascade vertex

Event selection:

- Enhancement in b–events attained by a cut on DELPHI impact parameter based b–tag
- $\cos(\theta_{thrust}) < 0.65$
- Cuts on B-species neural network for $B^+(B^0)$ enhancement
- For each event one of four different decay– length algorithms were chosen. Choice was dictated by optimising the resolution and minimising any bias while still retaining the best possible efficiency.

- ⇒ 2 data samples with 38988(11573) events in $B^+(B^0)$ sample respectively with good purity (~70%) and good resolution (~240 µm)
- same procedure for MC events
- <u>in addition:</u> reweighting of MC–events to compensate known discrepancies between data and MC (e.g. hemisphere quality)

Lifetime fit:

• Reweighting of MC lifetime distributions by:

$$w_{i} = \frac{\tau_{gen}}{\tau_{new}} \exp(t_{i} \frac{\tau_{gen} - \tau_{new}}{\tau_{gen} \tau_{new}})$$

• Minimisation of the following x^2 function:

$$\chi^{2} = \sum_{B^{\pm},B^{0}} \left[\sum_{i=1}^{n} \frac{(W_{i}^{MC} - N_{i}^{DATA})^{2}}{(\sigma_{i}^{MC})^{2} + (\sigma_{i}^{DATA})^{2}} \right]$$

Siena 2001

Christian Haag IEKP 🔲

1.068±0.016

0.947±0.038

0.99 - 1.01

0.795±0.053

0.781±0.034

0.9 - 1.0

0.9 - 1.0

1.1

1.2

1.0 - 1.1

Future:

- For the lifetimes of B^+ and B^0 mesons the b-factories BELLE and BABAR will soon deliver the most precise measurements.
- From Tevatron improved exclusive measurements of b-baryons and B_{c} meson lifetimes are expected
- For B_s and *b*-baryons LEP still has the chance to remain competitive with inclusive analyses