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The atmospheric and solar neutrino oscillation data suggest hierarchical neutrino masses with at least one large
mixing. The simplest see-saw models for reconciling the two features are U(1) extensions of the SM with flavour

dependent gauge charges. | discuss a minimal model of this type containing two heavy right-handed neutrinos,

which have normal Dirac couplings to v, and v, but suppressed ones to v.. It can naturally account for the large
(small) mixing solutions to the atmospheric (solar) neutrino oscillation data.

The recent Superkamiokande data has provided
convincing evidence for atmospheric neutrino os-
cillation and confirmed earlier results of solar
neutrino oscillation [1]. The atmospheric neu-
trino data seems to imply a large mixing be-
tween v, and v, sin? 20,, > 0.86, along with
AM? = (1.5 —6) x 1073 eV? at 90% CL. They

correspond to

Our =45+ 11° (1)
and
AM ~0.06 eV, (2)

the latter representing the central value of AM
for hierarchical masses and an upper limit on this
quantity for degenerate ones. By far the simplest
explanation of the solar neutrino oscillation data
is provided by the small mixing angle MSW solu-
tion although one can get equally good descrip-
tions in terms of the large mixing angle MSW or
vacuum oscillation solutions. The SMA solution
corresponds to a small mixing of v, with one of
the above states, sin? 26, = 1073 — 1072, along
with a small Am? = (0.5 — 1) x 107° eV2. They

correspond to

sinf, = (1 —5) x 1072 (3)
and
Am ~ 0.003 eV. (4)

By itself the atmospheric neutrino oscillation
result of Egs. (1,2) could be naturally explained

in terms of a nearly degenerate pair of v, and
v;. Indeed a pseudo-Dirac mass matrix for this
pair would lead to degenerate masses and maxi-
mal mixing on diagonalisation, i.e.

(z\04 ]‘04)—>(]‘04 _?\4) 0=d5.  (5)

But explaining the solar neutrino oscillation re-
sult of Egs. (3,4) would then imply an even finer
level of degeneracy between v, and one of this
pair, which is totally ad-hoc. Therefore it is gen-
erally considered more natural to interpret them
as hierarchical states, i.e.,

my ~AM ~ 0.06¢eV,
me >~ Am ~ 0.003 eV,
ms << ms =~ 0, (6)

where the first two states are large admixtures
of v, and v; and the third one is dominantly ve.
Indeed much of the recent literature on neutrino
physics is focussed on theoretical models, mainly
in the see-saw frame work, which can naturally
reconcile such hierarchical masses with large mix-
ing [2]. Note that the mass of the 3rd state can be
exactly zero as far as the atmospheric and solar
neutrino oscillation data are concerned. Thus a
minimal see-saw model for explaining these oscil-
lations requires two right-handed neutrinos with
normal Dirac couplings to v, and v;, but sup-
pressed ones to v..



It may be noted here that the standard see-
saw model [3] represents a U(1) extension of the
standard model (SM) gauge group into

SU@B)e x SU(2) x U(1)y x U(1)y (7)
with the gauge charge [4]
Y'=B—L=B—(Le+tLu+L,). 8)

Then the requirement of anomaly cancellation
implies the existence of three right-handed sin-
glet neutrinos (N;) with Y/ = —1 to match the
three left-handed neutrinos (v. , ) carrying this
gauge charge. Cancellation of the axial parts of
the Y’ current between the left and right handed
fermions ensures purely vector coupling for Y,
which in turn ensures that the model is anomaly
free [5]. The flavour independence of Y/ implies
however that the singlet neutrinos have normal
Dirac couplings to all the left-handed doublets
Ve 4,7 along with the SM Higgs doublet ¢ instead
of preferential couplings to v, ; as suggested by
data. In order to accomplish the latter one has
to invoke a horizontal symmetry with flavour de-
pendent charges [2]. In other words one first
takes a flavour blind step beyond the SM and
then applies correctives via additional symmetry
groups with flavour dependent charges. Let us
consider instead a one-step process, where the
desired flavour depence is incorporated into the
gauge charge Y’ of the U(1) extension of SM (Eq.
7). While such flavour dependent U(1) exten-
sions of the SM gauge group are hard to embed in
the familiar GUTs they can arise naturally from
string theories [6].

We have studied two such U(1) extensions of
the SM [7,8], corresponding to the gauge charges

Y'=B-3L. (9)
and

, 3
Y :B_i(Lu‘i'LT)a (10)

in the context of the atmospheric and solar neu-
trino oscillations. I shall concentrate on the sim-
pler of the two models [8], corresponding to the
gauge charge (10). Indeed it seems to represent a
minimal see-saw model for explaining these neu-
trino oscillation data. In this case the anomaly

cancellation requirement implies the existence of
two right-handed singlet neutrinos (Ni,) with
Y = —% to match the two left-handed neutri-
nos (v, ) carrying this gauge charge.

The minimal Higgs sector of this model consists

of

(““) & s, (1)
¢0 Y'=0

1.e. the SM Higgs doublet along with a singlet
carrying non-zero Y’ charge. The Y’ symmetry
is spontaneously broken via the vacuum expec-
tation value of x, < y >, at a high mass scale.
The coupling of this y to NE Ny and N& N, gives
them large Majorana masses ~< y >. More-
over the coupling of ¢ to ¥, N; » and - Ny o gives
them Dirac masses ~< ¢ >, while there is no
such coupling to v,. Thus the see-saw mecha-
nism would generate two non-zero mass states,
which are large admixtures of v, and v, while v,
remains massless.

One can generate a small mixing of v, with
the non-zero mass states, as required by the SMA
solution (3) to the solar neutrino oscillation, by
expanding the Higgs sector. For this purpose we
add another doublet and a singlet with

+
() & G (12
Yi=—3/2

The coupling of the doublet 5 to v.N; 2 gener-
ates Dirac mass terms ~< n >. The singlet ¢°
does not couple to fermions; but it is required
to avoid an unwanted Goldstone boson. The lat-
ter comes about because there are 3 global U(1)
symmetries, corresponding to rotating the phases
of ¢, n and x° independently in the Higgs po-
tential, while only 2 local U(1) symmetries are
spontaneously broken. The addition of the sin-
glet ¢V introduces two more terms in the Higgs
potential, ntT¢¢? and x°¢%¢Y, so that the phases
can no longer be rotated independently. While
the ¢ is expected to acquire a large vev at the
U(1)y: symmetry breaking scale, the doublet 5
must have a positive mass squared term in order
to avoid SU(2) breaking at this scale. Nonethe-
less it can acquire a small but non-zero vev at the
SU(2) symmetry breaking scale, which can be es-



timated from the relevant part of the potential

manTn+A(n'n) (Fx) + X (0" ) (CT¢) — unte¢.(13)

Although we start with a positive m% term, after
minimization of the potential with respect to 75
we see that this field has acquired a small vev,

<n>=p<¢>< (> [2M], (14)

where an = m% +A< x> 4N < ¢ >? rep-
resents the physical mass of 1. The size of the
soft term is bounded by the Y’ symmetry break-
ing scale, 1.e. u << ¢ >. Thus with a choice of
My ~5 < (>, we get

<n>/<¢>~1/50, (15)

which will account for the small mixing angle of
ve (3).

Let us write down the b x 5 neutrino mass-
matrix in this model. We shall be working in the
basis where the charged lepton mass matrix, aris-
ing from their couplings to the SM Higgs boson
@, 1s diagonal. This defines the flavour basis of
the doublet neutrinos. Since the two singlet neu-
trinos do not couple to the charged leptons, their
Majorana mass matrix can be independently di-
agonalised in this basis. While the overall size of
their masses will be at the Y’ symmetry breaking
scale, it is reasonable to assume a modest hierar-
chy between them,

My /My ~ 1/20, (16)

in analogy with those observed in the quark and
the charged lepton sectors. This will account for
the desired mass ratio for the doublet neutrinos
(6). Thus we have the following 5 x 5 mass matrix
M in the basis (ve, vy, vy, NO, NE):

o o o
o o o

fl<n> f2<n>
<> <o
o 0 0 o> sZ<e> | (17)
fE<n> fi<e> f1<é> My 0
F2<n> fi<e> fE<o> 0 My
where the 61’57 are the Higgs Yukawa couplings.
:
We shall assume these couplings to be of similar

order of magnitude, 1.e. the elements of a mass-
matrix arising from the same Higgs vev are ex-
pected to be of similar size. There is of course
no conflict between such democratic mass-matrix

elements and the hierarchical mass eigen-values
assumed above (16). In fact they are closely re-
lated - the former implies large cancellation in the
determinant as required by the latter.

The resulting 3 x 3 mass-matrix for the doublet
neutrinos is given by the see-saw formula in this
basis,

Dy; Dy n Do Do
My My

where D is the 2 x 3 Dirac mass matrix at the bot-
tom left of (17). One can then calculate the cor-
responding mass eigen-values my 2 3 and mixing-
angles by diagonalising this matrix [8]. Alterna-
tively we can read off the approximate magni-
tudes of these quantities directly from the mass
matrix (17), i.e.

tanf,, =~ M42/M432fﬁ/f71~1a

(18)

mi; =

. 1
sinf. =~ Mg/ Mya=<n>/<d>~ 50
They are clearly in good agreement with the cor-
responding experimental quantities of Egs. (1),
(3) and (6). Note that in this model the v, mix-
ing with the higher mass (my) eigen-state is also
expected to be of similar size as above, 1.e.,

My /My =< > [ < ¢ >~ 1/50. (20)

This prediction is well within the present ex-
perimental limit on this quantity (< 0.2) from
CHOOZ data [9]; but can be tested by future
long base line experiments.

Finally, the scale of the Y’ symmetry breaking
can be estimated from the larger Majorana mass
Mz, 1.e.

My~ 2 < ¢ >2 Jmy ~ f2101GeV
~ 10127 15GeV. (21)

The lower limit corresponds to f ~ 1072 as in
the case of 7 Yukawa coupling, while the upper
limit corresponds to f ~ 1 as in the case of top.
Thus the observed scale of neutrino masses (6)
can be explained if one assumes the Y/ symmetry
breaking scale to be in the range of 1012 — 1015
GeV.



One can get a more exact derivation of the
masses and mixing angles via the 3 x 3 mass-
matrix of the doublet neutrinos (18), i.e.

C% + C% c1a1 + caaz  c1by 4 cabso
crai + coan a? + a3 arby +asby |, (22)
c1by + cabs  aiby 4 asbs b7 + b2

where

o fir<o>
12 = —F—
f1P<o>
VMo
U f&or <n>
’ /M s

Note that the assumed hierarchies of (15) and
(16) imply

b =

(23)

ay, by > az,ba,c1 > co. (24)

The determinant of (22) vanishes identically, en-
suring that one of the mass eigenvalues is zero.
The other two are

(a1b2 — azb)z

2
a? + b? (25)

my >~ a4+ b3, my

The corresponding mixing matrix U between the
flavour and the mass eigenstates is

Ve
v, | =
Vs
1 _62\/‘1?"'6? cy
arba—bras \/af+bf Vs
bico—cibo by a1
147} . (26
mbe=biaz\fape?\fafte? (26)
€1G2—a1Co — a3 by 141

arbo=braz .\ fa24p? .\ faZ4b3

One can easily check that the Eqgs. (23-26) lead
to the masses and mixing angles of Egs. (19-21).
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