Higgs Bosons in the SM and the MSSM Searches at LEP

P. Igo-Kemenes

Heidelberg / CERN

Topical Seminar on the Legacy of LEP and SLC

Siena, Oct 8-11, 2001

The Legacy

• MSSM Higgs bosons $m_{
m h} > 91.0~{
m GeV}$, $m_{
m A} > 91.9~{
m GeV}$ $aneta=v_2/v_1:~0.5-2.4$ unlikely

Higgs mechanism / Higgs bosons

... a <u>model</u> to provide mass to gauge bosons and fermions without conflicting with the principle of gauge invariance

Standard model	Minimal SUSY extension
One complex scalar field doublet ϕ	Two field doublets ϕ_1 , ϕ_2
$<\phi>=vpprox 246$ GeV	$v^2=v_1^2+v_2^2$, $v_2/v_1=taneta$
4 degrees of freedom	8 degrees of freedom
$ullet$ M_{W^+} , M_{W^-} , M_{Z^0}	$ullet$ M_{W^+} , M_{W^-} , M_{Z^0}
$ullet$ One physical Higgs boson ${f H}^0$	• h^0 , H^0 , A^0 , H^+ , H^-
	(mixing $lpha$)
$m_{ m H}$ fixes all couplings	Tree level : 2 parameters
to fermions : $\sim m_f$	e.g. ($lpha, aneta$) or ($m_{ m A}, aneta$)
to vector bosons : $\sim m_V^2$	Loop level : Many soft SUSY breaking parameters
	Unification at Λ_{GUT} m_0 , $m_{1/2}$, μ , A_t

Proof ... detection of a Higgs particle

Minimal SUSY (MSSM)

ullet Tree level ... $m_{
m h} {<}~M_Z$, $m_{
m h} {<} m_{
m A}$ $m_{
m H} {>}~M_Z$, $m_{H^\pm} {>}~M_W$

• One loop ... Ellis, Ridolfi, Zwirner, ... (1991) $\sim m_t^4$, $\sim \log (m_{\tilde{t}}/m_t)^2$ Two-loop ... Carena, Wagner, Hollik, Weiglein ... $m_{
m h} < 135~{
m GeV}$

Standard Model

<u>MSSM</u>

$e^+e^- \rightarrow h^0 Z^0$	$\sigma_{hZ} = \sin^2(eta - lpha)$	σ_{SM}
$e^+e^- \rightarrow h^0 A^0$	$\sigma_{hA} = \cos^2(\beta - \alpha)$	$ar{\lambda} \; \sigma_{SM}$
	Complementarity	!

Couplings relative to SM								
	"Up" fermions "Down" fermions Vector bosons							
$\mathbf{h^0}$	\coslpha/\sineta	$-\sinlpha/\coseta$	$\sin(eta-lpha)$					
\mathbf{H}^{0}	$\sin lpha / \sin eta$	\coslpha/\coseta	$\cos(eta-lpha)$					
\mathbf{A}^{0}	1/ aneta	aneta	0					

Searches for lowest-mass Higgs

Searches prior to LEP P.J. Franzini et al., in CERN-89/08-V2

- Muonic x-rays (24 Mg, 28 Si)
- $0^+ \rightarrow 0^+$ nuclear transition
- π^+ , K^0 , B^0 decays
- ullet $\Upsilon
 ightarrow {
 m H}^0 \gamma$ decays

Theoretical "loopholes" QCD corrections Higgs final states ... uncertain

 \Rightarrow No compelling mass limits

Early searches at LEP1 ... aiming at model-independence

Special topologies ... Z^0H^0 ... low-mass kinematics

- Minimal assumptions for Higgs final states
- Including invisible decays
- and very long lifetimes (at lowest masses)
- Complementarity ...

LEP1 ...final results (SM Higgs)

	Lower mass bound (95% c.l.
ALEPH	63.9 GeV
DELPHI	55.4 GeV
L3	60.2 GeV
OPAL	59.6 GeV

 $A+D+L+O \implies ADLO$

LEP1 ...final results (MSSM Higgs)

 $\frac{Z^0 \rightarrow h^0 Z^{0*}}{Z^0 \rightarrow h^0 A^0} \quad ... \quad SM \text{ searches reinterpreted for MSSM couplings}$ $\frac{Z^0 \rightarrow h^0 A^0}{Z^0 \rightarrow h^0 A^0} \quad ... \quad A \text{ new set of topological searches}$

• Tagging b-jets

(secondary vertices in Si- μ Vtx detectors)

ADLO exclusion

P. Igo-Kemenes - LEP/SLC Legacy, Siena, Oct '01

LEP 2 Search Environment

- $\underline{1995 2000}$... $\underline{LEP2}$... $\sqrt{s} \sim 135 208 \text{ GeV}$ $\sqrt{s} \gtrsim 189 \text{ GeV}$... $\int L \approx 2500 \text{ pb}^{-1}$ $\sqrt{s} \gtrsim 206 \text{ GeV}$... $\int L \approx 550 \text{ pb}^{-1}$
- $S/B \sim 10^{-2} 10^{-3}$... more favourable than at LEP1
- <u>Background : complexity</u> ... $e^+e^- \rightarrow q\bar{q}$, W^+W^- , Z^0Z^0 Kinematic properties similar ($m_H \sim M_W \sim M_Z$) <u>But</u> ... Z^0 is real \Leftarrow Constrained kinematic fits Sophisticated b-jet tagging algorithms Si $-\mu$ Vtx detectors ... upgraded geom. coverage, redundancy All H^0Z^0 final states are exploited at LEP2 !

Main $e^+e^-{\rightarrow}\,H^0Z^0\,$ final states

LEP2

All four channels exploited

ullet $\gtrsim 90\%$ of ${
m H}^0{
m Z}^0$ cross-section

Example \sqrt{s} = 206 GeV					
$m_{ m H}$ (GeV)	$\mathrm{H}^{0}\mathrm{Z}^{0}$				
110	75 events				
115	15 events				

• ADLO sensibility \Rightarrow kin. limit $m_H^{max} \approx \sqrt{s} - M_Z$ $\approx 208 - 91 = 117 \text{ GeV}$

Statistical combination : $A+D+L+O \Rightarrow ADLO$

(Developed by LEP-Higgs working group)

- AIM ... highest overall sensitivity ... by adding all "channels" $\underline{SM}: \approx 10 \sqrt{s} \times 4$ decay channels $\times 4$ exp'ts $\approx \underline{160}$ channels $\underline{MSSM}: \oplus e^+e^- \rightarrow h^0 A^0$... similar number
- INPUTS ... provided by the experiments ... binned in
 - \Rightarrow Reconstructed Higgs mass M_{H}^{rec}
 - \Rightarrow Global discriminating variable \mathcal{G} ... (LH or ANN)

composed of *b*-tag, kinematics, other discriminating properties ...

In each bin i	↑		
Bkgd. estimate (MC) b_i	${\cal G}$		
Signal estimate (MC) $ s_i(m_H) $		$s_i(m_H)/b_i$	
for test-mass m_{H}			
Nbr of candidates N_i			$M_{H}^{rec} \Rightarrow$

Candidate "weights" ... $s_i(m_H)/b_i$... detailed MC simulation \sqrt{s} , $\int \mathcal{L}$, ϵ_{sig} , ϵ_{bkgd} , resolution (tails), syst. errors The origin ... channel ... of candidates is irrelevant

• LIKELIHOOD TEST ... $sig + bkgd \iff bkgd$ <u>Test-statistic</u> ... $Q = \frac{\mathcal{L}_{s+b}}{\mathcal{L}_b}$... to rank the candidates $\ln Q(m_H) = -s_{tot} + \sum_i N_i \ln[1 + s_i(m_H)/b_i]$ \uparrow *Candidate "weights" ... additive*

... Statistical combination

 $\frac{As \ a \ function \ of \ test-mass \ m_H \ \dots}{Observed \ likelihood}}$ Expectation for $b \ \dots$ and for $s + b \ \dots$ and stat. $\pm 1\sigma$ and $\pm 2\sigma$ bands

 $\begin{array}{l} \underline{Slice} & \dots & at \ fixed \ test-mass \ m_H \ \dots \\ \hline \mbox{Prob. dens. funct's for } b \ \mbox{and } s + b \ \dots \ \mbox{integrals} \\ 1 - CL_b \ \dots \ \mbox{compatibility with } b \ \mbox{kgd hyp.} \\ 2.7 \times 10^{-3} \ \dots \ \mbox{3}\sigma \ "evidence" \\ 5.7 \times 10^{-7} \ \dots \ \mbox{5}\sigma \ "discovery" \\ CL_{s+b} \ \dots \ \mbox{signal hyp.} \Rightarrow \underline{Mass \ limit} \end{array}$

... Recent LEP history

• Sept 5, Report to LEPC ... 304 pb⁻¹ $@E_{cm} > 206$ GeV ALEPH: 3.9σ ... DLO: No excess $\Rightarrow \underline{ADLO: 2.6\sigma}$ ADLO... (revisited ... Nov 3 ...) 2.2σ \Rightarrow Continue LEP for one more month ... " to see the trend ..."

• Nov 3, Report to LEPC ... 488 pb⁻¹ $@E_{cm} > 206$ GeV L3 ... Strong candidate in "E-miss" channel

Request not retained ... Comm. of Council, Nov 17

Current Status: SM Higgs

Since November 2000 ... All LEP data included Integrated luminosities (ADLO) $E_{cm}\gtrsim 189$ GeV ... 2465 ${
m pb}^{-1}$

 $E_{cm}\gtrsim 206$ GeV 542 ${
m pb}^{-1}$

LEP Higgs workshop ... Evian, May 2001

Analysis procedures revisited

Changes within the experiments

Recalibration of detector parameters ... b-tag ... Si – μ Vtx Improvements in selections ... better sensitivity **Revision of procedures for extra- and interpolations** Study of resolution functions close to $\mathbf{H}^{0}\mathbf{Z}^{0}$ kin. lim. Revision of backgrounds and systematic errors Better Monte Carlo statistics over the whole phase-space

Publications ... Phys. Lett. B

Aleph, Delphi, Opal ... preliminary L3 ... final

ALEPH	$1 - CL_b$] [DELPHI		$1 - CL_b$			
Nov 2000	$6.5 imes 10^{-4}$	3.4σ	Nov 2000		0.68		bkgd-like		
Phys. Lett.	2.7×10^{-3}	3.0σ	Phys. Lett.			0.77		bkgd-like	
L3	$1 - CL_b$] [OPAL	•	1-C	L_b	
Nov 2000	$6.8 imes 10^{-2}$	1.8σ			Nov 2000		1.9×10^{-1}		1.3σ
Phys. Lett.	0.32	bkgd-like			Phys. Lett.		2.0×10^{-1}		1.3σ

(Values quoted for $m_H = 115$ GeV)

$-2\ln(Q)$... by Final State

ADLO ... Reconstructed Mass

For $m_H=115.6~{
m GeV}$

	Exp. sig. Exp. bgd		Data
Loose	11.4	188.1	187
Medium	5.75	60.32	61
Tight	2.69	20.16	22

P. Igo-Kemenes - LEP/SLC Legacy, Siena, Oct '01

Current Status: MSSM Higgs

ADLO: LHWG Note / 2001-04 (July '01)

"Benchmark" parameter scenarios

Carena, Heinemeyer, Wagner, Weiglein hep-ph/9912223 $m_{\rm A}$, aneta ... basic MSSM parameters ... scanned M_{SUSY} ... sfermion mass parameter ... 1 TeV M_2 ... gaugino mass parameter ... 200 GeV μ ... Higgs mass parameter ... -200 GeV A_t ... Trilinear Higgs-squark coupling Squark mixing parameter $X_t \equiv A_t - \mu / \tan \beta$ m_{top} ... Top mass ... 174.3 GeV $m_{\tilde{q}}$... Gluino mass ... 800 GeV • "No mixing" scenario ... $X_t = 0$ • " $m_{
m h}$ -max" scenario ... $X_t = 2 M_{SUSY}$ maximizes the range of $m_{\rm h}$ \Rightarrow Conservative exclusion limits **ADLO** ... combined results shown here in two projections $(m_{\rm h}, \tan\beta)$ $(m_{\rm A}, \tan\beta)$

MSSM "No mixing" Scenario

