CARLOSrx vd rel 2
reference manual

Samuele Antinori, Filippo Costa, Davide Falchieri,
Alessandro Gabrielli, Enzo Gandolfi,
Massimo Masetti, Samuele Zannoli

Department of Physics and INFN Bologna

June 2004

CARLOSTrx v4 rel 2 reference manual

Qutline
What's new in CARLOSTIX VA 1€l 2ueiviiiiiiiieee e 3
IMAIN fEATUTESeeeeeeeeiiiiiiee ettt e ettt e e e e ettt e ee e e e eabeeeeaeeennaneeeeeeeas 4
KNOWN HMItATIONSevviiiiieieeiiiiiie ettt et e e e et ee e e e e eeareeeeaeeas 4
General deSCTIPHIONuiiiieeeeiiiiiiiee e ettt e e et ee e e e e ettt e e e e e ettt e e eeeeeensneeeeeaeas 5
Interface to CARLOS 0 and CARLOS 1 ..o 7
Interface to the STUuiiiiiiiie e 10
Interface to the trigger SYSteIMuiiiiiiiiiiiiiie e e 12
JTAG INSTIUCTION SET ...iviiiiieieeeeiiiiiieeeeeeiiie e e e e e et eeeeeeesirtbeeeeeeeeerereeeeeeannes 12
BaCK-PIeSSUIE. ... uuiiiiiiiiiiiiie et e et e e e e e e e e e e e e eeeaareeaeeeennes 13
CARLOSIx v4 rel 2 pin fUnCHONccevvviiiieieeiiiiiieee e 14
CARLOSIxX v4 rel 2 pin funCtionc..ueeiiiiiiiiiiiiiiieeeeieee e 15
CARLOSTIX V4 1] 2 OPETAtION ..eeiieieiiiiiiiieeeeeiiiiiiieeeeeeiiiee e e e et ee e e e eeraeeee s 17
USING CARLOSIX ..ttt ettt e et e e e ee e e 17
DAta PrOCESSINE ..oeeeeiiiiiiieeeeeeiiiiiee e e e ettt ee e e e e ettt e eeeeestbbeeeeeeeensaareeeeeesensnreeeeeas 23
Data transmission ProtOCOL...........uiiiieeiiiiiiiieeeiiiiie e e e et e e e eerreeee e 23
D) D) B 1 1< T 1< SRR 24
SOTEWATE T0O0] ... e 28

Department of Physics and INFN Bologna 2

CARLOSTrx v4 rel 2 reference manual

NJE:WI!J What's new in CARLOSrx v4 rel 2 NJ-:JIJ-I !J

CARLOSTrx v4 rel 2 acts as an interface between 2 ASICs CARLOS v4 and 1 DDL in
the context of the SDD readout chain. CARLOSrx v4 rel 2 has changed from the
previous release both for what concerns the firmware and the decoding software.

Here follows a list of the new features in CARLOS rx v4 rel 2.

Hardware upgrades:

e The hardware used for CARLOSrx v4 rel 2 is the same as the one used for release
1.

Firmware upgrades:

e Nearly every block contained in CARLOSrx v4 rel 1 has been doubled, compatibly
with the FPGA available resources. This is the reason why the available RAM
resources have been assigned half to a processing channel and half to the other.

¢ A queue manager has been added in order to fairly allocate the available bandwidth
towards the SIU to the 2 incoming data streams. In particular the available
bandwidth is allocated dynamically, so to provide it to the channel requiring it
most.

e The data transmission protocol has been changed in order to accomplish the
merging of two processed data streams. In particular an event of CARLOSrx rel 2
corresponds to the sum of the 2 events coming from the 2 ASICs CARLOS.
Furthermore before a new event is sent in output, the whole current event has to be
processed and sent out.

¢ The busy signal towards the trigger system is obtained as the logical OR of the two
busy signals of the two incoming channels.

¢ The JTAG programming is the same for both CARLOS and the related front-end
electronics. This means that CARLOSrx receives JTAG information on the JTAG
port and forwards it towards both the CARLOS chips.

Software upgrades:

® A unique version of the C++ decoding software carlosrx is able to decode data
encoded both in rel 1 and in rel 2.

Department of Physics and INFN Bologna 3

CARLOSTrx v4 rel 2 reference manual

Main features

XC2V1000 Xilinx Virtex2 FPGA;

40 MHz working frequency;

1.8 V core power supply; 2.5 V I/O pads power supply;

standard IEEE 1149.1 JTAG implemented;

interface towards 2 CARLOS v4 ASICs implemented;

interface towards the SIU implemented (with flow control);

interface towards the trigger system implemented;

it can be directly interfaced either to 2 CARLOS chips or to 2 optical links

Known limitations

The CARLOSrx board can be connected to the CARLOS chips in either of 2 ways:
o direct connection;
o with the optical links (GOL + optical fiber + TLK1501)
If used in the second configuration, the clock and the serial back-link running from
CARLOSrx to CARLOS have to be carried with wires (not with optical fibers as
expected in ALICE). In fact no optical transceiver for these two signals has been
foreseen on the CARLOSrx board.
The current version of the firmware of CARLOSrx allows to interface a 1-level
trigger with a simple trigger — busy scheme. This version is not able to interface the
3-levels trigger system expected for ALICE and it does not interface the TTCrx
device.
No mechanism has been foreseen in order to avoid double (dummy) events from
AMBRA when working in multi-buffer mode.

Department of Physics and INFN Bologna 4

CARLOSTrx v4 rel 2 reference manual

General description

CARLOSrx v4 rel 2 is a Xilinx Virtex2 FPGA-based device with the main purpose of
concentrating data coming from two SDD detectors on one LDC.
For each of the two incoming streams, CARLOSrx packs data coming from the related
front-end electronics and CARLOS through the optical links into 32-bit words, stores
them in a large data FIFO and then sends them towards the DDL system, after a
transaction has been opened by the SIU and when they are assigned the output
bandwidth by the queue manager. The use of a FIFO per channel allows not to lose
any data even when the DDL asserts the flow control: in fact CARLOSrx asserts the
back-pressure towards one of the two CARLOS (or both) and the related CARLOS
will stop AMBRA, thus freezing the data acquisition process until the DDL is ready to
accept data again.

CARLOSrx also drives 2 serial backlink ports towards the CARLOS chips. They are

used for the following purposes:

e for sending JTAG information to PASCAL, AMBRA, CARLOS and GOL. The
same JTAG information is sent on both the serial backlink ports (= the 2
CARLOS chips have to be programmed in the same way).

e for sending to CARLOS reset commands, trigger signals and control commands.
Even if the two serial back-link ports are driven by two separate and completely
independent state machines, the trigger commands are sent to both CARLOS chips
at the same time.

CARLOSrx also interfaces the trigger system by receiving the frigger signal and

asserting the busy signal obtained as a logical OR of the 2 busy signals received from

the 2 CARLOS chips. It also asserts the tdc/ and tdc(signals that will be used by the

TDC chip in order to determine the latency occurred from the moment the trigger

arrives to the moment it is actually sent to AMBRA.

Fig. 1 shows a schematic representation of the chain to be implemented in our Lab.

This firmware implemented on the FPGA contains 7 major logic blocks:

1. data packingl: CARLOSrx receives the 16-bit data words coming from CARLOS
1, groups them depending on their type, packs them into 32-bit words and stores
them into a FIFO, before they are sent towards the SIU.

2. data packing0: CARLOSrx receives the 16-bit data words coming from CARLOS
0, groups them depending on their type, packs them into 32-bit words and stores
them into a FIFO, before they are sent towards the SIU.

3. SIU interface: this block manages the protocol interface towards the SIU. It is able
to recognize the commands sent from the SIU and then to send packed data
towards the SIU.

4. trigger interface: this block directly interfaces the trigger system by receiving the
trigger input and asserting the busy signal. When both CARLOS are in RUN mode,
the busy signal value reflects the value received from both CARLOS error flag
words.

Department of Physics and INFN Bologna 5

CARLOSTrx v4 rel 2 reference manual

5. JTAG interface to SIU: this block receives the JTAG signals from the SIU and
encapsulates them on the 2 serial back-link ports towards both CARLOS ASICs. It
also implements 2 JTAG instructions: "Put CARLOS in JTAG mode" and "Put
CARLOS in RUN mode". When one of these instructions is detected, a signal is
sent to both the serial backlink blocks in order to send to CARLOS the
corresponding command.

6. serial backlinkl: this block drives the serial backlink signal from CARLOSrx to
CARLOS 1. It is used to send JTAG commands, reset commands, trigger signals,
prepulse and testpulse signals, the commands "Enter JTAG mode" and "Enter RUN
mode".

7. serial backlink(: this block drives the serial backlink signal from CARLOSrx to

CARLOS 0. It is used to send JTAG commands, reset commands, trigger signals,
prepulse and testpulse signals, the commands "Enter JTAG mode" and "Enter RUN
mode".

TLE-1501 16
el .
— DES vm’arq;
ol (40 MHz) PX1-1002,
serial back-link PX1-6552
CARLOS
rx vd
PXI-6025E
TLKAS0 4 rel 2
Eal >
— DES |rdata i
z S
200 m | s ck. 2 DDL
o
&—ck (40 MF7)
seriald back-link
FY
clock
DG2020

Fig. 1: Schematic representation of the SDD readout chain to be implemented in Lab.

Department of Physics and INFN Bologna 6

CARLOSTrx v4 rel 2 reference manual

Interface to CARLOS 0 and CARLOS 1

CARLOSrx receives data coming from CARLOS 0 and CARLOS 1. These are the
interface signals for each CARLOS:
® output data# (16 bits): this is the 16-bit bus containing the data coming from
CARLOS#
® 1x en#: it is a strobe signal, active high. When active the output data bus
contains a valid value, whichever its type (header, footer, data from chl, data
from chO, error flag word, JTAG word).
® cav# it is a strobe signal, active high. When active, the output data bus
contains a valid control word, that is either a JTAG word or an error flag word.
o serial backlink#: it is a serial link from CARLOSrx to CARLOS. It is used to
send 8-bit commands to CARLOS, such as reset signals, trigger signals, JTAG
information and commands for putting CARLOS in JTAG mode or in RUN
mode.
The serial backlinkl and serial backlink(blocks on CARLOSrx are used to drive the
serial backlinkl and serial backlink(signals. After the reset is activated, each block
sends a number of IDLE codes for link synchronization, then it sends the commands
for resetting all the front-end chips (PASCAL, AMBRA, CARLOS and GOL). Then it
continues sending IDLE codes until it has to send one of the following commands
(from highest priority to lowest: if two commands have to be sent at the same time, the
highest priority is sent first)):
e enter JTAG mode;
enter RUN mode;
trigger signal;
JTAG information;
Llreject;
L2reject;
prepulse25;
testpulse;
prepulse50, 75, 100, 125, 150, 175, 200
stop acquisition;
e restart acquisition.
Since these commands are to be sent on a 8-bit serial link, there is a variable jitter of a
few clock cycles from the moment a signal is received to the moment it is actually sent
to CARLOS over the serial back-link.
This is the list of actions occurring when a signal is about to be transferred over the
serial back-link (refer to Fig. 2):

Department of Physics and INFN Bologna 7

CARLOSTrx v4 rel 2 reference manual

e a 3-bit counter, ibit, continuously runs from 0 to 7: a complete 8-bit command is
sent in output over the serial back-link in 8 clock cycles, from ibit = 0 to ibit = 7. In
each of these 8-period slots a command is sent in output.

e a trigger is received: two clock cycles are necessary to get a synchronous trigger
signal (trigger long) that is used by CARLOSrx internal blocks.

¢ the internal state machine driving the serial back-link output continuously checks
for the trigger long signal to be high. When it does, it changes state from 5 to 6.

¢ When state is 6, the 8-bit register vectorl is updated with the trigger command
value AC.

e Then when ibit = 7, the 8-bit register vector is updated with vectorl value and then
the command is transmitted.

In this case the latency from the trigger arrival to the moment in which the related

commands starts to be sent over the serial back-link is about 5 clock cycles.

Fig. 3 shows that this latency can be higher (9 clock cycles) depending on the relative

timing between the trigger arrival time and the ibit counter value. The latency might

also be larger if the trigger occurs while an other command is being transmitted over
the serial link.

The tdc signal is activated for one clock cycle when a trigger command is being sent

over the serial back-link and when ibit = 2.

A proposal of upgrade of the CARLOSrx firmware suggests to store the latency of the

trigger signal (as well as the testpulse and prepulse) in a FIFO and send them towards

the DDL on the DDL header.

N.B. Since the two serial backlink blocks receive the reset signal at the same time, the
ibitl and ibit0 counter are identical. So far the trigger commands are sent to the 2
CARLOS chips at the same time, also considering that the trigger command is the
highest priority one. Thus no jitter problem has to be considered between the two
CARLOS chips for what concerns the trigger arrival time. The testpulse and prepulse
commands should not suffer this kind of problem as well: it is sufficient to be sure to
send these commands when no back-pressure is being activated or de-activated.

Department of Physics and INFN Bologna 8

CARLOSTrx v4 rel 2 reference manual

TRIGGER
TRIGGER_TO_SERIAL
TRIGGER_LONG
TRIGGER_SERVED

ToC

BT
STATE_CARLOS_R¥(4:0)
CARLOS_R¥_COUNT(E0)
YECTOR(7:0)
YECTOR(7:0)

[

[

—

s [7 o] zfalals[s]s]o] Jelalals]a]rfo[1 Je]a]a
‘ 0s ‘ 06 ‘ 05

‘ o0 [o1 Joz Jos o4 [us[as [o7] 00

\ 3 AC 3

\ 3 \ AC | a8

Fig. 2: In each 8-cycle timing slot (between vertical bars) a command is sent over
the serial back-link. In this case the trigger — command latency is 5 clock cycles.

TRIGGER
TRIGGER_TO_SERIAL
TRIGGER_LONG
TRIGGER_SERVED

oo

BIT
STATE_GARLOS_R¥(20)
CARLOS_RX_COUNT(S0)
YECTOR(70)
YECTGR1(70)

Fig. 3: In this case the trigger command latency is 9 clock cycles.

—

JeflaJals]s]~

o [1Jefa]als]s]>

alals]s]r

05

0g

0s

[o1 Joz o3 [o4]os

oo

39

AL

3t

\
\
| o0
\
\

39

| AC

39

Department of Physics and INFN Bologna

CARLOSTrx v4 rel 2 reference manual

Interface to the SIU

A list follows of the signals involved in the CARLOSrx- SIU interface (see Fig. 4):

e fidir: it is an input to CARLOSTrx. It asserts the direction of the data flow
between CARLOSrx and the SIU: when 0 the direction is from the SIU to
CARLOSTrx, when 1 the direction is from CARLOSrx to the SIU.

e fiben n: it is an input to CARLOSrx, active low. It enables the
communication on the bidirectional bus between CARLOSrx and the SIU.
When 0 the communication is enabled, when 1 the communication is
disabled.

e filf n:itis an input to CARLOSTrx, active low, "If" stands for link full. When
the SIU is no longer able to accept data coming from CARLOSrx it asserts
this signal. When this happens CARLOSrx sends an other valid data word,
then stops transmitting waiting for the filf n signal to switch back to 1. This
is the signal used by the SIU to implement the back-pressure on the data
flow running from the front-end to the data acquisition system.

® foclk: it is a free running clock generated on CARLOSrx and driving the
CARLOSrx-SIU interface. It is a 20 MHz clock generated by dividing the
system clock frequency by two. Interface signals coming from the SIU
change state on the falling edge of foclk.

e fbten n: it is a bidirectional signal, active low, it can be driven by
CARLOSrx or by the SIU, "ten" stands for transfer enable. When
CARLOSrx is assigned to drive the bidirectional buses (when fidir is 1 and
fiben_n is 0) fbten n value is asserted from CARLOS: it turns to its active
state when CARLOSrx is transmitting valid data to the SIU, otherwise it is
inactive. When the SIU is assigned to drive the bidirectional buses (when
fidir 1s 0 and fiben_n is 0) fbten n value is asserted from the SIU: it turns to
its active state when the SIU is transmitting valid commands to CARLOSrx,
otherwise it is inactive.

e fbctrl n: it is a bidirectional signal, active low, it can be driven by
CARLOSrx or by the SIU, "ctrl" stands for control. When CARLOSrx is
assigned to drive the bidirectional buses (when fidir is 1 and fiben_n is 0)
fbctrl_n value is asserted from CARLOSTrx: it turns to its active state when
CARLOSTrx is transmitting a Front End Status Word to the SIU, otherwise,
when in the inactive state, CARLOS is sending normal data to the SIU.
When the SIU is assigned to drive bidirectional buses (when fidir is 0 and
fiben _n is 0) fbctrl n value is asserted from the SIU: it turns to its active
state when sending command words to CARLOSTrx, to its inactive state
when sending data words. The second option has not been implemented on
CARLOSrx since we decided that CARLOSrx needs only commands and
not data from the SIU.

Department of Physics and INFN Bologna 10

CARLOSTrx v4 rel 2 reference manual

® fobsy nm: it is an input signal to the SIU, active low, "bsy" stands for busy.
CARLOS should put this signal active when not able to accept data coming
from the SIU. Since CARLOSTrx has not to receive data from the SIU, this
signal has been fixed at 1, meaning that CARLOSrx will never be in a busy
state. In fact it always has to accept command words coming from the SIU.

e fbd: it is a bidirectional 32-bit bus on which data or command words are
exchanged between CARLOSrx and the SIU.

This is the way the communication protocol works:

The SIU acts as the master and CARLOSrx acts as the slave, that is the SIU sends
commands to CARLOSrx and CARLOSrx sends data and front end status words to the
SIU. At first the link CARLOSrx - SIU has to be initialized and the SIU acts as the
master of the bidirectional buses. So CARLOSrx waits for the bidirectional buses to be
driven from the SIU (fidir is 0 and fiben_n is 0) and waits for a valid (fbten_n = 0)
command (fbctrl_n = 0) named Ready to Receive (RDYRX). This command is always
used in order for a new event transaction to begin. The RDYRX command contains a
transaction identifier (bits 11 to 8) and the string "00010100" as the less significant
bits. As the command is accepted and recognized CARLOSrx waits for the fidir signal
to change value in order to take possession of the bidirectional buses, then, if the filf n
is not active, it is able to send valid data on the fbd bus if it has any.

Each data packet begins with the DDL header. At the end of a data packet CARLOSrx
puts in output the Front End Status Word, a word that confirms that no errors occurred
and that the whole event has been successfully transferred to the SIU. The Front End
Status Word contains the Transaction Id code received upon the opening of the
transaction (bits 11 to 8) and the 8-bit FESTW code "01100100". After this happens
CARLOSTrx begins waiting for some action of the SIU to be taken: it means that the
SIU can decide to take back its control on the bidirectional buses and close the data
link towards the data acquisition system, or the SIU can leave the bidirectional buses
control to CARLOSrx for an other data event to be sent. So far CARLOSrx begins
waiting 16 foclk periods: if nothing happens CARLOSTrx is able to begin sending data
again without the need to receive some other commands from the SIU; if the SIU takes
back the possession of the bidirectional buses CARLOSrx closes the link towards the
SIU and keeps waiting for an other RDYRX command asserted from the SIU itself.

Department of Physics and INFN Bologna 11

CARLOSTrx v4 rel 2 reference manual

F data [31:0] (fbD[31..0])
E -
- control ((bCTRL_N)
'I’ ___transfer enable (fbTEN_N)
UL direction (fiDIR)
r I bus enable (IBEN_N)
T link full (fiLF_N)
= E La =
E’ontt en'd K busy (foBSY_N) _
ectronics | ¥ =
C FEE clock (foCLK) _
E B
>< . Test Clock (TCK)
i . Test Mode Select (TMS)
A : Test Data Input (TDI)
p L Test Data Output (TDO) _
- Test Reset (TRST)

Fig. 4: CARLOSrx — SIU interface

Interface to the trigger system

CARLOSrx interfaces the trigger system with the 2 following signals:

e trigger: it is the trigger signal received from the trigger system, active high.
It is completely asynchronous with respect to the incoming clock and its
width is 80 ns.

e busy: it is the busy signal from CARLOSrx to the trigger system. When the
CARLOS chips are in JTAG mode, CARLOSTrx asserts the busy signal high.
When the CARLOS chips are in RUN mode the busy value is obtained by
performing the logical OR of the ones received from the CARLOS chips in
the error flag words (one every 64 clock cycles).

JTAG instruction set

CARLOSrx interfaces the JTAG signals from the SIU and encapsulates them on the
serial back-link towards CARLOS as it is. The JTAG fck frequency has to be at most 5
MHz (suggested value = 5 MHz). Higher #ck frequencies will lead to errors in JTAG
programming and reading back register values.

Beside that, CARLOSrx internal JTAG unit monitors the input JTAG port looking for
the JTAG instructions reported in Table 1.

JTAG instruction JTAG IR value Length of scan register
involved

Department of Physics and INFN Bologna 12

CARLOSTrx v4 rel 2 reference manual

Put CARLOS in JTAG mode 10001 5

Put CARLOS in RUN mode 10010 5

Table 1: List of CARLOSrx JTAG instructions

After decoding the instruction "Put CARLOS in JTAG mode", the command "Enter
JTAG mode" is sent to both CARLOS through the serial backlink ports.
After decoding the instruction "Put CARLOS in RUN mode", the command "Enter
RUN mode" is sent to both CARLOS through the serial backlink ports.

Back-pressure

CARLOSrx v4 rel 2 makes use of the back-pressure as soon as it needs to, that is as

soon as its internal FIFOs are going to get full. CARLOSrx internal FIFOs contain a

10k 32-bit word dual-clock RAM for each channel. Since the allowed number of

words is a power of 2, each FIFO is obtained by putting in series 2 FIFOs:

e small fifo: one 2k 32-bit words FIFO;

e Jarge fifo: one 8k 32-bit words FIFO.

As soon as a word enters a FIFO, it is first written in the small fifo. Then an automatic

process scans the small fifo and, as soon as the small fifo is no longer empty, it pops

the small fifo and pushes the word in the /arge fifo. Then the large fifo is popped when

the SIU is ready to accept data (the SIU has opened a transaction and the flow control

has not been activated) and when the queue manager assigns the necessary bandwidth.

The back-pressure is activated when the small fifo has only 1k 32-bit free locations

available (1k on 2k are used cells), see Fig. 5. Then the back-pressure is de-activated

when the small fifo is completely empty.

Back-pressure is needed when the input data rate is larger than the output data rate,

that is DDL input data rate. Backpressure is very important especially:

e when data streams coming from 2 CARLOS chips have to be concentrated on one
LDC;

¢ when transmitting large events (anode length = 256);

e when no compression is operated on CARLOS;

e when the trigger rate is high (= when AMBRA works in multi-buffer mode).

So far the back-pressure can be activated very often during an acquisition run when

these conditions apply. Of course it is sufficient to use CARLOS as a compressor chip

in order to avoid using the back-pressure so often, thus decreasing data processing and

transmission delay.

No mechanism has been foreseen in order to avoid double (dummy) events from

AMBRA when working in multi-buffer mode.

Department of Physics and INFN Bologna 13

CARLOSTrx v4 rel 2 reference manual

ﬂlﬂ

smedl fifo large filo
2k
)
= (il == Y
@)

smail fifo {arge fifo

Fig. 5: Back-pressure is activated when the small fifo is half full and de-activated
when the small fifo is completely empty.

Department of Physics and INFN Bologna

14

CARLOSTrx v4 rel 2 reference manual

CARLOSIrx v4 rel 2 pin function

Terminal name Type Description

carlos4_0 output(15- I Input data bus coming from CARLOS 0

0)

tx_en0 I Input signal coming from CARLOS 0: when 1 it means
that CARLOS is sending a valid word

cavl I Input signal coming from CARLOS 0: when 1 it means
that CARLOS is sending a valid error flag word or JTAG
word

dav0 I Input signal coming from CARLOS 0: when 1 it means
that CARLOS is sending a valid data

carlos4 1 _output(15- I Input data bus coming from CARLOS 1

0)

ix_enl I Input signal coming from CARLOS 1: when 1 it means
that CARLOS is sending a valid word

cavl I Input signal coming from CARLOS 1: when 1 it means
that CARLOS is sending a valid error flag word or JTAG
word

davl I Input signal coming from CARLOS 1: when 1 it means
that CARLOS is sending a valid data

serial backlink(0 O |Output signal towards CARLOS 0: it carries JTAG
information and commands (reset, trigger, backpressure,
...)

reset carlos() O | Output signal resetting CARLOS 0 (active low reset)

gol _ready() O |Output signal towards CARLOS 0 (when the GOL is not
used): its value is fixed to 1

serial backlinkl O |Output signal towards CARLOS 1: it carries JTAG
information and commands (reset, trigger, backpressure,
...

reset carlosl O | Output signal resetting CARLOS 1 (active low reset)

gol readyl O |Output signal towards CARLOS 1 (when the GOL is not
used): its value is fixed to 1

ck I Input clock

reset n I Active low reset

fidir I From the SIU: it decides the bidirectional port direction

fiben_n I From the SIU: it decides if the bus is enabled or not
(active low)

filf n I From the SIU: it decides if the link is full or not (active
low)

foclk O |To the SIU: 20 MHz free running clock

fbten n INOUT |To and from the SIU: when active (low) the data fbd is

Department of Physics and INFN Bologna

15

CARLOSTrx v4 rel 2 reference manual

valid

fbetrl_n INOUT | To and from the SIU: when active (low) fbd contains the
FESTW

fobsy n O |To the SIU: when active (low) CARLOSTrx is not ready to
accept data from the SIU

fbd INOUT | 32-bit data bus between CARLOSrx and SIU

tdi_from siu I JTAG tdi from SIU

tck from siu I JTAG ftck from STU

tms_from siu I JTAG tms from SIU

trst_from siu I JTAG trst from SIU

tdo to siu O |JTAG tdo to SIU

trigger I Input trigger, active high, 80 ns wide

busy O |Output busy

Llreject I Input L1reject, active high, 80 ns wide

testpulse I Input L1reject, active high, 80 ns wide

tdcl O | Output signal, active for one clock cycle when the trigger
command is being sent over the serial backlinkl

tdc0 O | Output signal, active for one clock cycle when the trigger

command is being sent over the serial backlink(

Department of Physics and INFN Bologna 16

CARLOSTrx v4 rel 2 reference manual

CARLOSIrx v4 rel 2 operation

This section contains an explanation of the sequence of actions needed to program and
run CARLOSTrx operationally.

Using CARLOSrx

CARLOSTrx utilization should include the following sequence of actions:

1))

2)

3)

4)

S)

power supply to the front-end electronics, to the CARLOS chips,
CARLOSrx and the DDL is turned on. CARLOSrx receives a signal reset
(active low) either from an external RC network or from the outside on the
reset_n pin. After being reset, CARLOSrx begins sending reset commands
to the front-end chips and to the CARLOS chips, one after the other using
the 2 serial backlink ports. Busy = 1. See Timing 1.

Using the JTAG port the SIU sends to CARLOSrx the command "Put
CARLOS in JTAG mode". As a consequence CARLOSrx sends to both
CARLOS the command "Enter JTAG mode" using the serial backlink ports.
Busy = 1.

Using the JTAG port (tck = 5 MHz) the SIU sends to CARLOSrx
commands and data for addressing, programming and reading back the
selected device (the chosen PASCAL, AMBRA or CARLOS). CARLOSrx
encapsulates this information over the serial back-link ports towards
CARLOS. After each chip has been programmed, the JTAG connection is
closed by asserting the #rst signal. After this step is over all the selected
front-end chips have been programmed. At this point all the JTAG
information read from the front-end chips and from CARLOS are stored in
the internal FIFOs of CARLOSrx. Busy = 1.

Using the JTAG port the SIU sends to CARLOSrx the command "Put
CARLOS in RUN mode". As a consequence CARLOSrx sends to both
CARLOS the command "Enter RUN mode" using the serial backlink ports.
After this step, CARLOSrx begins waiting for the error flag words coming
from the 2 CARLOS chips one every 64 clock cycles containing the busy
value. So far when CARLOS is in RUN mode, the busy value asserted
towards the trigger system is obtained by putting in OR the ones received by
CARLOS. Should CARLOS be brought back in JTAG mode, then the busy
signal would be fixed to 1 again by CARLOSrx, meaning that no trigger
signal can be accepted.

CARLOSrx keeps waiting until the SIU opens a transaction by sending the
RDYRX (Ready to Receive) command to CARLOSrx on the 32-bit
bidirectional bus fbd. Then CARLOSTrx takes possession of the bidirectional
bus until the transaction is closed. Busy = 1. See Timing 2.

Department of Physics and INFN Bologna 17

CARLOSTrx v4 rel 2 reference manual

6)

7)

8)

After the transaction is opened, CARLOSrx sends a DDL header (8 32-bit

words whose structure is explained later in this paragraph), then it begins

emptying its internal FIFOs by sending the JTAG words towards the SIU.

First the CARLOS 1 identifier followed by 128 JTAG words coming from

CARLOS 1, then the CARLOS 0 identifier followed by 128 JTAG words

coming from CARLOS 0 and so on until the FIFOs are empty again. See

Timing 3.

After CARLOSrx receives a trigger, it sends the related command to the

CARLOS chips using the serial backlink ports and it asserts the busy output

value. Then CARLOSrx begins waiting for the data packets coming from

the CARLOS chips.

Valid words coming from CARLOS 1 are grouped into 32-bit words

depending on their meaning:

= header words;

= footer words;

= data from channel 1 (right hybrid);
= data from channel 0 (left hybrid);
= error flag words;

= JTAG words.

The same holds for CARLOS 0.

After coding, 32-bit words are stored into a dual clock FIFO containing 10K

32-bit words per channel. The FIFOs allow to implement the flow control

between CARLOSrx and the SIU. The choice of a dual clock FIFO is due to
the fact that data are written into the FIFOs with a 40 MHz clock, while they
are read with an internally-generated 20 MHz clock (foclk). In fact 32-bit
data are sent to the SIU with a 20 MHz clock (= 640 Mbit/s) since the total

bandwidth of the DDL is 800 Mbit/s. See Timing 4.

Each data packet begins with the DDL header (8 32-bit words) containing

information on the orbit number and on errors occurred during the

transmission. Then data coming from the 2 channels are transmitted in the
following way:

e CARLOS 1 identifier;

e 128 words coming from CARLOS 1 (if the FIFO gets empty before
sending 128 words, the bandwidth is allocated to CARLOS 0);

e CARLOS 0 identifier,

e 128 words coming from CARLOS 0 (if the FIFO gets empty before
sending 128 words, the bandwidth is allocated to CARLOS 1);

e then after the current event coming from CARLOS 1 and CARLOS 0
have been sent in output, the FESTW follows. In the following 16 foclk
cycles the SIU might send the EOBTR (End Of Block Transfer)
command. Otherwise CARLOSrx begins sending data again. See Timing
5.

Department of Physics and INFN Bologna 18

CARLOSTrx v4 rel 2 reference manual

e if CARLOS 1 is still sending data to CARLOSrx, while CARLOS 0 has
already completed the corresponding event (same event number),
CARLOSrx is ready to accept the new event coming from CARLOS 0,
storing data in the related FIFO, but without popping it.

See Timing 4, 5 and 6.

9) If any errors occurred during the transmission of an event, after the event
has been completely transmitted a dummy event follows with the error bits
asserted in the DDL header and a FESTW (see Timing 7).

10)CARLOSrx implements the flow control. This means that each time the STU
board can no longer accept input data from CARLOSrx and it asserts the
filf n signal, CARLOSrx stops sending data, while it continues to receive
data from CARLOS. After the SIU board is ready to accept data again, the
filf n signal is de-asserted and CARLOSrx begins to send data to the SIU
again. See Timing 8 and 9.

11) If an error occurs in the communication between one AMBRA -CARLOS
pair (for instance if CARLOS 0 does not receive the data_end signal in the
expected time slot) and if StoplIfError is 1, after closing the data packet,
CARLOS 0 asserts both the data_stop signals, thus stopping the acquisition
of further events from AMBRA. In this case, after sending the dummy
event, CARLOSrx also stops since it receives data coming from CARLOS
1, but it does not receive data coming from CARLOS 0. In this case using
the JTAG port the SIU has to send the command "Put CARLOS in JTAG
mode" and, if necessary, reprogram some of the front-end chips. Then the
SIU will send the command "Put CARLOS in RUN mode", so that
CARLOS will de-assert the data-stop signals and the data acquisition will
begin again.

12) If an error occurs in the communication between one AMBRA — CARLOS
pair and if StoplfError is 0, a dummy event is sent in output, but the
transmission goes on.

Department of Physics and INFN Bologna 19

CARLOSTrx v4 rel 2 reference manual

K
RESET_N
SERIAL_BACKLINK
RESET

RESET_LH

RESET RH
RESET_GOL

1
1
]
1
0
0
1

[] []
|| [
L T

Timing 1: CARLOSrx receives the reset signal (reset n). Then it sends IDLE
commands on the serial backlink, followed by the reset commands for the front-end

chips.

K
RESET_N
FIDIR
FIBEN_N
FILF_N
FOCLK
FETEN_N
FBCTRL_N
FOBSY_N
FBO(31:0)

- o o - o o o - -

noooon14 |

L
|

[

U Ui U iy
] []

L] []

[apo-]

00000000 00000000 fprzzzzza] UUULLULU

Timing 2: CARLOSrx receives the RDYRX command on the fbd bus, then it waits
until the SIU changes the fidir value. Then CARLOSrx takes possession of the
bidirectional bus.

K
RESET_N
FIDIR
FIBEN_N
FILF_N
FOCLK
FBTEN_N
FBCTRL_N
FOBSY_N
FBO{aT0)

o
1
1
o
1
o
o
1
1

37FFFFFF

[Ty C iy i gug gy gy

gy puyyyUL

0 77777777 FFFFFFFF]100+Jann0* [FFF+ joooo+] FFF* [oooa+pono+hifF+[anon*(anno+faonn+aona+fenon+fannne

Timing 3: After the opening of a transaction, CARLOSrx sends in output the 8 32-
bit words of the DDL header, followed by the JTAG words stored in the FIFOs
starting from CARLOS 1.

Department of Physics and INFN Bologna

20

CARLOSTrx v4 rel 2 reference manual

cK
RESET N
FIDIR
FIBEN_N
FILF_N
FOCLK
FETEN_N
FBCTRL N
FOBSY_N

» FED(310)

1

1

1

0

1

1

: |

1

1

STFFRRFF | 40006394 |2on1g00s [& o~ peore|c parfer|ar P oar 4 ontanos B+ [+ e orfe*[c

Timing 4: After the JTAG words, CARLOSrx begins sending in output data coming
from CARLOS 0, followed by data coming from CARLOS 1, trying to fairly assign
bandwidth to both channels.

K 0
RESET_N 1
FIDIR 1
FIBEN_N 0
FILF_N 1
FOCLK 0
FETEN_N 0
FBCTRLN 1
FOBSY N 1
» FBD(310)

SFFFFFFF

s s

Uy U g
[
L]

‘ 30000000 ‘ 00000064

B* zog* BCz* | ADT* ABD* |AT1* [AFS*

A9E* PESS*FBD?*FWB?*

BE7* FEBB*

boor| | aFFFFFFF

Timing 5: CARLOSrx closes a data packet with 3 footer words, then it sends the

FESTW to the SIU.

RESET N 1
FIDIR 1
FIBEN_N 0
FILF_N 1
FOCLK 0
FETEN_ N 0
FBCTRL_N 1
FOBSY_N 1
» FOD(310)

® CARLOS DI
® CARLDS 1id

TRUE
FALSE

30000000

\ FALSE | FALSE | FALSE FALSE | FALSE | Fr
FaL* FALSE \ FALSE | False | FALSE | FALSE

Timing 6: CARLOSrx sends 128 valid words from CARLOS 0, then from
CARLOS 1 and so on, until a FIFO does gets empty or one of the CARLOS chips

completes its event.

Department of Physics and INFN Bologna 21

CARLOSTrx v4 rel 2 reference manual

K
RESET_N
FIDIR
FIBEN_N
FILF_M
FOCLK
FBTEM_N
FECTRL_N
FOBSY_N

FBD(31:0)

0

i

|

0

i

0

0

| |
i

umuuuuul‘ 000004 | FFFFFFFF | mooofoo | 0000000 | FFFFFFFF | 00034000 ‘ FFFFFFFF | DOD3FFFF ‘ 00000000 | 000004

L}

Timing 7: Dummy event after a faulty event: the orbit number is the same as the
previous event and the status and error bits are asserted.

K
RESET N
FIDIR
FIBEN_N
FILF N
FOCLK
FETEN_N
FBCTRL N
FOBSY N
FED(31:0)

1 L A

! UTUUL U UL Uuy tuy g U Ui g gu gy
: U gy L Jgyg

1

1

53DE71CE a*

B7S*

ACE14*

Bag*

B %CSCD*

o+

98F* |gha*|arzzl*

D*lADC*

93DE71CE

Timing 8: Flow control: the SIU asserts the filf n signal. CARLOSrx stops sending
valid data on fbd (fbten_n = 1). Data coming from CARLOS are written into the
internal FIFO.

K
RESET N
FIDIR
FIBEN_N
FILF N
FOCLK
FETEN N
FECTRL_N
FOBSY N
FED(31:0)

v Ut U T AL

oy U L

1

1

830E71CE

a7260"

93DE71CE Paaz&u*

AFB1* FESZC’%D%D*

BB912*BEOC4"

£

Timing 9: Flow control: when filf n is switched back to 1, then CARLOSrx begins
emptying the internal FIFO.

Department of Physics and INFN Bologna 22

CARLOSTrx v4 rel 2 reference manual

Data processing

CARLOSrx contains 2 parallel pipeline blocks for reading, processing and storing data

coming from CARLOS 1 and CARLOS 0. For each processing channel :

e CARLOSrx fetches the 16-bit data bus coming from CARLOS# when it contains a
valid value (tx_en#=1).

e then, depending on the type of data word, it groups together words of the same type
into 32 bit words. Error flag words coming from CARLOS are stored only during
the timing frame of a data event: error flag words arriving outside these frames are
discarded. In the same way error flag words are discarded when CARLOSTrx is
asserting the back-pressure towards CARLOS.

¢ it also changes the MSBs of these words in order to be able to recognize them after
the packing process.

The 32-bit words resulting from the packing process have the following format:

bit 31| bit 30 | bit 29 | bit 28 bit 27 -0 word type
0 0 1 0 header[13-0], header[13-0] header
0 0 1 1 footer[13-0], footer[13-0] footer
0 1 0 & JTAG word [14-0] JTAG word
0 0 0 | 0 & errflag [13-0] error flag word
1 0 IT output data[14-0] & I output data[14-0] data from ch0
1 1 IT output data[14-0] & I output data[14-0] data from chl

Table 2: 32-bit format from CARLOSrx to the SIU

In the 32-bit word, the first data received from CARLOS is packed as LSBs, while
each second data is packed as MSBs.

When a 32-bit word is complete, it is written into the related 10K 32-bit words long
FIFO (see Fig. 6). Then a queue manager decides when to pop data from the FIFOs
synchronously with foclk, that is half the system frequency (20 MHz).

It may also happen that one of the data channels from CARLOS 1 or 0 sends an odd
number of data, so that the related 32-bit register on CARLOS remains incomplete. In
this case its value is put in output with the I output data[14-0] containing all zeros
before the footer words are sent in output.

Data transmission protocol

The main change in the data transmission protocol between the current release and
release 1 is in the fact that data coming from two different streams have to be merged.
An other issue is to make as few modifications as possible to the data format. For this
reason we decided to allocate the available bandwidth in time frames with the
following features (see Fig. 7):

Department of Physics and INFN Bologna 23

CARLOSTrx v4 rel 2 reference manual

each time frame begins with the CARLOS identifier;
data contained in each time frame have the same format than in CARLOSTrx rel 1;
each time frame SHOULD contain 128 words with the following exceptions:

o LESS THAN 128: if the corresponding FIFO gets empty, the time frame
is closed and the bandwidth is assigned to the other CARLOS, if it has
data to send;

o MORE THAN 128: if the other CARLOS chip has already completed
its event, the current CARLOS can keep the bandwidth until it has
completed the event too.

the time frame ends when a new CARLOS identifier is found.

After the transaction has been opened, CARLOSrx begins sending JTAG data towards
the SIU using timing frames. Then data coming from physical events are sent out in
the following way:

e first event CARLOS 1 — first event CARLOS 0

e second event CARLOS 1 —second event CARLOS 0

This means that a CARLOSrx event corresponds to the sum of the related events on
CARLOS 1 and CARLOS 0. This also means that CARLOS 1 does not start sending a
new event, until CARLOS 0 has completely sent out the current event and viceversa.

DDL header

The DDL header is required by the DATE v4 SW and later releases. It usually contains

information regarding block length, L1 message, event ID, orbit number, participating

sub-detectors, status and error bits, mini-event ID, ROI (Region of Interest). Since

CARLOSTrx does not receive most of this information, most of these fields are not used

and, for this reason, they are filled with 0 or 1 as required by DATE v4.

The only meaningful information fields are (see Fig. 8):

e format version: DATE v4 requires this field to be 00000001;

¢ orbit number: this is an incremental number associated to every event;

e status & error bits: this field is usually filled with Os when transmitting error-free
events. If any error is detected during the transmission of an event, it is followed
by a dummy event (see Fig. 8) containing the same orbit number as the previous
event and the following bits asserted in the status & error bits field:

o bit 5: ask DATE to stop the run;
o bit 4: no central trigger present;
o bit 2: data parity error.

Department of Physics and INFN Bologna 24

CARLOSTrx v4 rel 2 reference manual

32-bit 10k

16

a

CARLOSO

«+—— serial backlink0

32-bit 10k

16 32

&)

CARLOS1

«+—— serial backlinkl

Fig. 6: Data packing and storing on CARLOSrx

CARLOSrx event

e S

R

DDL header CARLOS O CARLOS 1 CARLOS O FESTW
data data data

CARLOS 0
identifier

RN

identifier

Fig. 7: CARLOSrx output data protocol

Department of Physics and INFN Bologna 25

CARLOSTrx v4 rel 2 reference manual

Event format

31 24 16 8 0

0 | Block length | ~
DDL header
1 | Format {0z01) L1 message | 00 | event ID | (setup switheiit CTP)
2 | Ees Orbit number (incremental from 0}
3 | Aty Participating sub-detectors — ol T
4 | Res | status & error bits mini event [0 | >
=all 0s

5 | Trigger classes Low |
6 | ECIL | Res Trigger classes |
7 | ROI High |

R R T T A R T S R T T R R e R R e A R e A R e =

. |

1 1

| |

| |

I |

I data from CARLOS packed on CARLOSrx :

. |

. |

] |

| |

________________________________ |

FESTW Front End Status Word

Fig. 8: CARLOSrx event data format

Department of Physics and INFN Bologna 26

CARLOSTrx v4 rel 2 reference manual

Dummy event format (after a faulty event)

31 24 16 g

0 | Block lenzth | ~
DDL header

1 | Format (0x01} | L1 message | a0 | event ID | (setup withpt CTP)
b | Ees | Crbit number (same number as previous one) |
3 | Attr | Participating sub-detectors | —all 1s
: =iy
5 Trigger classes Low | = all 0s
6 | ECIL | Ees | Trigger classes |
7 | ROI High |

| FESTW | Front End Status Word

bit 5: 1 =¥ ask DATE to stop the RUN

I 0000000000110100 < bit 4: 1 = no central trigger present

bit 2: 1 =¥ data parity error

Fig. 9: CARLOSrx dummy event format

Department of Physics and INFN Bologna 27

CARLOSTrx v4 rel 2 reference manual

Software tool

A C++ software tool has been written in order to ease CARLOSrx debugging stage.
The SW decodes data coming out from CARLOSrx and automatically compares the
decoded data with the actual CARLOS outputs.

Department of Physics and INFN Bologna 28

