CARLOSIrx v3 reference manual

Samuele Antinori, Davide Falchieri, Alessandro Gabrielli,
Enzo Gandolfi, Massimo Masetti, Samuele Zannoli

INFN Bologna

May 2003

CARLOSTrx v3 reference manual

CARLOSrx v3
Outline
® CARLOSIX v2 —CARLOSIX V3. ..t e 3
® M fRALUIES. ...ttt e e 4
® General deSCIIPHION.ttt ettt et 5
® JTAG INSIUCHION SEL. ... ettt ettt ettt et et e e e e e ee e 6
® CARLOSIX V3 OPEIatiON.ueiettetie ettt e e e et e et e e e e e 7
O USING CARLOSIX ..ttt e e e 7
0 Interface to CARLOS. ... e 14
0 Interface tothe SIU.........ooo i e, 14
o Interface to the trigger System............ooviiiiiiiiii i 16
0 Data storing and processing...........ooueevrieiiieiiieeiiieieeaieeannnn. 17
o Data transmission protocol............ooeiiiiiiiiiiii i 18
O Software tool.........oi i 19
e Integration steps for CARLOSIX......oouiiiiiiii e, 21

INFN Bologna 2

CARLOSTrx v3 reference manual

CARLOSrx v2 - CARLOSrx v3

CARLOSrx v2

CARLOSTrx board successfully tested in
June 2002 at CERN with the DDL
(v2 since it interfaces CARLOS v2)

CARLOSTrx board to be used in August
2003 test beam
(v3 since it interfaces CARLOS v3)

Xilinx XC3195A

Xilinx XC2V1000

5V 1/Os

2.5V 1/Os

able to process the data stream coming from
one CARLOS only

able to process the data stream coming
from up to 2 CARLOS chips

simple data packing

data coming from CARLOS are grouped in
32-bit words depending on their type
(header, footer, data, JTAG word, error
flag word). Then they are stored in a

20kx32 bit long FIFO
no interface towards the trigger system interface towards the trigger system
implemented implemented
interface towards the SIU implemented for same as v2

what concerns "Event data transmission
mode"

no JTAG implemented

standard JTAG IEEE 1149.1 implemented

no custom JTAG instruction

2 custom JTAG instructions:
"Put CARLOS in JTAG mode" and "Put
CARLOS in RUN mode"

no serial backlink (CARLOS v2 had no
serial backlink)

management of the serial backlink towards
CARLOS

no flow control implemented

flow control towards the SIU implemented

INFN Bologna 3

CARLOSTrx v3 reference manual

Main features

XC2V1000 Xilinx Virtex2 FPGA (see Fig. 1);

40 MHz working frequency;

1.8 V core power supply; 2.5 V I/O pads power supply;

standard IEEE 1149.1 JTAG implemented;

interface towards CARLOS implemented;

interface towards the SIU implemented (with flow control);
interface towards the trigger system implemented;

it can be directly interfaced either to CARLOS or to the optical link

__

CONNECTOR. |77 | forDDL |

CARLOS v3 |4

— o —— —

CARLOS w3 |49

]

v

0

'

'

I 3
-
'

'

'

]

'

]

.

Fig. 1: CARLOSrx board schematic layout

DIU

PRORC

INFN Bologna

CARLOSTrx v3 reference manual

General description

CARLOSrx v3 is a Xilinx Virtex2 FPGA-based device with the main purpose of
concentrating data coming from up to two SDD detectors. Thanks to a large FIFO
inside the FPGA, CARLOSrx (see Fig. 2) stores data coming from the front-end
electronics and CARLOS through the optical links, packs data into 32-bit words and
sends them towards the DDL system, after a transaction has been opened by the SIU.
CARLOSrx also drives the JTAG ports for addressing and programming the front-end
chips and CARLOS and the serial back-links used to send to CARLOS reset
commands, trigger signals and control commands.

It also interfaces the CTP (Central Trigger Processor) with the busy signal and the
TTCrx device from which it receives the L1accept signal and the trigger information.

During the SDD August 2003 beam test, CARLOSrx will be used in the
configuration reported in Fig. 3. These are the main simplifications that have been
introduced in order to ease the data acquisition process:

e CARLOSTrx acquires data coming from 1 detector (= 1 CARLOS only);

e CARLOSTrx is directly connected to CARLOS (the optical link is omitted);

e CARLOSTrx interfaces to a trigger system with the busy signal (it does not interface
to the TTCrx device).

In order to comply with this data acquisition chain setup, a specific VHDL design has

been implemented on the Virtex FPGA. All the information (text and simulation

waves) contained in this datasheet from this point on are related to the current version

of the design implemented on the FPGA and to the chain reported in Fig. 3.

This design contains 5 logic blocks (see Fig. 4):

1. data packing: CARLOSrx receives the 16-bit data words coming from CARLOS,
groups them depending on their type, packs them into 32-bit words and stores them
into a FIFO, before they are sent towards the SIU.

2. SIU interface: this block manages the protocol interface towards the SIU. It is able
to recognize the commands sent from the SIU and then to send packed data
towards the SIU.

3. trigger interface: this block directly interfaces the trigger system by receiving the
trigger input and asserting the busy signal. When CARLOS is in RUN mode the
busy signal value is received from the CARLOS error flag words.

4. JTAG interface to SIU: this block receives the JTAG signals from the SIU and
directly forwards them towards CARLOS. It also implements 2 JTAG instructions:
"Put CARLOS in JTAG mode" and "Put CARLOS in RUN mode". When one of
these instructions is detected, a signal is sent to the serial backlink block in order to
send to CARLOS the right command.

5. serial backlink: this block drives the serial backlink signal from CARLOSrx to
CARLOS. 1t is used to send reset commands, trigger signals and the commands
"Enter JTAG mode" and "Enter RUN mode".

INFN Bologna 5

CARLOSTrx v3 reference manual

AE
P
_Q_TLK—ISUl 16 _
— DES Fdatg LU.,
P 200 m IM.. busy CTP
AL
ok (40 MHz)
serial back-link
JTAG 4, CARLOS
rx
TLE-1501
O Ly
= DES pdag 2
200 YX-ek pE ;
m Lty " DDL
i
ol (40 MAz)
serial back-link
l
JTAS - ck, Llaccept,

local event identification (159,
global event tdentification (21}

TTCrx

Fig. 2: Data acquisition chain for CARLOSrx

JTAG instruction set

CARLOSrx receives a JTAG bus from the SIU and directly forwards it towards
CARLOS as it is. Beside that, CARLOSrx internal JTAG unit monitors the input
JTAG port looking for the JTAG instructions reported in Table 1.

JTAG instruction JTAG IR value Length of scan register
involved
Put CARLOS in JTAG mode 10001 5
Put CARLOS in RUN mode 10010 5

Table 1: List of CARLOSrx JTAG instructions

After decoding the instruction "Put CARLOS in JTAG mode", the command "Enter
JTAG mode" is sent to CARLOS through the serial backlink.
After decoding the instruction "Put CARLOS in RUN mode", the command "Enter
RUN mode" is sent to CARLOS through the serial backlink.

INFN Bologna 6

CARLOSTrx v3 reference manual

CARLOS v3 _

busyf

|

o=

(]| | B [|]

=

serial backlink

ITAG 4,
-

Fig. 3: Data acquisition setup during August 2003 beam test

CARLOSrx v3 operation

This section contains an explanation of the sequence of actions needed to program and
run CARLOSTrx operationally. Besides that a description of CARLOSrx main features
is reported.

Using CARLOSrx

CARLOSTrx utilization should include the following sequence of actions:

)

2)

3)

power supply to CARLOS, CARLOSrx and the DDL is turned on.
CARLOSTrx receives a signal reset (active low) either from an external RC
network or from the outside on the reset n pin. After being reset,
CARLOSTrx begins sending reset commands to the front end chip on the left
hybrid, the front end chips on the right hybrid and CARLOS, one after the
other using the serial backlink. Busy = 1. See Timing 1.

Using the JTAG port the SIU sends to CARLOSrx the command "Put
CARLOS in JTAG mode". As a consequence CARLOSrx sends to
CARLOS the command "Enter JTAG mode" using the serial backlink. Busy
=1.

Using the JTAG port (tck = 5 MHz) the SIU sends to CARLOSrx
commands and data for addressing, programming and reading back the
selected device (the chosen PASCAL, AMBRA or CARLOS). CARLOSrx
forwards the JTAG port received from the SIU to CARLOS as it is. After

INFN Bologna 7

CARLOSTrx v3 reference manual

4)

S)

6)

7)

the last front end chip has been programmed, the JTAG connection is closed
by asserting the trst signal. After this step is over all the selected front-end
chips have been programmed. All the JTAG information read from the
front-end chips and from CARLOS is stored in the internal FIFO of
CARLOSTrx. Busy = 1. See Timing 3.
Using the JTAG port the SIU sends to CARLOSrx the command "Put
CARLOS in RUN mode". As a consequence CARLOSrx sends to CARLOS
the command "Enter RUN mode" using the serial backlink. After this step,
CARLOSTrx begins waiting for the error flag words coming from CARLOS
one every 64 clock cycles containing the busy value. So far when CARLOS
is in RUN mode, the busy value asserted towards the trigger system is the
one received by CARLOS. Should CARLOS be brought back in JTAG
mode, then the busy signal would be fixed to 1 again by CARLOSrx,
meaning that no trigger signal can be accepted.
CARLOSTrx begins waiting until the SIU opens a transaction by sending the
RDYRX (Ready to Receive) command to CARLOSrx on the 32-bit
bidirectional bus fbd. Then CARLOSrx takes possession of the bidirectional
bus until the transaction is closed. Busy = 1. See Timing 2.
After CARLOSrx receives a trigger, it sends the related command to
CARLOS using the serial backlink. Then CARLOS begins waiting for the
data packets coming from CARLOS.
Valid words coming from CARLOS are grouped into 32-bit words
depending on their meaning:

= header words;

= footer words;

= data from channel 1;

= data from channel 0;

= error flag words;

= JTAG words.
The MSBs are used for univoquely identifying the words when the data
packet shall be decoded. The first data words (after the DDL header)
belonging to the first event are the JTAG words stored in the CARLOS rx
FIFO during the JTAG mode, then the event data words follow.
After coding, 32-bit words are stored into a dual clock FIFO containing 20K
32-bit words. The FIFO allows to implement the flow control between
CARLOSTrx and the SIU. The choice of a dual clock FIFO is due to the fact
that data are written into the FIFO with a 40 MHz clock, while they are read
with an internally-generated 20 MHz clock (foclk). In fact 32-bit data are
sent to the SIU with a 20 MHz clock (= 640 Mbit/s) since the total
bandwidth of the DDL is 800 Mbit/s. See Timing 4.
Each data packet begins with the DDL header (8 32-bit words) containing
information on the orbit number and on errors occurred during the
transmission.

INFN Bologna 8

CARLOSTrx v3 reference manual

8) After receiving a complete event from CARLOS (the 3 footer words have
been received) the data packet to the SIU is closed with 3 32-bit footer
words and with a FESTW (Front End Status Word). In the following 16
foclk cycles the SIU might send the EOBTR (End Of Block Transfer)
command. Otherwise CARLOSrx begins sending data again. See Timing 5.

9) If any errors occurred during the transmission of an event, after the event
has been completely transmitted a dummy event follows with the error bits
asserted in the DDL header and a FESTW (see Timing 6).

10)CARLOSrx implements the flow control. This means that each time the STU
board can no longer accept input data from CARLOSrx and it asserts the
filf n signal, CARLOSrx stops sending data, while it continues to receive
data from CARLOS. After the SIU board is ready to accept data again, the
filf n signal is de-asserted and CARLOSrx begins to send data to the SIU
again. See Timing 7 and 8.

11) If an error occurs in the AMBRA — CARLOS communication (for instance
if CARLOS does not receive the data_end signal in the expected time slot),
after closing the data packet, CARLOS asserts both the data stop signals,
thus stopping the acquisition of further events from AMBRA. In this case
using the JTAG port the SIU has to send the command "Put CARLOS in
JTAG mode" and, if necessary, reprogram some of the front-end chips. Then
the SIU will send the command "Put CARLOS in RUN mode", so that
CARLOS will de-assert the data-stop signals and the data acquisition will
begin again.

ol —— i

vesel_n — . gndi
- cav ————f data 32 N SIU :: fihen_n
| CARLOS ti_en —* : . | fobsy n
a5, | packing interface | [fnh
—filf 0 -
| SIO
busy JTAG interface | e 1146 fomsw
— tdo to 3107
to SIU
trigger | tigex —f | TIIEEET | serial
b] 4 .
0 interface backlink
4
k J 1’
JTAG to sertal backliml
CARLOS — =
CARLOS

Fig. 4: Schematic blocks of CARLOSrx

INFN Bologna 9

CARLOSTrx v3 reference manual

K
RESET_N
SERIAL_BACKLINK
RESET

RESET_LH

RESET RH
RESET_GOL

1
1
]
1
0
0
1

[] []
|| [
L T

Timing 1: CARLOSrx receives the reset signal (reset n). Then it sends IDLE
commands on the serial backlink, followed by the reset commands for the front-end

chips.

K
RESET_N
FIDIR
FIBEN_N
FILF_N
FOCLK
FETEN_N
FBCTRL_N
FOBSY_N
FBO(31:0)

- o o - o o o - -

0ooooo14

L
|

U Ui U iy

]]
L] L]

| oooooonn [hor] 00000000 fprzzzzza] UUULLULU

Timing 2: CARLOSrx receives the RDYRX command on the fbd bus, then it waits
until the SIU changes the fidir value. Then CARLOSrx takes possession of the
bidirectional bus.

» CARLOS3_OUTPUT(1SD)

T_EN
CAY
DAY
SERIAL_BACKLINK
TOI TG CARLOS
TMS_ TG CARLOS
TRST_TO_CARLOS
TCK_TO_CARLOS
CK
RESET N
FIDIR
FIBEN_N
FILF_N
FOCLK
FETEMN N
FBCTRL_N
FOBSY_N

» FBO(31:0)

BI56

[= = =

uuJudug

‘ 4006 [2006 | anos [40oe [aoos

|

| I [

Il

U UL UYL v Uy w Uy U un Uy
I

]

| O 2 e A e
e e ™

4006

R —|

U T g U g yuwn g s
N L

74C8E98D

TYTENTE, | 7aceEsss

Timing 3: CARLOSrx packs 16-bit long JTAG words coming from CARLOS into
32-bit long words and sends them to the SIU on the /bd bus.

INFN Bologna 10

CARLOSTrx v3 reference manual

CARLOE3_OUTPUTSD)
TH_EN

Cay

Dy
SERIAL_BACKLINK
TOI_T0_CARLOS
TH_T0_CARLOS
TRST_T0_CARLOS
TCK_TO_CARLOS
cK

FESETM

FIDIR

FIBEN_M

FILF_H

FOCLK

FATEN_N
FBCTRL_N
FOBSY_N

FED(31:0)

5, |Fu*|cs4a |auoo ‘5104|anno ‘agwa |aooo ‘ma |aooo |c4s4|aooo ‘cam ‘aooo ‘com ‘aooo |M44 |sooo 000 ‘3545 |auoo ‘8C3I

1
1]
1
1

23444 ‘

|anoo ‘MDQ |aooo |B244 |auoo ‘3534 |aooo ‘caca‘aoou |A24D |:

—

Ly L L

FFFFFFFF | 01000000 ‘uuuuuum |FFFFFFFF |uuuuuuuu | FFFFFFFF ‘ DOO3FFFF | 00000000 ‘ 20018008 ‘ascamoa

32

Timing 4: CARLOSrx packs into 32-bit long words the data packet coming from
CARLOS. Each data packet from CARLOSrx to the SIU begins with the DDL
header (8 32-bits words) followed by 3 CARLOS header words.

CARLOS3_OUTPUT(15:0)

TH_EN
cav

DAY
SERIAL_BACKLINK
TOI_TO_CARLOS
TMS_TO_CARLDS
TRST_TO_CARLOS
TCK_TO_CARLOS
K

RESET_N

FIDIR

FIBEN_N

FILF_N

FOCLK

FETEN_N
FBCTRL_N
FOBSY_N
FBO(3T:0)

400E

0
1}
0
1
1}
1}
0
1}
1}
1
1
1}
1
1
1
1
1

[alalalululaE)

@

[+

E|a*la*e* 9*|a*E*| 8000 |B*@B*|9*

5*(8*|8*|8000| 7FFF

400E

IpE SRR RN N .

|
J I I I [I B A

| | | [

U T A A gt A

L rtrtrtr 1

—

|

[ono*

bn0zA344 8F147812[E7506114]03RAEBNS| B4Andzez [sFzascealB7Dv[Co0®

pnaoass] GFFFFFFE | Dooooos4

Timing 5: CARLOSrx closes a data packet with 3 footer words, then it sends the

FESTW to the SIU.

INFN Bologna

11

CARLOSTrx v3 reference manual

CARLOS3_OUTR LTI 5:0)
T#_EN

Ay

Dy
SERIAL_BACKLINK
TDI_TO_CARLOS
TMS_TO_CARLOS
TRST_TO_CARLOS
TCK_TO_CARLOS
]

RESET_N

FIDIR

FIBEN_N

FILF_M

FOCLK

FBTEN_N
FBCTRL_N
FOBSY_N
FBD(31:0)

4028

Jrrtreryprerere e rte ettt

muuﬂumul‘ 0DOD00G4 |
L}

FFFFFFFF

| n1ooofun | 000D000é | FFFFFFFF | 00034000 ‘ FFFFFFFF | ODD3FFFF ‘ 00000000 |

0000ooe4

Timing 6: Dummy event after a faulty event: the orbit number is the same as the
previous event and the status and error bits are asserted.

CARLOS3_OUTPUT(15:0)

TX_EN

CAY

DAY
SERIAL_BACKLIMK
TOI_TO_CARLOS
TS TO_CARLOS
TRST_TC_CARLOS
TCK_TO_CARLOS
CK.

RESET_N

FIDIR

FIBEN_M

FILF_N

FOCLK

FBTEM N
FBCTRL_N
FOBSY_N
FBO(37:0)

DF&3

T — T T I S = T

93DE71CE

8 A A A

I U UL U U U U U
[U T

g*

93DE71CE

CEES

cE14[Bas

Bea+[rcacD]

o*jroc+{ear s+ farzene

Timing 7: Flow control: the SIU asserts the filf n signal. CARLOSrx stops
sending valid data on fbd (fbten_n = 1). Data coming from CARLOS are written
into the internal FIFO.

INFN Bologna

12

CARLOSTrx v3 reference manual

CARLOS3_OUTPUT(150)
TH_EN

CAY

DAY
SERIAL_BACKLINK
TOI_TO_CARLOS
TMS_TO_CARLOS
TRST_TO_CARLOS
TCK_TO_CARLOS
K.

RESET_N

FIDIR

FIBEN_N

FILF_N

FOGLK

FBTEN_N
FECTRL_N
FOBSY_N
FBO{310)

E465

1
]
1
0
0
0
]
0
1
il
1
]
1
il
1
1
1

990E71CE

Has*|an*ﬁD*| 8000

BE™*

a0 E4" g0

BD*‘FE’“

En*|nn*

Bm*pa*

il

F 480 [@0" B0" (32" BO*@3" 30" A4 a0™ [B3™ (a0

an*|cn*

sm|3m

sn*ﬁc*

=

| s S)
I [I O I A I

I Y v [S
[S Y I B IR

[1 |
[T T AU A

I R A I S
T U AT L

ST LTI LT L]

LMLy

939DE7F1CE

BEOCS*(E

[s63a07|a7ze0"|aFB1* fEszc unasn faasiz

Timing 8: Flow control: when filf n is switched back to 1, then CARLOSrx begins
emptying the internal FIFO.

INFN Bologna

13

CARLOSTrx v3 reference manual

Interface to CARLOS

CARLOSrx is directly interfaced to CARLOS v3. These are the interface signals:
® output data (16 bits): this is the 16-bit bus containing the data coming from
CARLOS v3;
® fx en: it is a strobe signal, active high. When active the output data bus
contains a valid value, whichever its type (header, footer, data from chl, data
from chO, error flag word, JTAG word).
® cav: it is a strobe signal, active high. When active, the output data bus contains
a valid control word, that is either a JTAG word or an error flag word.
e JTAG (4 bits): it is a standard JTAG port that CARLOSrx receives from the
SIU and forwards directly towards CARLOS as it is. This is used for the front-
end chips addressing, programming and reading back. CARLOS expects to
receive a S MHz JTAG clock.
o serial backlink: it is a serial link from CARLOSrx to CARLOS. It is used to
send 8-bit commands to CARLOS, such as reset signals, trigger signals and
commands for putting CARLOS in JTAG mode or in RUN mode.
The serial backlink block on CARLOSrx is used to drive the serial backlink signal.
After the reset is activated, the block sends a number of IDLE codes for link
synchronization, then it sends the commands for resetting all the front-end chips
(PASCAL, AMBRA, CARLOS). Then it continues sending IDLE codes until it has to
send one of the 3 following commands:

e enter JTAG mode;

¢ enter RUN mode;

® trigger signal.

Interface to the SIU

A list follows of the signals involved in the CARLOSrx- SIU interface (see Fig. 5):

e fidir: it is an input to CARLOSTrx. It asserts the direction of the data flow
between CARLOSrx and the SIU: when 0 the direction is from the SIU to
CARLOSTrx, when 1 the direction is from CARLOSTrx to the SIU.

e fiben n: it is an input to CARLOSrx, active low. It enables the
communication on the bidirectional bus between CARLOSrx and the SIU.
When 0 the communication is enabled, when 1 the communication is
disabled.

e filf n:it1is an input to CARLOSTrx, active low, "If" stands for link full. When
the SIU is no longer able to accept data coming from CARLOSrx it asserts
this signal. When this happens CARLOSrx sends an other valid data word,
then stops transmitting waiting for the filf n signal to switch back to 1. This
is the signal used by the SIU to implement the back-pressure on the data
flow running from the front-end to the data acquisition system.

INFN Bologna 14

CARLOSTrx v3 reference manual

e foclk: it is a free running clock generated on CARLOSrx and driving the
CARLOSrx-SIU interface. It is a 20 MHz clock generated by dividing the
system clock frequency by two. Interface signals coming from the SIU
change state on the falling edge of foclk.

® fbten n: it is a bidirectional signal, active low, it can be driven by
CARLOSrx or by the SIU, "ten" stands for transfer enable. When
CARLOSrx is assigned to drive the bidirectional buses (when fidir is 1 and
fiben_n is 0) fbten n value is asserted from CARLOS: it turns to its active
state when CARLOSTrx is transmitting valid data to the SIU, otherwise it is
inactive. When the SIU is assigned to drive the bidirectional buses (when
fidir 1s 0 and fiben_n is 0) fbten n value is asserted from the SIU: it turns to
its active state when the SIU is transmitting valid commands to CARLOSTrx,
otherwise it is inactive.

e fbctrl n: it is a bidirectional signal, active low, it can be driven by
CARLOSTrx or by the SIU, "ctrl" stands for control. When CARLOSTrx is
assigned to drive the bidirectional buses (when fidir is 1 and fiben_n is 0)
fbetrl _n value is asserted from CARLOSTrx: it turns to its active state when
CARLOSTrx is transmitting a Front End Status Word to the SIU, otherwise,
when in the inactive state, CARLOS is sending normal data to the SIU.
When the SIU is assigned to drive bidirectional buses (when fidir is 0 and
fiben _n is 0) fbctrl n value is asserted from the SIU: it turns to its active
state when sending command words to CARLOSTrx, to its inactive state
when sending data words. The second option has not been implemented on
CARLOSrx since we decided that CARLOSrx needs only commands and
not data from the SIU.

e fobsy n: it is an input signal to the SIU, active low, "bsy" stands for busy.
CARLOS should put this signal active when not able to accept data coming
from the SIU. Since CARLOSTrx has not to receive data from the SIU, this
signal has been fixed at 1, meaning that CARLOSrx will never be in a busy
state. In fact it always has to accept command words coming from the SIU.

e fbd: it is a bidirectional 32-bit bus on which data or command words are
exchanged between CARLOSrx and the SIU.

This is the way the communication protocol works:

The SIU acts as the master and CARLOSrx acts as the slave, that is the SIU sends
commands to CARLOSrx and CARLOSrx sends data and front end status words to the
SIU. At first the link CARLOSrx - SIU has to be initialized and the SIU acts as the
master of the bidirectional buses. So CARLOSrx waits for the bidirectional buses to be
driven from the SIU (fidir is 0 and fiben n is 0) and waits for a valid (fbten_n = 0)
command (fbctrl_n = 0) named Ready to Receive (RDYRX). This command is always
used in order for a new event transaction to begin. The RDYRX command contains a
transaction identifier (bits 11 to 8) and the string "00010100" as the less significant
bits. As the command is accepted and recognized CARLOSrx waits for the fidir signal

INFN Bologna 15

CARLOSTrx v3 reference manual

to change value in order to take possession of the bidirectional buses, then, if the filf n
is not active, it is able to send valid data on the fbd bus if it has any.

Each data packet begins with the DDL header. At the end of a data packet CARLOSrx
puts in output the Front End Status Word, a word that confirms that no errors occurred
and that the whole event has been successfully transferred to the SIU. The Front End
Status Word contains the Transaction Id code received upon the opening of the
transaction (bits 11 to 8) and the 8-bit FESTW code "01100100". After this happens
CARLOSrx begins waiting for some action of the SIU to be taken: it means that the
SIU can decide to take back its control on the bidirectional buses and close the data
link towards the data acquisition system, or the SIU can leave the bidirectional buses
control to CARLOSrx for an other data event to be sent. So far CARLOSrx begins
waiting 16 foclk periods: if nothing happens CARLOSrx is able to begin sending data
again without the need to receive some other commands from the SIU; if the SIU takes
back the possession of the bidirectional buses CARLOSrx closes the link towards the
SIU and keeps waiting for an other RDYRX command asserted from the SIU itself.

F data [31:0] (fbD[31..0])
E -
- control ((bCTRL_N)
'I’ ___transfer enable (fbTEN_N)
UL direction (fiDIR)
r I bus enable (IBEN_N)
T link full (fiLF_N)
= E La =
E’ontt en'd K busy (foBSY_N) _
ectronics | ¥ =
C FEE clock (foCLK) _
E B
>< . Test Clock (TCK)
i . Test Mode Select (TMS)
A : Test Data Input (TDI)
p L Test Data Output (TDO) _
- Test Reset (TRST)

Fig. 5: CARLOSrx — SIU interface

Interface to the trigger system

CARLOSrx interfaces the trigger system with the 2 following signals:

e trigger: it is the trigger signal received from the trigger system, active high.
It is one clock period long.

e busy: it is the busy signal from CARLOSrx to the trigger system. When
CARLOS is in JTAG mode, CARLOSTrx asserts the busy signal high. When
CARLOS is in RUN mode the busy value is the one received from
CARLOS in the error flag word (one every 64 clock cycles).

INFN Bologna 16

CARLOSTrx v3 reference manual

(JTAG word
HEEEEE
error flag word

data from CARLOS e
(16 bit) header

I HEEEEE
— < data from chl ~ data 132 | g
[T TTTT] _—~|packing}t—— . .
data from cho0
1 5 o o

footer

(I

Fig. 6: Data processing on CARLOSrx

Data storing and processing

CARLOSTrx (see Fig. 6) reads into an internal 16-bit register the data bus coming from
CARLOS when it contains a valid value (zx_en = 1). Then, depending on the type of
data word, it groups together words of the same type into 32 bit words. Error flag
words coming from CARLOSrx are stored only during the timing frame of a data
event: error flag words arriving outside these frames are discarded. It also changes the
MSBs of these words in order to be able to recognize them after the packing process.
The 32-bit words resulting from the packing process have the following format:

bit 31| bit 30 | bit 29 | bit 28 bit 27 -0 word type
0 0 1 0 header[13-0], header[13-0] header
0 0 1 1 footer[13-0], footer[13-0] footer
0 1 0 & JTAG word [14-0] JTAG word
0 0 0 | 0 & errflag [13-0] error flag word
1 0 IT output data[14-0] & I output data[14-0] data from ch0
1 1 IT output data[14-0] & I output data[14-0] data from chl

Table 2: 32-bit format from CARLOSrx to the SIU

In the 32-bit word, the first data received from CARLOS is packed as LSBs, while
each second data is packed as MSBs.

INFN Bologna 17

CARLOSTrx v3 reference manual

When a 32-bit word is complete, it is written into a 20K 32-bit words long FIFO (see
Fig. 7). Then data are popped from the FIFO synchronously with foclk, that is half the
system frequency.

It may also happen that one of the data channels from CARLOS v3 sends an odd
number of data, so that the related 32-bit register on CARLOS remains incomplete. In
this case its value is put in output with the I output data[14-0] containing all zeros
before the footer words are sent in output.

T

/v > chl
IS \ FIFO 20k x 32 bit
data from CARLOS]

16 bit
(161) = beno 32, fhd
[e -

e

. [UTAG

| [J word

PN

Fig. 7: Data packing and storing on CARLOSrx

Data transmission protocol

After the transaction has been opened, CARLOSrx begins sending data towards the
SIU in the same order as the words received from CARLOS. So far during JTAG
programming, CARLOSrx sends to the SIU the 32-bit JTAG words, while in RUN
mode CARLOSrx sends 32-bit data containing real data words and error flag words.
Each data packet begins with 3 header words (see Table 2) and ends with 3 footer
words.

While data from CARLOS are generated in an alternated way, data flowing from
CARLOSTrx to the SIU have a bit (bit 30) in order to clearly identify between channels.
Every event begins with the DDL header (8 32-bit words) and ends with the FESTW
(Front End Status Word) (see Fig. 8). The DDL header is required by the DATE v4
SW. It usually contains information regarding block length, L1 message, event ID,
orbit number, participating sub-detectors, status and error bits, mini-event ID, ROI
(Region of Interest). Since during the beam test the CTP (Central trigger Processor) is
not used, most of these fields are not used and, for this reason, they are either put to 0
or put to 1 as required by DATE v4.

The only meaningful information fields are:

e format version: DATE v4 requires this field to be 00000001;

INFN Bologna 18

CARLOSTrx v3 reference manual

o bit 5: ask DATE to stop the run;
o bit 4: no central trigger present;
o bit 2: data parity error.

Software tool

Event format

orbit number: this is an incremental number associated to every event;

status & error bits: this field is usually filled with Os when transmitting error-free
events. If any error is detected during the transmission of an event, it is followed
by a dummy event (see Fig. 9) containing the same orbit number as the previous
event and the following bits asserted in the status & error bits field:

A C++ software tool has been written in order to ease CARLOSrx debugging stage.
The SW decodes data coming out from CARLOSrx and automatically compares the
decoded data with the actual CARLOS outputs.

31 24 16 g 0
| Elock length | ~
DDL header
| Format (0z01) L1 message | 00 | event 1D | (setup without CTP)
| Ees Otbit number (incremental from 0
| Attr. Participating sub-detectors i
| Ees | status & error bits | tmini event I | >
=all 0s
| Trigger classes Low |
| ECIL | Ees Trigger classes |
| ROI High |
(e R T R e T R e R e R A e R =
i |
i |
i |
: :
|
! data from CARLOS packed on CARLOSrx :
! !
i |
I |
i |
________________________________ 1
FESTW Front End Status Word
Fig. 8: CARLOSrx event data format
INFN Bologna 19

CARLOSTrx v3 reference manual

Dummy event format (after a faulty event)

31 24 16 8

0 | Block length | ~
DDL header

1 | Format (=013 | L1 message | 0o | event 1D | (setup without CTP)
3 | Ees | Cirbit number {(same number as previous one}) |
3 | Attr | Participating sub-detectors | —all 1s
: o] [
5 Trigger classes Low | —all 0s
6 | ROIL | Ees | Trigger classes |
7 | ROI High |

| FESTW | Front End Status Word

bit 5: 1 =¥ ask DATE to stop the RUN

_ 0000000000110100 < bit 4: 1 = no central trigger present

bit 2: 1 =¥ data parity error

Fig. 9: CARLOSrx dummy event format

INFN Bologna 20

CARLOSTrx v3 reference manual

Integration steps for CARL.OSrx

We foresee 3 steps for the integration of the CARLOSrx device into the SDD data
acquisition chain:

STEP 1: A chain containing CARLOS v3, CARLOSrx and the SIMU (SIU
Simulator) is tested. A Tektronix pattern generator is used for sending data to
CARLOS from the AMBRA side, for emulating the trigger system and for driving
the JTAG port towards CARLOSrx (see Fig. 10). The SIMU device is tested in the
configuration "Event data transmission".

STEP 2: Starting from the chain realized at Step 1, the SIMU device is replaced by
the DDL, while the JTAG port is still driven by the Pattern Generator (see Fig. 11).
This step is performed at CERN in conjunction with the DAQ group.

STEP 3: The JTAG port is no longer driven by the Tektronix pattern generator, but
by the DDL itself (see Fig. 12).

STEP 4: CARLOS input data buses are no longer driven by the Pattern Generator,
but by 4 AMBRA chips per channel (see Fig. 13).

STEP 5: CARLOSrx directly interfaces the trigger system. The Pattern Generator
is no longer used. The data acquisition chain is complete (as from Fig. 3).

Pattern
generator

Pattern
generator

busy$

CARLOS v3 SIMU

| 40 MHz

16

x en
—

di “ . . 4

' i i

i :

i i

2 3
" - A n.

3 i

k il

O00ooooo

serial backlink

Pattern
generator

Fig. 10: CARLOSrx integration process: STEP 1

INFN Bologna 21

CARLOSTrx v3 reference manual

Pattern
generator

Pattern
generator

busy1

CARLOS v3
i 40 MHz

16

serial backlink

Pattern
generator

Fig. 11: CARLOSrx integration process: STEP 2

Pattern
generator

Pattern
generator

busy

CARLOS v3

40 MHz
16

serial backlink

Fig. 12: CARLOSrx integration process: STEP 3

INFN Bologna 22

CARLOSTrx v3 reference manual

Pattern
generator

CARLOS v3
busyf

40 MHz

serial backlink

JTAG 4,
-

Fig. 13: CARLOSrx integration process: STEP 4

INFN Bologna

23

