- 1. Un filo conduttore percorso da una corrente I giace nel piano xy, e i suoi estremi A e B sono individuati dai due raggi vettori $\vec{r}_A = x_A \vec{e}_x$ e $\vec{r}_B = x_B \vec{e}_x$ rispettivamente. Viene applicato un campo magnetico $\vec{B} = B_x \vec{e}_x + B_y \vec{e}_y$. Calcolare la forza totale che agisce sul filo.
- 2. In una regione dello spazio e` presente un campo magnetico \vec{B} la cui componente lungo l'asse z varia secondo la legge: $B_z(x,y,z) = Be^{-\lambda z}$, con $\lambda \in]-\infty,+\infty[$. Determinare la condizione sul parametro λ affinche` il flusso del campo magnetico attraverso la superficie laterale di un cilindro con asse lungo l'asse z, raggio R e altezza h sia positivo (ossia il verso del campo sia uscente dalla superficie laterale del cilindro).
- 3. Una spira piana circolare di raggio R e massa trascurabile e` percorsa da una corrente I. La spira viene immersa in un campo magnetico uniforme $\vec{B} = B_0 \vec{u}$. Calcolare il momento delle forze che agisce sulla spira e l'angolo tra la normale alla spira e il campo magnetico \vec{B} per il quale il momento e` massimo.