CP Violation in the B⁰ Meson System with BaBar

James Weatherall for the BaBar Collaboration

The Legacy of LEP and SLC Siena, October 9th 2001

The BaBar Collaboration 9 Countries

72 Institutions 554 Physicists

Canada [4/16]

U of British Columbia McGill U U de Montréal U of Victoria

China [1/6]

Inst. of High Energy Physics, Beijing

France [5/50]

LAPP, Annecy LAL Orsay LPNHE des Universités Paris 6/7 Ecole Polytechnique CEA, DAPNIA, CE-Saclay

Germany [3/21]

U Rostock Ruhr U Bochum Technische U Dresden

Italy [12/89]

INFN, Ferrara Lab. Nazionali di Frascati dell'INFN INFN, Genova

INFN, Milano INFN, Napoli INFN, Padova

INFN. Bari

INFN, Pavia INF. Pisa

INFNN, Roma and U "La Sapienza"

INFN, Torino INFN, Trieste

Norway [1/3]

U of Bergen

Russia [1/13]

Budker Institute, Novosibirsk

United Kingdom [10/80]

U of Birmingham U of Bristol Brunel University U of Edinburgh U of Liverpool Imperial College

Queen Mary & Westfield College Royal Holloway, University of London

U of Manchester

Rutherford Appleton Laboratory

USA [35/276]

California Institute of Technology

UC, Irvine
UC, Los Angeles
UC, San Diego
UC, Santa Barbara

UC, Santa Cruz U of Cincinnati

U of Colorado Colorado State

Florida A&M

U of Iowa Iowa State U

LBNL LLNL

U of Louisville U of Maryland

U of Massachusetts, Amherst

MIT

U of Mississippi Mount Holyoke College Northern Kentucky U U of Notre Dame ORNL/Y-12 U of Oregon U of Pennsylvania Prairie View A&M

Princeton SLAC

U of South Carolina

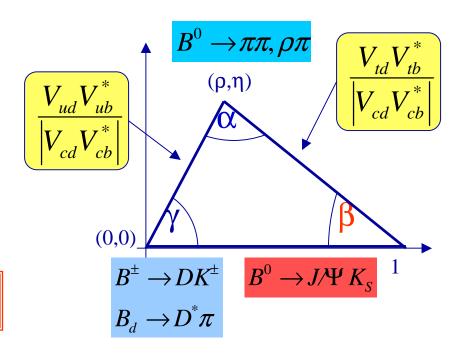
Stanford U U of Tennessee U of Texas at Dallas

Vanderbilt U of Wisconsin

Yale

Talk Overview

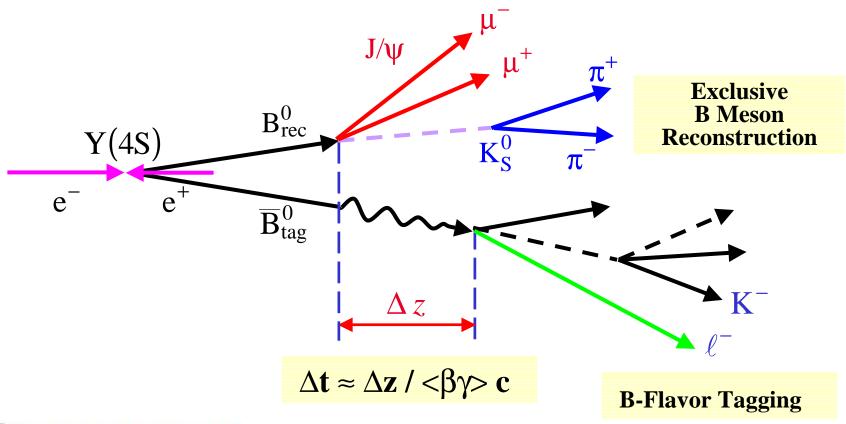
- CP violation with BABAR
 - Machine, detector, physics principles
- Measurement of sin2β (includes mixing)
- Results on asymmetries in $B^0 \rightarrow \pi^+\pi^-$ decays
 - Towards sin2α
- Summary

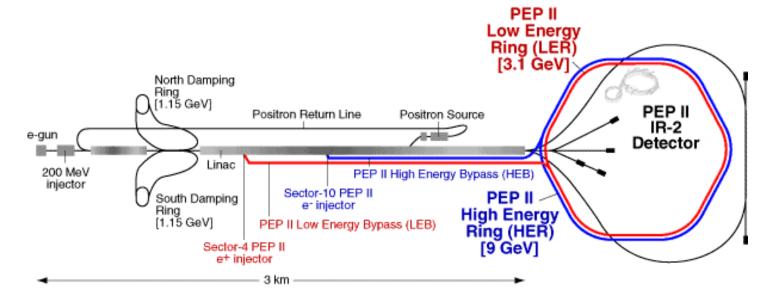

CP Violation in the Standard Model

The Unitarity Triangle

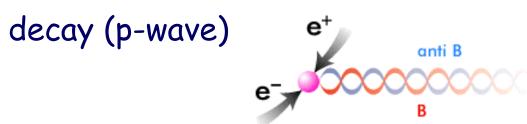
 β measured through time dependent decay rate asymmetries in $b \rightarrow ccs decays such as <math>B^0 \rightarrow J/\psi Ks$

$$a_f(t) = (\pm 1) \sin(2\beta) \sin(\Delta mt)$$

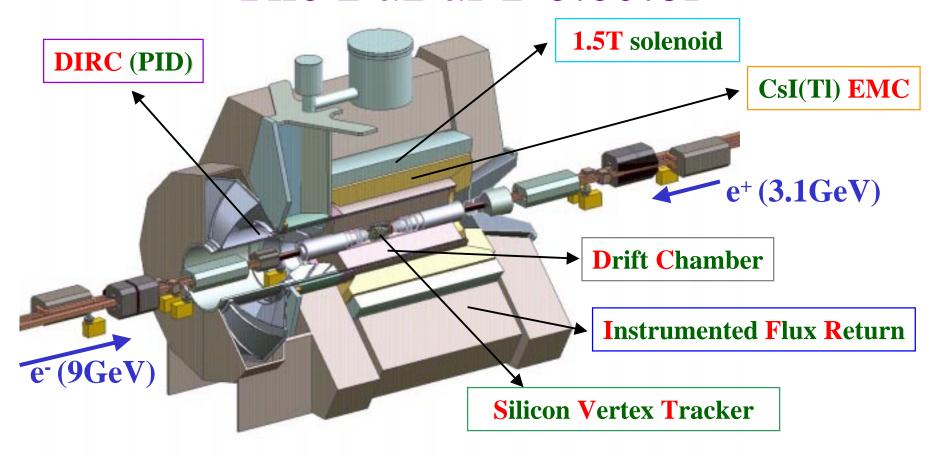

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$


CP Asymmetry in $B^0 \rightarrow J/\psi Ks$

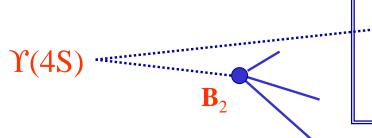
Interference between decays (to CP eigenstate) with and without mixing produces asymmetry in Δt

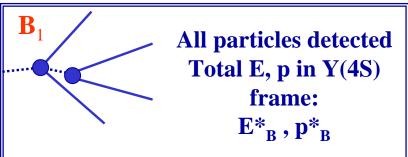

PEP-II

9GeV e- on 3.1GeV e+:


$$e^+e^- \rightarrow Y(4S) \rightarrow B^0B^0$$

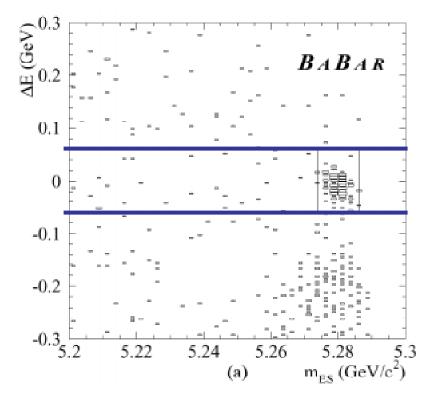
· coherent neutral B pair production and


• boost of Y(45) in lab frame : $\beta\gamma$ =0.56


The BaBar Detector

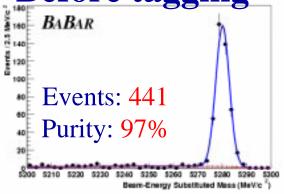
- SVT: 97% efficiency, 15µm z resol. (inner layers, perpendicular tracks)
- Tracking : $\sigma(p_T)/p_T = 0.13\% P_T + 0.45\%$
- DIRC : K- π separation >3.4 σ for P<3.5GeV/c
- EMC: $\sigma_E/E = 2.3\% E^{-1/4} \oplus 1.9\%$

Exclusive B Reconstruction

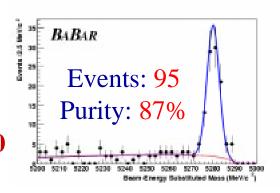


$$\Delta \mathbf{E} = \mathbf{E}^*_{\mathbf{B}} - \sqrt{\mathbf{s}/2}$$

$$m_{ES} = \sqrt{(s/4 - p_B^*^2)}$$


 $\Delta E : \sigma \sim 15 \text{ MeV}$

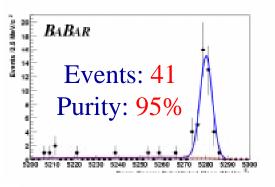
 m_{ES} : $\sigma \sim 3 MeV$


Before tagging

B⁰->**CP** Sample

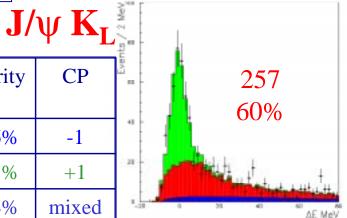
 $J/\psi K_S$

$${
m K_S}$$
-> $\pi^+ \, \pi^ {
m K_S}$ -> $\pi^0 \, \pi^0$



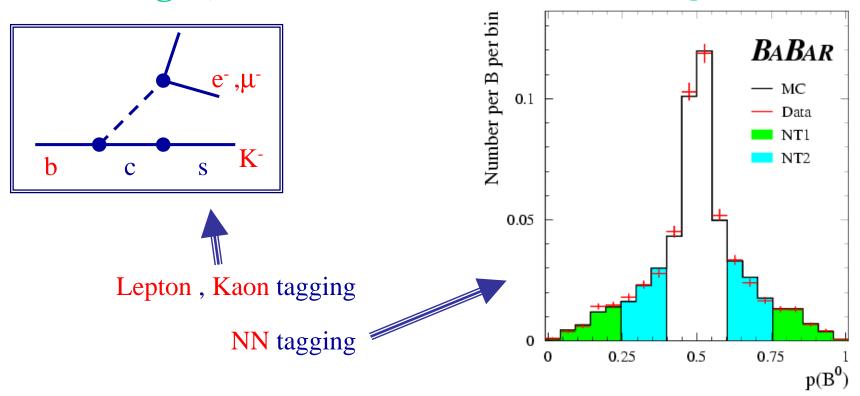
ψ(25) K_S

 $\chi_{c1} K_{S}$


1999-2001 data: 32×10⁶ BB pairs 29fb⁻¹ on peak

After tagging

J/ψ **K***


Sample	tagged events	Purity	СР
[charmonium] K _S	480	96%	-1
Jpsi K_L	273	51%	+1
Jpsi K* 0 (K _S π^0)	50	74%	mixed
Full CP sample	803	80%	

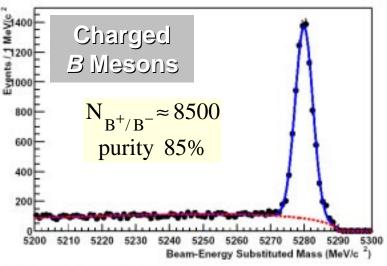
B-Flavour Tagging

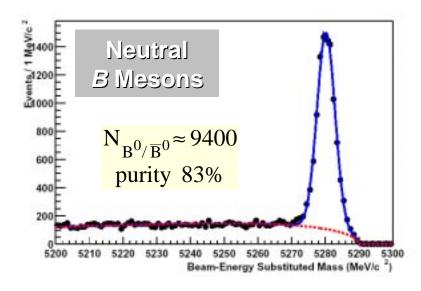
Ranked Categories:

- Lepton charge of fastest electron or muon
- Kaon Net charge of identified kaons $\neq 0$
- NT1/NT2 Neural Net (slow pions, "Jet Charge"). Different cuts on NN output

Flavour Tagging Performance

Sample of B decays to self-tagging modes, B_{FLAV} , used for measurement of tagging performance: $Q_i = \varepsilon_i D_i^2$, $D_i = 1-2w_i$ $D_i = Dilution$, $w_i = wrong$ tag fraction $\varepsilon_i = fraction$ of events that were tagged

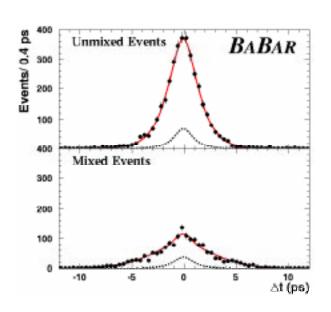

Tagging category	ε (%)	w(%)	Q (%)
Lepton	10.9 ± 0.3	8.9 ± 1.3	7.4 ± 0.5
Kaon	35.8 ± 0.5	17.6 ± 1.0	15.0 ± 0.9
NT1	7.8 ± 0.3	22.0 ± 2.1	2.5 ± 0.4
NT2	13.8 ± 0.3	35.1 ± 1.9	1.2 ± 0.3
ALL	68.4 ± 0.7		26.1 ± 1.2

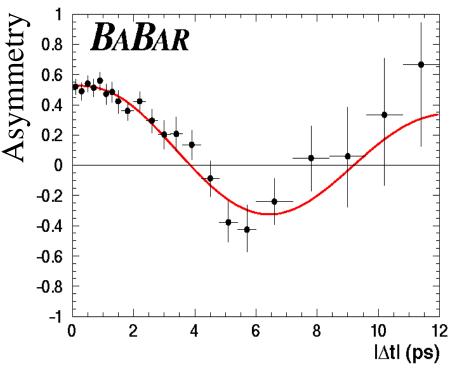


B_{FLAV} Sample of Fully-reco'd B Decays

States with definite flavour for measurement of lifetimes, mixing and Δz resolution and tagging performance for $\sin 2\beta$ measurement

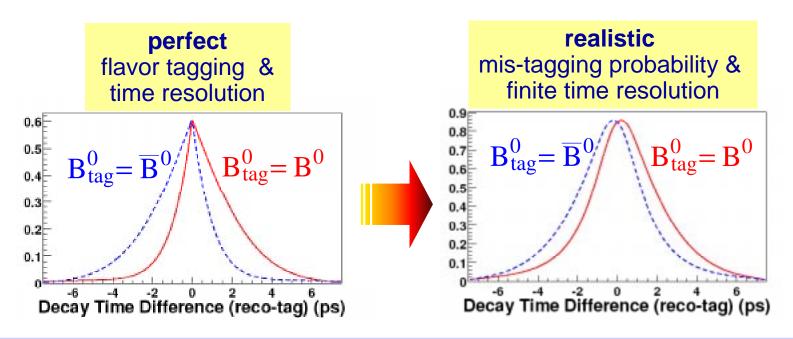
Cabibbo favoured "open charm" decay: e.g.B $^0 \rightarrow D^{(*)} \pi^+/\rho^+/a_1^+$ Charmonium decays: e.g. B $^+ \rightarrow J/\psi$ K $^+$





Mixing Measurement with B_{FLAV} Sample

20.7 fb⁻¹ on-resonance

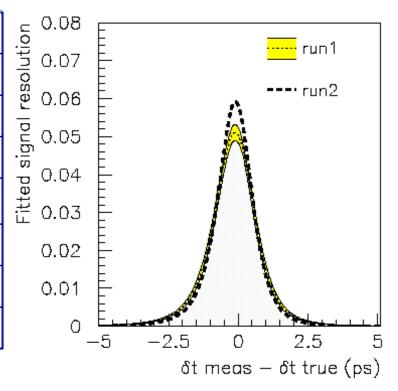


 $A_{\text{mixing}}(\Delta t) \approx (1-2w) \cos (\Delta m_d \Delta t)$

 $\Delta m_d = 0.519 \pm 0.020 (stat) \pm 0.016 (syst) \hbar ps^{-1}$

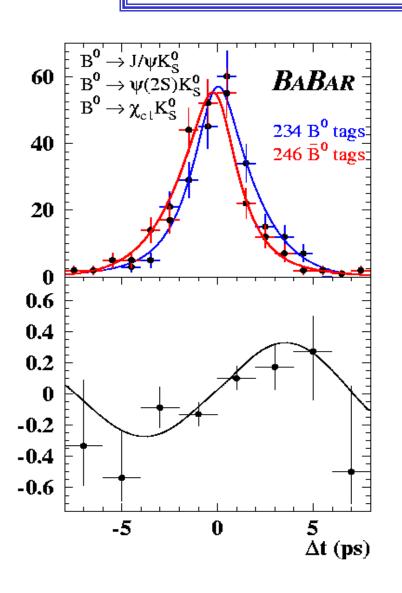
CP Violation Time Distributions

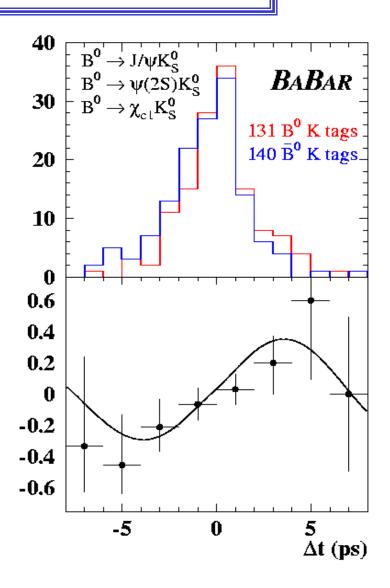
$$\begin{split} f_{CP,\pm}(\Delta t) = & \left\{ \frac{e^{-|\Delta t|/\tau_{B_d}}}{2\tau_{B_d}} \times \left(1 \mp \eta_f. (1 - 2\omega).\sin 2\beta.\sin(\Delta m_{B_d} \Delta t) \right) \right\} \otimes R \\ & \text{"} f_{CP,+} \text{"} \Leftrightarrow B_{tag}^0 = B^0 \\ & \text{"} f_{CP,-} \text{"} \Leftrightarrow B_{tag}^0 = \overline{B}^0 \end{split}$$


Mixing & CP
Time evolution

same mis-tagging probability ω and time-resolution function $R(\Delta t)$

Likelihood Fit for sin2β


- Fit data with global, unbinned maximum likelihood including:
 - Mistag fractions, Δt resolutions (B_{FLAV} sample)
 - $-\sin 2\beta$ (tagged sample of CP eigenstate events)
- Total of 44 parameters embody mistag rates, resolution function and backgrounds

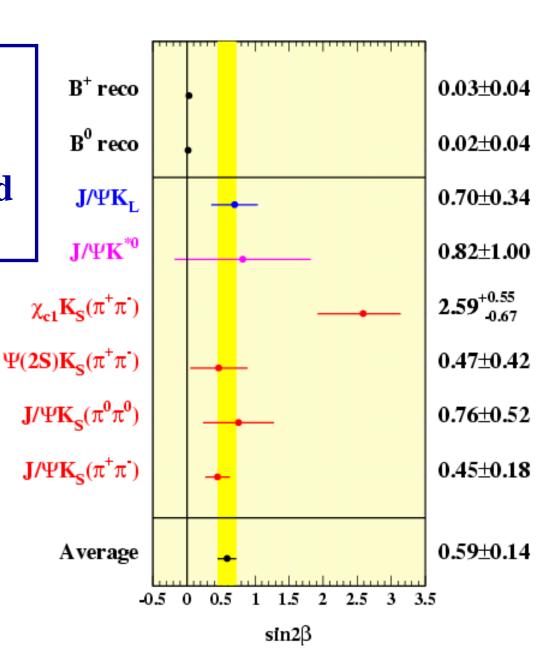

effect	Free params
$sin(2\beta)$	1
Mistags (avg, delta B ⁰ - antiB ⁰)	8
Signal Δt resolution (run1, run2)	16
Background time dependence	9
Background ∆t resolution	3
Background mistags	8
TOTAL	45

The sin2\beta Result

$$sin(2\beta) = 0.59 \pm 0.14_{stat} \pm 0.05_{syst}$$

Mode by Mode Breakdown

P(0.59) if **CP**

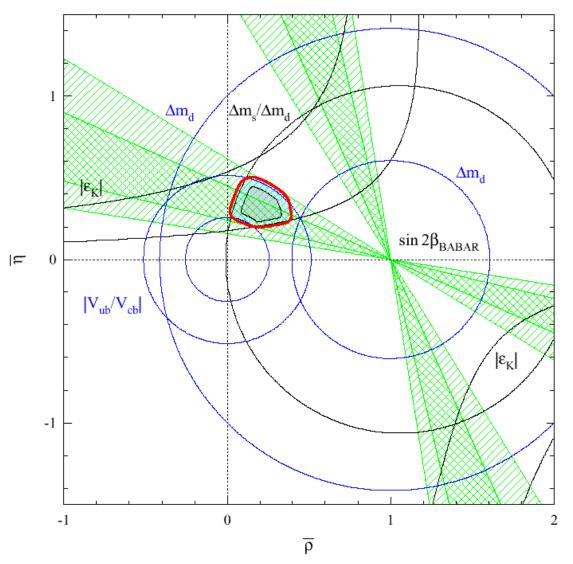

conserved: $< 3 \times 10^{-5}$

P(0.59) if CP conserved

 $(\eta_{CP} = -1)$: < 2×10-4

 $\frac{\text{Prob}(\text{L} < \text{L}_{\text{MEAS}})}{27\%} =$

Result submitted to PRL, July 5 (hep-ex/0107019)

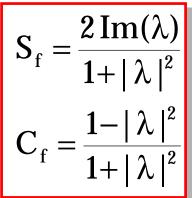

Systematic Errors

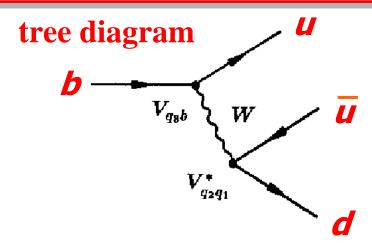
- Resolution function for $\Delta t = 0.03$
 - Residual uncertainties in SVT alignment
- Mistag fraction differences B_{CP} versus B_{FLAV} samples = 0.03
- Background in selected CP events = 0.02
 - Level, composition and CP asymmetry

	K _S	K_{L}	K*0	Full
Total Sys	0.049	0.104	0.162	0.049
Total Stat	0.151	0.340	1.01	0.137

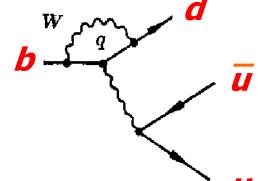
The Global CKM Picture

Consistent with the SM but more data needed to be sure


Following Höcker et al, hep-ex/0104062 (many other recent global CKM matrix analyses)



$\sin 2\alpha$ from B⁰ $\rightarrow \pi^+\pi^-$ Decays


Decay distributions $f_+(f_-)$ when tag = $B^0(B^0)$

$$f_{\pm}(\Delta t) = \frac{e^{(-\Delta t/\tau)}}{4\tau} [1 \pm S_f \sin(\Delta m_d \Delta t) \mp C_f \cos(\Delta m_d \Delta t)]$$

penguin diagram

For single weak phase

$$\begin{split} \lambda \equiv & \frac{q}{p} \frac{\overline{A}_{\bar{f}}}{A_f} = \eta_f e^{-2i(\beta + \gamma)} = \eta_f e^{2i\alpha} \\ & C_{\pi\pi} = 0, S_{\pi\pi} = sin2\alpha \end{split}$$

For additional weak phase

 $|\lambda| \neq 1 \Rightarrow \text{must fit for direct } CP$ $\text{Im } (\lambda) \neq \sin 2\alpha \Rightarrow \text{need to relate}$ $\text{asymmetry to } \alpha$ $C_{\pi\pi} \neq 0, S_{\pi\pi} = \sin 2\alpha_{\text{eff}}$

Results from $B^0 \rightarrow \pi^+\pi^-$ (with 30fb⁻¹)

- Simultaneous ML fit to BRs and CP coeffs:
 - 8 event types (sig+bg: $\pi^+\pi^-$, K⁺ π^- , K⁻ π^+ , K⁺K⁻)
 - Discriminating variables (m_{ES} , ΔE , F, θ_c^{-1} , θ_c^{-1} , Δt)
 - Mistags and resolution function from sin2β analysis
 - Resolution function for background from sidebands

Preliminary Results

(65 $\pi\pi$ and 217 $K\pi$ events)

$$S(\pi^+\pi^-) = 0.03^{+0.53}_{-0.56}(stat) \pm 0.11(syst)$$

$$C(\pi^+\pi^-) = -0.25^{+0.45}_{-0.47}(stat) \pm 0.14(syst)$$

$$A_{CP}(K^{\pm}\pi^{\mp}) = -0.07 \pm 0.08(stat) \pm 0.02(syst)$$

Summary

- We have observed CP violation in the B^0 system at the 4σ level
 - $-\sin(2\beta)=0.59\pm0.14\pm0.05$
- First measurement with $B^0 \rightarrow \pi^+\pi^-$ also presented measurement possible but more data needed
- This is only the start of a long road...
 - More data for greater precision and comparison of channels
 - Start to really test the Standard Model
- Anticipate data set of 100 fb⁻¹ by next summer
 - $-\sin 2\beta$ known to better than 0.1
 - B⁰ → π⁺π⁻ asymmetry measured to ≈ 0.3

Backup slides...

The current sin2\beta analysis

 $29 \text{fb}^{-1} \text{ on resonance} => 32 \times 10^6 \text{ BB pairs } (1999-2001)$

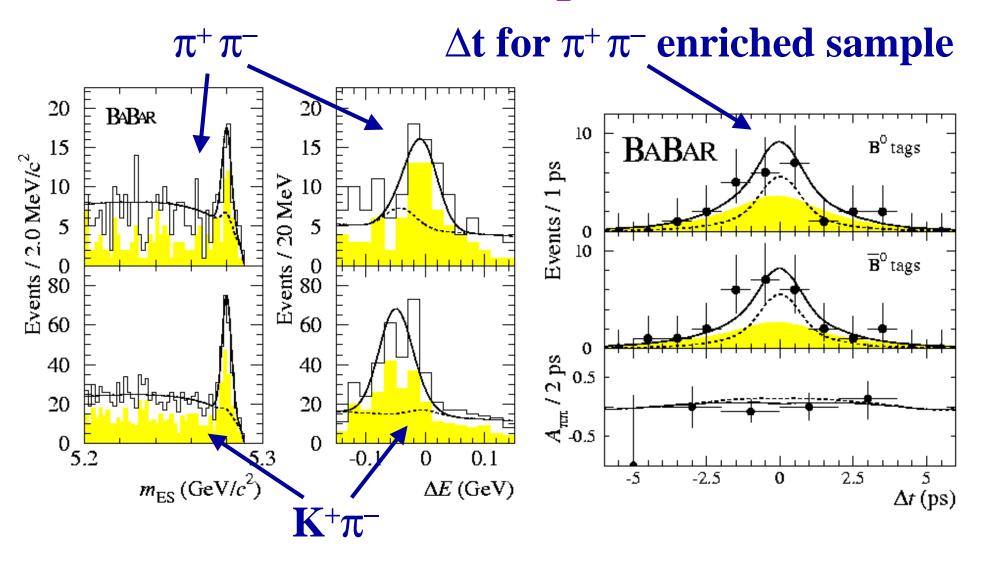
Improvements since last winter

- Enhanced tracking, Ks reconstruction
 - 30% more CP events per unit luminosity
- Improved vertex reconstruction and knowledge of tracking system alignment
 - Sensitivity increased by 10%
- $J/\psi K_L$ selection optimized for added sensitivity to $\sin 2\beta$
- Added new modes $(J/\psi K^*(Ks\pi^0), \chi_{c1} Ks)$

The Δt Resolution Function

Resolution dominated by B_{tag} vertex reconstruction

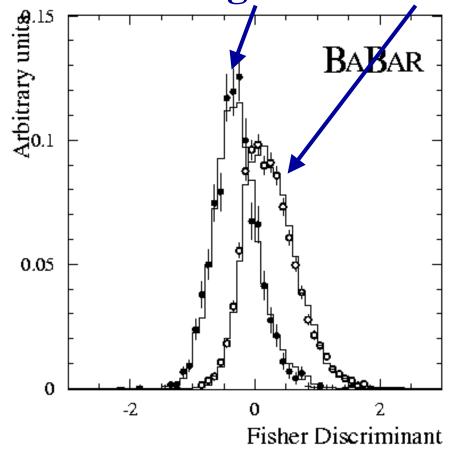
Biases scale with per-event error


$$\mathcal{R}(\delta_{t}; \hat{a}) = \sum_{k=1}^{2} \frac{f_{\text{core,tail}}}{\sigma_{\text{core,tail}} \sqrt{2\pi}} \exp\left(-\frac{(\delta_{t} - \delta_{\text{core,tail}})^{2}}{2\sigma_{\text{core,tail}}}\right) + \frac{f_{\text{outlier}}}{\sigma_{\text{outlier}} \sqrt{2\pi}} \exp\left(-\frac{\delta_{t}^{2}}{2\sigma_{\text{outlier}}^{2}}\right).$$

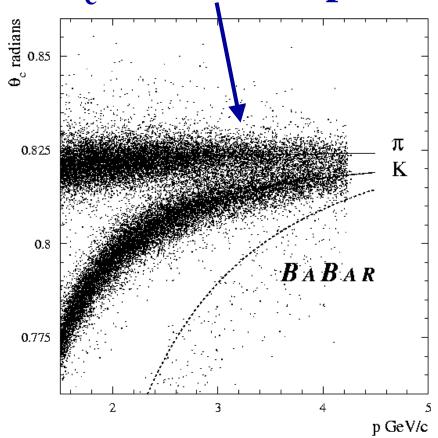
Fixed to 8ps with no offset, accounts for <1% of events

Scaled by per-event error

$B → \pi \pi / K \pi$ Data Sample and Results



Discriminating Variables for $\pi\pi/K\pi$ Fits


$$\mathcal{F} = \sum_{i=1}^{9} \alpha_i x_i$$

Where the α_i are tuned for signal/BG separation

Fisher for signal and BG

Θ_c for π/K samples

