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ux variation, relativistic monopole 
ux limits, a search for gravitational collapseneutrinos, and a depth scan of the optical ice properties. The next stage 19-string detector AMANDA-II with�650 PMTs will be completed in spring 2000.
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Figure 1. The AMANDA detector layout: Amanda-B10 at 1.5-2.0 km depth, three new strings (1.3-2.4 km) and Amanda-A (0.8-1.0 km).1. IntroductionThe �rst stage Neutrino Detector AMANDA-Bwas deployed in 1996-1997, at a depth of 1500-2000 m into the antarctic ice shield at the SouthPole [1]. It consists of 302 OpticalModules (OMs)on 10 strings, see Fig. 1. Each OM houses a 8"-Hamamatsu PMT, operated at 109 gain over anindividual 2 km electrical cable to the surface.During the 1997/98 campaign, 3 new stringswith 123 OMs in total were deployed. They aretesting �ber-optic analog signal transmission andallow for ice studies from 1300-2400 m. The �rstfull detector calibration (timing and geometry)has been completed, and a new Data AcquisitionSystem was installed.The AMANDA-A detector [1,2], deployed in1994 at 800-1000 m in bubbly ice (see Fig. 1), and

the airshower detectors SPASE and GASP at theice surface, provide unique external calibrationsources by tagging high energy muons.The main physics goal of Deep Underwater/-Underice Detectors is High Energy Neutrino As-trophysics - the search for sources of highest en-ergy cosmic rays; they also cover a wide range oftopics from particle physics to glaciology.These novel technique detectors, sparsely in-strumented as compared to Underground WaterCerenkov Detectors like SuperK or IMB (� 103less density of PMTs per e�ective detector area),put their initial experimental focus on (1) veri�-cation of high quality muon track reconstructionand (2) physics detector calibration by detectionof atmospheric neutrinos (�� and ��) to estab-lish an atmospheric muon background rejectioncapability of �105 [1].
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-1Figure 2. (left) Absorption coe�cient a = 1=�abs and scattering coe�cient be as function of wave lengthat 1690m and 1740m depth.Figure 3. (right) Scattering coe�cient be = 1=�eff at 532nm as function of vertical depth. The locationof the strings is indicated.2. Optical Ice Properties and CalibrationOptical ice properties in AMANDA are mea-sured with a variety of in-situ pulsed and constantlight sources, and cross checked with atmosphericmuons. The global ice properties, averagedover wavelength and depth between 1500m and2000m, are given by e�ective scattering and ab-sorption lengths of �eff �24 m and �abs �100 m[1]. Depth scans reveal a depth dependence ofboth �eff and �abs, as shown in �gs. 2 and 3.Between one of the dust bands (at 1740m) andone region of clear ice (at 1690m) �abs varies be-tween �90m and �200m, while �eff changes be-tween �15m and �35m over the instrumentedAMANDA-B10 ice region for 532nm [3].Timing calibration of the array is done withlaser pulses sent down over 2 km �bers to eachPMT, yielding a precision of �5 nsec.The geometry of the array is determined usingdrill logging and interstring laser pulsing, result-ing in a typical distance precision of �1 m for theOptical Modules.

3. First ResultsWith the detector calibrations under control,physics calibration is focused on the detection ofatmospheric muons and neutrinos.Spatial reconstruction of muon tracks is doneby �tting the recorded hit times to a singlemuon track model, including light scattering [1].Tight track quality criteria, which are appliedafter reconstruction, include a minimum num-ber of unscattered photon hits (typically �5)and geometry related cuts, to achieve a � 105background rejection rate against downgoing at-mospheric muons misreconstructed as upgoingtracks.Detailed tests were made with the 1996AMANDA-B 4-string data. The reconstructed
ux of downgoing atmospheric muons compareswell with the standard depth-intensity curve [1].Muon track reconstruction and absolute point-ing accuracy was con�rmed by muons tagged bythe SPASE and GASP detectors [1,4]. An angu-lar resolution of � 3� has been concluded, which



4depends on the imposed quality criteria.With the AMANDA-B10 detector, an initialneutrino search yielded 17 ��-candidates for 50%of the 1997 data sample [5]. A MC-simulationof atmospheric ��'s predicted 21 upgoing events.The distribution of zenith angle for data and MCis given in �g. 4. It was concluded at this stage,that the detected ��-candidate events are com-patible with the expected atmospheric ��-
ux.Improved reconstruction and �ltering algo-rithms now yield more than 3 times as many neu-trinos. It is now veri�ed with su�cient MC statis-tics of background events that the applied qualitycuts do not systematically fake signals from down-going atmospheric muons. Discrepancies betweenMC and data are under study and possibly due tothe assumption of homogeneous optical ice prop-erties in the MC.Estimations of the e�ect of ��-vacuum oscil-lations suggest that the atmospheric event ratewould be reduced by �� ! �X disappearanceby less than 25% for allowed mixing parameters.However, given our current understanding of thedetector systematics, we are not sensitive to thise�ect.A search for signals from WIMP annihilationin the center of the earth makes use of the at-mospheric ��-events. Upper limits on the muon
ux from WIMPs are obtained for MWIMP =102 � 5 � 103GeV [6].With less stringent reconstruction cuts a searchfor �� from astrophysical point sources yields pre-liminary results with sensitivities comparable tolarge underground detectors [7].To verify the stability of the AMANDA-B10 de-tector at the %-level we investigated the seasonalvariation of the atmospheric muon 
ux, which isknown to be modulated by temperature varia-tions in the upper atmosphere. Fig. 5 shows for 8months in 1997 the good agreement between therelative variation of the atmospheric muon 
ux�R�=R� and the variation of the e�ective atmo-sphere temperature �Teff=Teff [8].A search for relativistic Monopoles with�mon=0.8-1.0 has been performed. The Monopolesignature is high multiplicity events, since theCerenkov light yield is 8300 times as high as formuons. The upper 
ux limit obtained for part of
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ux of upward muons from WIMP-annihilation in the earth and on relativistic mag-netic Monopoles, and a search for low energy neu-trinos from gravitational stellar collapses.The detector will be upgraded to the�650 PMT detector AMANDA-II in spring 2000.
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Figure 5. Seasonal variation of the atmosphericmuon 
ux �R�=R� compared to variation of thee�ective atmosphere temperature �Teff=Teff asfunction of day in 1997.
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Figure 6. SN-search: Variation of PMT noise ratefor 107 lifetime days in 1997. Arrows indicatesearch intervals for SN1987A-type supernova sig-nals at 6 kpc and 8kpc distance.


