

Siena 11th October 2001

Recent Results in Neutrino Physics

Seventh Topical Seminar on The Legacy of Lep and SLC Siena 8-11 October 2001

Mass Direct Measurements

Direct kinematic limits on $m_{vx}^2 = S |U_{xi}|^2 m_i^2$

- mne < 2.2 eV (1)</th>Mainz Tritium endpoint (eventually mv²>0!)
Troitsk experiment 2.5 eV (+ seasonal
anomaly ?!) ® ~0.5 eV reachable in future.
Criogenic Microcalorimetry (187Re), now
<26 eV (® 10 eV) (Genova, Milano).</th>
- **m_{nm}< 190 keV ⁽¹⁾ p**® **m** at rest. Limited by the uncertainty on the pion mass (**D**m/m=2.6·10⁻⁶). Clever idea to reach ~10 keV sensitivity using decay in flight at the BNL (g-2) ring.
- **m**_{nt} < 15.5 **MeV** ⁽¹⁾ Exploit kinematic correlation Mh,Eh in t®n**p(p°)nt** (Aleph,Cleo,Opal). ® ~3 MeV, Babar, Belle (systematics ?!).

⁽¹⁾ **95% CL**

Double Beta Decay

SM **2nbb** observed with radiochemical inclusive methods. Direct counting experiment search the non-SM **Onbb** (DL=2) Physics beyond SM or limit on $t_{1/2}^{Onbb}$ ® limit on $<m_v>= S U_{ei}^2m_i$

		90%CL limit <m<sub>v> (eV)</m<sub>
HeidMoscow	⁷⁶ Ge	0.40
IGEX	⁷⁶ Ge	0.44
UCI	⁸² Se	5.4
ELEGANT	¹⁰⁰ Mo	2.7
Kiev-Firenze	¹¹⁶ Cd	3.3
Missouri	¹²⁸ Te	1.5
Milano	¹³⁰ Te	2.6
Cal.UN.PSI	¹³⁶ Xe	3.5
UCI	¹⁵⁰ Nd	7.1

<m_v> limited (~1 eV) by the uncertainty on the nuclear matrix element calculations

Cancellations possible

In models with neutrino mass degeneration ® constraint on the mixing angles combination **S** U_{ei}²

Source "Breaking News" now, <2005, >=2005, sometime/maybe

Sun **SNO 2001** SNO, GNO, Super-K, Borexino Atmosphere Super-K 1998 Super-K, Soudan2, Monolith, UNO **Reactors Chooz 1999 MUNU**, Kamland Accelerators **K2K 2000** K2K (JHF), MiniBoone, Minos, Opera, Icarus, NuFact **Astrophysics** Amanda 2000 Baikal, Amanda, Antares, ICECUBE, Km³

Neutrino from the SUN

 $\mathbf{n}_{\mathbf{x}} + \mathbf{d} \otimes \mathbf{n} + \mathbf{p} + \mathbf{n}_{\mathbf{x}}$ (NC)

The Problem...

SNO

Vacuum)

⁸B and ⁷Be Flux in Chlorine $\mathbf{F}_{SK}^{ES}(^{8}B) - \mathbf{F}_{SNO}^{CC}(^{8}B) \Rightarrow \mathbf{F}_{B}^{n_{H}}(^{8}B) = 0.57 \pm 0.17 \cdot 10^{6} \text{ cm}^{-2} \text{ s}^{-1}$ $\mathbf{F}_{SNC}^{CC}(^{8}B) \Rightarrow \mathbf{F}_{e}(^{8}B) = 1.75 \pm 0.15 \cdot 10^{6} \text{ cm}^{-2} \text{ s}^{-1}$ • Φ^{37} CI(8B) = 2.00±0.19 SNU (BP: 5.9 SNU) **Homestake:** Φ^{37} **CI** = **2.56**±**0.23 SNU** Φ^{37} CI(7Be+pep+CNO) = 0.56±0.30 SNU (BP: 1.8 SNU)

⁷Be (+CNO+pep) suppression (31±17%) is consistent with the ⁸B suppression (35±3%). The ⁷Be puzzle is solved.

The Bahcall's Glory

Solar: Present and Future

Oscillation

Evidence for inclusive appearance of $n_m n_t$ in the n_e produced in the sun's thermonuclear reaction \Rightarrow SNO II, SNO III

Standard Solar Model

Direct measurement of the active neutrino flux from ⁸B confirms calculations (most cited: BPB2001). Other components are expected less model dependent, but ... \Rightarrow GNO (pp), Borexino (pin down ⁷Be line)

Distorsioni spettrali No evidence. Chlorine and water reconciled ⇒SNO, Super-K(>6MeV), Borexino (1-5MeV)

Day/Night, seasonal variations No evidence. \Rightarrow GNO, SNO, Borexino

Kamland

Reactor neutrino could (if LMA) provide the final clue to the long standing solar neutrino problem

KamLAND@Kamioka

Borexino@LNGS

Atmospheric: zenith

Atmospheric: up-ward muons

<**E**_v> ~ 100 GeV

<**E**_v>~<**E**> **PC events**

Stopping/Passing through \rightarrow **normalisation**

Oscillation Parameters

t or sterile Neutrino ?

Sterile neutrino signature:

- NC disappearance
- Different matter effects

$$P = \sin 2q, L$$
$$P \rightarrow P_{matt} = \frac{1}{\sqrt{z}}$$

$$z = 2VE_v/Dm^2$$
,

Combined analysis of:

- 1) NC enriched multi-ring
- 2) PC with Evis>5GeV
- 3) Upward muons

Direct tau appearance: Multiring excess, **p**^o (K2K) Present significance ~2s

Sterile Neutrino ? No, Thanks?

Solar

<u>Purely</u> sterile oscillation excluded at 95%CL by absence of Day/Night effect in SuperK. SNO(+SuperK) evidence for n_e oscillation into active neutrino.

Atmospheric

Maximal mixing $n_{m} \rightarrow n_{t}$ favoured. <u>Pure</u> $n_{m} \rightarrow n_{s}$ excluded at 99% CL. Subdominant active component: $\sin^{2} q_{e^{3}} < 0.1$ (Chooz).

Three neutrinos : 3x3 matrix (3angles+1phase) + 2 Dm²

Relatively large mixing with a sterile neutrino are not excluded by present atmospheric and solar data. Models with 3 active + 1 sterile neutrino (3+1, 2+2) fit present data.

Sterile Neutrino ? May be

Final LSND analysis (167t mineral oil: Cherenkov+ scintill.) Appearance of $\bar{\mathbf{n}}_e p \rightarrow e^+n$ ($\rightarrow np \rightarrow dg(2.2MeV)$) in a source of 20-60 MeV $\bar{\mathbf{n}}_m$ from **m** decay at rest. Consistent \mathbf{n}_e excess seen in 20-200 MeV \mathbf{n}_m produced in \mathbf{p}^+ decay in flight. Signal 83.3±21.2 events.

Combined fit: $P(n_m \rightarrow n_e) = (0.26 \pm 0.06 \pm 0.04)\%$

Karmen II at ISIS: no signal seen. 4 events expected. Karmen-LSND combined analysis inconclusive.

Nomad $n_m \rightarrow n_e$ escluded $Dm^2 > \sim 10 \text{ eV}^2$

Miniboone at the Fermilab Booster is called to clarify this issue.

Chorus and Nomad

Search for t produced in \mathbf{n}_t charged current interactions in a \mathbf{n}_m beam. t lepton signature:

CHORUS: nuclear emulsion target \rightarrow direct detection of the t and its decay

NOMAD: drift chamber target \rightarrow observation through precise kinematic reconstruction (missing Pt, isolation,...)

Training ground for future LBL experiments

K2K: First Generation LBL

KEK 12 GeV Proto-syncrotron 6 ·10¹² protons/cycle (1.1 **ms**/2.2 s) Horn focussed WBB <E_v> ~1.3GeV Close detector at 300m: miniSK+SciFi Far detector at 250 Km: SuperK 3.9 ·10¹⁹ PoT (10²⁰ within 2004)

K2K: Data vs MC(no osc.)

	Observed	No Oscill.	D m ² 3 ·10 ⁻³ eV ²	D m ² 5 ·10 ⁻³ eV ²	D m ² 7 ·10 ⁻³ eV ²
FC 22.5 kt	44	63.9 <mark>+6.1</mark> -6.6	41.5	27.4	23.1
1-ring	26	38.4 ± 5.5	22.3	14.1	13.1
mike	24	34.9 ± 5.5	19.3	11.6	10.7
e-like	2	3.5 ± 1.4	2.9	2.5	2.4
multi-ring	18	25.5 ± 4.3	19.3	13.3	10.0

Main sistematics: Fiducial volume cuts in the close detector Close to Far extrapolation

Probability of no oscillation is < 3%

First Energy Spectrum

Neutrino Astrophysics

Gamma Ray Bursts emitted neutrino: E²dN/dE < 4·10⁻⁴ · min(1,E/E_{break}) TeV cm⁻² (Amanda) Pointlike continuous sources: Different limits for spectral indexes E⁻²-E⁻³

High energy diffused flux

E²dN/dE < 10⁻⁶ s⁻¹ sr⁻¹ GeV⁻¹ (Amanda)

Hot issues (acceleration mechanism of
UHECR, GRB origin, AGN, supernova bursts)

A Km³ detector mandatory. Worth one per emisphere: Antarctic, Mediterranean sea?

Quest for larger effective mass to study ultra-PeV neutrinos . AUGER: 10 Gt and EUSO: 10 Tt effective mass. Acustic and radio detection under study.

A Daydream Roadmap

Kamland shows next year that solar is LMA and in a few years measures Dm^{2}_{12} at 2% and $sin^{2}2q_{12}$ at 4%.

MiniBoone confirms in a few years the ansatz that a 3x3 matrix is enough.

Before the end of this decade, next generation atmospheric and LBL experiments see oscillation patterns (modulation cycle, tau appearance, NC appearance) and measure oscillation parameters at Dm²₂₃ at 10% and sin²2q₂₃ at 4%.

A large mass atmospheric detector with charge capability measures the sign of Dm^{2}_{23} comparing the resonant matter effects of neutrino and anti-neutrinos.

In the year 201? JHF to SuperK and/or a SuperBeam from a high power proton driver, measure the small q₁₃.

In the year 201? a NuFactory is build to feed detectors at different baselines. The era of leptonic CP violation begin. The phase **d** is determined and **q**₁₃ is precisely determined. (Almost) all transition are measure, including $\mathbf{n}_{e} \otimes \mathbf{n}_{t}$.

Conclusive Notes

It seems the solar neutrino problem has a SNOking gun The Standard Solar Model acquitted of charge KamLMAnd chance to pin down oscillation parameters **Borexino LMA vs LOW vs VAC (7Be, day/night, seasonal)** $q_{13}? q_{13}? q_{13}? q_{13}? q_{13}? q_{13}? q_{13}? Beyond Chooz? <math>\mathcal{C}P$ effects only if $q_{13} > -0.1^{\circ}$ Sterile neutrinos ? LSND \rightarrow MiniBoone **Atmospheric: exotic interpretation ? Oscillation pattern ! D**M² are small : direct measurements \rightarrow **n** mass scale $\rightarrow \Omega_{v}$ K2K deficit 30% : $2s \rightarrow 3s$ (systematics?). Energy spectrum Astronomy: Km³ needed. New detection methods for UHEn **NuFact:** fundamental questions about neutrino masses, stopping muons physics, tagged charm factory, step toward a muon collider.