CARLOS vS5 reference manual

Samuele Antinori, Filippo Costa, Davide Falchieri,
Alessandro Gabrielli, Enzo Gandolfi,
Massimo Masetti, Samuele Zannoli

Department of Physics and INFN Bologna

June 2004

CARLOS v5 reference manual

Outline

What's new in CARLOS V5 .oooiiiiiiiioe et et estee e 3
CARLOS V5 MAIN FEATUIESveeeuitieiitie ettt ettt ettt ettt et estaeesebeeebaeeeees 4
General Chip deSCIIPLIONvviiiiiiiiiieciieee ettt et ee e e et e e e etree e e ebbeeeestaaeeeesnseeeesnnneeens 8
SDD 1€ad0Ut ChAIN. ...ceeiiiiie ittt et e et e e et e e e te e e e raeeeanes 8
CARLOS arChItECIUIEvtieeeiiiiee ettt e et te ettt e et te e e ettt e e et ee e e sateeee et eeeeenseeeesanneeeens 8
MaIN PTOCESSINZ UNL...eeeeuiiiireeiiiieeeiieee et eeeeteeees et eeeeateeeesanseeeesnsseaeaanneeeesnseeeeennes 12
2D COMPIESSOT DLOCK ...eoeiiiieeeiiie ettt ettt e e et e e neee e e e 13
Disabling the 2D COMPIESSOTeieeiuiiiieeiiiieeeeiieeee et ee e ettt e e et e e eeeteeessnneeeesneeeeeenees 14
End of ROW SUMMATY........eiiiiiiiiieiie ettt et e e e 14
Data transSmission ProtOCOL..........eiiieiiiiieiiiiee ettt ettt e e e e e e 16

0 N 13T Vo <SPS 16

L L' T 1o TSRS 18
EITOT flag WOTAS . ..ceiiiieee ettt e e et e e et e e e neee e e e 19
CARLOS v5 pin position and fUNCLIONceeevevviiieriiiieieiieeeriieee et e e eeeeerae e 22
Programming CARLOS V5oviiiiiiieetie ettt e e et e e e ebae e e eaens 25
Controlling CARLOS via the serial back-link............cccooevviiiiiiiiiiniiiiceeiee e, 25
Opening @ JTAG CONNECTONccceuviiiiiieiiieeeiieeeeiieeeeeireeeeetreeeeestreeeesereeesesseeessensenes 27
CARLOS internal TEZISTETSuvvvvieiiiiieeeitiieeeeiieeeeiieeeesireeeeetreeeeetraeeeesnseeesesseeessenseees 29
Register access via the JTAG DUS........veeiiiiiiiiiiiiiecciiie et e e e 30
Board level testing via JTAGccooooiiiiiiiiiiie ettt erre e e e e eserae e e 34
Chip level testing VIa JTAGccoociiiiiiiiiie et ettt ee e vee e e ebe e e e eebee e e eeeneees 35
RUnning CARLOS V5. ..ottt ettt e e e st e e et be e e enraaeeensnaeeeenenes 36
How to 1un CARLOS V5. .ottt e 36
Managing SynchroniZation ©ITOTSeeeurieeeiiuiereeiieeeeeeiereeeeiteeeeeteeeesnneeeesaneaeeeenns 45

N 70 o Gl 25y (o) e USSR 45
StOP TEEITOT = 0.ttt e e et e e et e e e ee e e enneens 47
INOLES ettt ettt e e e e ettt e e ettt e e e e e ettt e e e e e e e aaabbaeeeeeeas 48
Backpressure from CARLOSIx to CARLOSooiiiiieeee e 50
Debugging CARLOS V5 ..ottt ettt et e e e e e et e e e tee e e e 51
Debug@ing facilitycceeiiiiieeiiie e e e 51

23 15 PSPPSR S 51
ANalyzing CARLOS V5 ..ottt ettt e e et ee e e ntee e e e 52
WRY PATSEPACK 7.ttt ettt ettt e e et e e e te e e enne e e e entaeeeenns 52
HOW 0 Et PATSEPACK.cciviiiieiiiiie ettt ettt ettt et e e tae e e e are e e eeerbeeeeenaeeeesnsaeeeenens 53
HOW t0 COMPIlE PATSEPACK .. .ccoeviiiieiiiiieciiiee ettt e e eae e e enerae e e enens 53
HOW 10 USE PATSEPACK ...eecveiiiiieiiiieieeiieee ettt e ettt e e ee e e tte e e e sate e e e eeesbeeeeenaeeeesssaeeeenens 53
What are parsepack OULPULS?ceerviiieiriiiieeeeiieeeerieeeeereeeesirreeeeerreeeeseneeeeesnraeeeenens 56

Department of Physics and INFN Bologna 2

CARLOS v5 reference manual

What's new in CARLOS v5

The ck and serial backlink CARLOS input pads have been converted from CMOS
to LVDS.

Two new LVDS ck_out signals have been added: ck_out LH and ck out RH.

A new input pin has been added to CARLOS: the locked pin. The locked signal is
driven by the QPLL device: when 1 the QPLL is locked to the incoming clock and
it provides a low-jitter clock to CARLOS and GOL, otherwise the QPLL is out of
lock and the transmission should be stopped. The locked signal has been put in
AND with the gol ready internally to CARLOS, so if one of the two signals is not
active, the transmission is immediately stopped.

The test pins have been reduced from 11 to 4 pins (2 for set fest and 2 for
test_output).

The pad order has completely changed with respect to the previous versions: so far
CARLOS v5 is NOT pad compatible with CARLOS v4 and CARLOS v3.

The size of fifo data has been extended from 24 to 26 30-bits words. Furthermore
the almost_full flag (and consequently the data_stop CARLOS output) is asserted
when the FIFO contains only 5 empty locations.

The boundary scan register has been modified according to the changes in the
pinout. In particular the order of the boundary scan cells has changed and the total
number has been reduced from 82 to 76.

In CARLOS v4 each data_stop output is put to 0 at the end of an event after the
corresponding FIFO has been completely emptied (some clock periods before
CARLOS output data packet has been closed with the 3 footer words). So far if the
input gol ready goes to 0, a new event coming from AMBRA is processed and
stored in the FIFO before the previous one has been closed, giving rise to a
possible error. In CARLOS v5 each data_stop output is put to 0 only after the
output data packet has been closed by sending the 3 footer words.

In CARLOS v4 a situation may happen in which an internal signal notifying that
both FIFOs have been emptied occurs when the incoming signal go/ ready is 0: in
this case the signal is ignored and two consecutive events are merged into one.
CARLOS v5 has corrected this situation by taking into account the signal value
regardless of the gol ready signal value.

In CARLOS v4 the error flag word values are updated one every 64 clock cycles
regardless of the gol ready value. So far when the gol/ ready value is 0, some
important information such as an acknowledgement could be lost. In CARLOS v5
the error flag word values are updated one every 64 clock cycles only when the
gol ready signal is 1.

Department of Physics and INFN Bologna 3

CARLOS v5 reference manual

CARLOS v5 main features

4x4 mm?, 100 pins, CERN 0.25 um CMOS technology.

17k gates + four 256x9-bit SRAM blocks.

2.5V Power Supply.

200mA @ 40MHz.

double threshold 2D compression on input data; if desired, compression may be
disabled and, in this case, a simple 1D encoding is performed on incoming data.

40 MHz target working frequency.

interface to GOL implemented using both Ethernet and G-Link protocols.

standard IEEE 1149.1 JTAG implemented.

BIST implemented using 400 pseudo-random test vectors.

the JTAG port input values are decoded and delivered either towards CARLOS
itself, or towards the left or right hybrid (a board containing 4 PASCAL-AMBRA
pairs used to acquire data coming from a half-detector SDD), or towards the GOL
chip.

JTAG answer fdo and output data share the same 16-bit data channel towards the
GOL chip.

JTAG mode and RUN mode are mutually exclusive in time: it means that when in
JTAG mode, the normal behavior of the chip is frozen and vice-versa. CARLOS
working mode is determined by the commands "Enter JTAG mode" and "Enter
RUN mode" that CARLOSrx sends to CARLOS via the serial back-link.

adoption of measures against radiation effects: parity errors on RAM words and on
JTAG configurable registers are asserted in the error flag words put in output. The
same holds also for parity errors detected on AMBRA. Besides that parity errors
are also notified in the End Of Row Summaries.

Department of Physics and INFN Bologna 4

CARLOS v5 reference manual

o E o E b L °I ‘-'I a4 8 =

-9 od@m@mm | mEm @m@m o -—|'U'00080

b |AA4d &80 Mo A4 + PLeAAVOL |O

QA0 | | 10w (R ("] w | || 10 |

|4 P 000 HH PPLPPPY [} QnwunoodPo

P PP PH 3 53333 H HOOLPHP |

L~ R I A I - 0 00O O | (I B~ I N ™

%mm.gm--—iow [| + P HHANDDY

ﬁ:‘ﬁb’ﬁBB‘&r 8T & S88T 8B E

fddddddrafdodddldrdoddddd 150 um M1

A 8OO0 0z % 00000 @ OO0 0000 O

S MR R A DD A AR A AR

OOV ITNANHONOESWNSNINHOO®IN O

H OV OOV OV OO OO OOy 00 00 00 CO GO G 0 0 0 0 I~ I~ I~ I~

JLALICILAL AL] L] .

1:Pad_data_stop0] P 1 T S TR T T . / 75:Pad_serial_backlink -
2:Pad_data_write0 SR 74:Pad_serial backlink +
3:Pad_In0_0 =, 42, 73:Pad_cav
4:Pad_In0_1 " 72:Pad_dav
5:Pad_In0_2 W 71:Pad_gol_ready
6:Pad_In0_3 [T 8! 70:Pad_Outl5
7:Pad_In0_4 o 69:Pad_Outl4
8:Pad _In0_5 (L2 68:Pad Outl3
9:GNDO L= 67 :PWR6
10:Pad_In0_6 66:Pad_Outl2
11:Pad_In0_7 65:PWR1
12:Pad_In0_8 64:Pad_Outll
13:Pad_aftOl 63:Pad_Outl0
14:Pad_trigger0 62:Pad_Out9
15:PWRO 61:Pad_Out8
16:Pad_reset_LH 60:GND1
17:Pad_tdo_from RH 59:Pad_Out7
18:Pad_tdi_to_RH 58 :GND6
19:Pad_tms_to_RH 57:Pad_Outé6
20:Pad_tck_to_RH 56:Pad_Out5
21:Pad _trst_to_RH 55:Pad_Out4
22:Pad_dis_triggerl 54:Pad_Out3
23:Pad_data_endl 53:Pad_Out2
24:Pad_data_stopl 52:Pad _Outl
25:Pad_data_writel 51:Pad _OutO

o - =
90 um M2 2E L0
um [T
I+ ﬁﬁ PP O &
Y 53 ©O0
o 00 I1&T
O HNMSIIONS © o £ 1 g H0
T T T A 00 Vw00 |
L i N B O I I | - D - nwun |[nBo0Oo
70 um M2 CEEEESEE H@H Mx L0 000%0TO
HHHHHHHH H d 0 0 P H H P PP HPA 100 M2
doddddddiddiddy ool oddddd o um
Pl I B 000808 - 10900000088
[+ VI« VI - VIR VI < PO« VI« VO o PO o PO« VO G T ¥ o P P O VI - VI VI VR - PR - TR -)
WO HNMTINWOWME-0OHOO ANMPLI OO O
NANANNMOOMO OO OO PPN

B >5vivosreceivir [sy vob
B :5vivos ransvirTER [25v ono

B ;v cMos OUTPUT B >V cvos INPUT

Fig. 1: CARLOS v5 final layout

Department of Physics and INFN Bologna 5

CARLOS v5 reference manual

W N -

4 Pad_data_stop0

5 Pad_data_write0
6 Pad_In0_0

7 Pad_In0_1

8 Pad_In0_2

9 Pad_In0_3

10 Pad_In0_4

11 Pad_In0_5

12 GNDO

13 Pad_In0_6

14 Pad_In0_7

15 Pad_In0_8

16 Pad_aft0

17 Pad_trigger0

18 PWRO

19 Pad_reset LH
20 Pad_tdo_from_RH
21 Pad_tdi_to_RH
22 Pad_tms_to_RH
23 Pad_tck to_ RH
24 Pad_trst_to_RH
25 Pad_dis_triggerl
26 Pad_data_end1
27 Pad_data_stopl
28 Pad_data_writel

E + + =
e R
ez 3%z EE =TI o _S02233
) g o = = =TT
T o= 1= 332 (N (. 2 =m0 00 7
£ 189 8= sE8E2:E 2 CBoo il
sftetites g ZEE222Z B FHB88222%
5“|~"§E--'°2 o »,‘_1'»,‘4‘ g' gIEE:le“lg
%‘Ege'“lglgln'lvm3\3\°|3\3\§m|3m|°|°|ggg“l
|I“I'g-c-c-c-cgg-:-:-c-:-:a-c:-c-c-c.c'-g'-g'-c
TS s eff s 28 S SF IR s S
| 8 A A A A OO o o P B P P B A A A A A A A
N R R N D R N I R
mNa,_‘omma\c\o\ooc\c\ocooooxoooooowooool\
—
4\\ //
\\ B)\SILYA]
1 7
\ ael
[g
il
— =1 |
‘rﬂ e
[C] |
//H\' \\\\
s ~
— d
-
S e O
TS 25
~Z gz Q&
= & =2 O ¢
S = AN T NS~ -] °H| HQO:QI;‘-Q
R R I = . e QIS8 1
TEEEEEEE FEE vx.,.T5.322.258%
L R o = o = - B o o B
-u-u-u-u-u-u-u-u%-u-u%w:w:a-:s-ua-u-c-u-u-c-:s-u
SRR TSI I IR S S & < < [T T T B A -
B A A A A A A A O A A DA A A A A A A A A A A A A
QAOS = AN ITULOT-RAOO =N TN ORS¢
NNt TTEYTTITTITTTTTTOONOW

78 Pad_serial_backlink +
77 Pad_serial_backlink -
76 Pad_cav
75 Pad_dav
74 Pad_gol_ready
73 Pad_Outl5
72 Pad_Out14
71 Pad_Outl3
70 PWR6
69 Pad_Outl2
68 PWR1
67 Pad_Outl1
6 Pad_Out10
65 Pad_Out9
64 Pad_Out8
63 GND1
62 Pad_Out7
61 GND6
60 Pad_Out6
59 Pad_Out5
58 Pad_Out4
57 Pad_Out3
56 Pad_Out2
55 Pad _Outl
54 Pad_Out0

Department of Physics and INFN Bologna

CARLOS v5 reference manual

ch_out (LIS
et stopd,
JTAG i4)
triggerl, qitl
raset RH
i 9 signals)

P

left el out (LVDS)
hybrid data_stopd,
JTAG {4)
triggerd, qft(
raset LH
i 9 signals)

R reset

CIP

i

sevicl beek-link

TLK-1501 14
== DES paag
200 m Lr=ck »l
_ ok 0
RX40 [o

(LVDE)

CARLOS
rx

4

TTICrx

ck, Llaccept,
local event idertificatior
glohal event identificatic

Fig. 2: SDD readout chain

Department of Physics and INFN Bologna

CARLOS v5 reference manual

General chip description

SDD readout chain

CARLOS v5 is an ASIC belonging to the SDD readout chain, as shown in Fig. 2. The
chip is directly interfaced to different devices:

e 2 hybrids: an hybrid is a board containing 4 PASCAL — AMBRA pairs, being
the front-end electronics acquiring data coming from a half-detector;

e GOL: a rad-hard serializer chip sending data to CARLOSrx by means of a 800
Mbit/s optical link. The GOL requires a very low-jitter clock (max 100 ps peak
to peak): such a clock is sent to GOL using the QPLL device.

e CARLOSrx: an FPGA-based device put in counting room with the purpose of
collecting data coming from different SDD chains and sending them towards
the DDL system. Besides that it remotely controls CARLOS using a 40 MHz
serial back-link for what concerns CARLOS working mode and JTAG
programming. It also manages the interface between CARLOS and the CTP
system and the TTCrx device, transferring trigger signals from the TTCrx to
CARLOS on the serial back-link and transferring the busy signal from
CARLOS towards the CTP. For more details on CARLOSrx see the document
carlosrx_datasheet.pdf available at the following Web site:
http://www.bo.infn.it/~falchier/alice.html.

This document refers to the CARLOSrx device used at the August 2003 CERN
test beam.

CARL.OS architecture

The purpose of CARLOS v5 is to perform an on-line 2D compression on two
incoming 8-bit data streams from the two hybrids, one for each half-detector.
Compressed data are then packed in 30-bit long words using a barrel shifter,
temporarily stored in a 26x30 flip-flop based FIFO and then multiplexed on a single
16-bit bus output towards the serializer GOL chip (see CARLOS architecture in Fig.
3). The two data channels are processed in parallel and, in each data processing
channel, compression, packing and storing steps are performed as successive stages of
a pipeline with a clock running at 40 MHz.

Compression performances are completely tunable using a set of registers that can be
programmed using a standard JTAG access port. Using this port, 2D compression
itself can be switched on or off and threshold levels can be modified by writing and
reading internal configuration registers only when CARLOS is in JTAG working
mode. Beside that, internal registers are protected against the radiation effects using a
parity mechanism: each time a register is accessed, parity is computed and compared
with the expected value. In case a mismatch is found, it is reported in the End Of Row
Summary at the end of each processed anode. In case a severe parity violation if

Department of Physics and INFN Bologna 8

CARLOS v5 reference manual

found, an error flag is switched on in the output data sent to CARLOSrx through the
optical link, so to allow CARLOSrx to program CARLOS internal registers again the
sooner the possible. The CARLOSrx device remotely controls CARLOS v5 via a
synchronous serial back-link.

CARLOS provides both clock signal and the JTAG signals to the left and right
hybrids. The ck_out CMOS output pad is directly connected to the ck input: it is used
to provide the clock to AMBRA and PASCAL. If needed the LVDS ck out LH and
ck _out RH output pads can be used as well.

For what concerns JTAG, CARLOS also acts as a JTAG switch providing 3 4-bits
JTAG ports in output: one for the left hybrid, one for the right hybrid and one for the
GOL chip. In other words CARLOS receives the JTAG port signals encapsulated over
the serial back-link and provides in output 3 JTAG ports, thus allowing to open a
JTAG connection towards different devices.

The mechanism is the following one: after receiving the #rs¢ signal on the serial back-
link channel, CARLOS begins waiting for a 7-bit address (encoded with redundancy
and parity protected) containing the information of which is the device to be addressed
via JTAG. After decoding the address, JTAG information can be switched to
CARLOS itself, to the right hybrid, to the left hybrid or to the GOL chip, so far
providing JTAG connectivity towards PASCAL, AMBRA, CARLOS and GOL chips.
The JTAG connection can then be closed by asserting the trst signal again over the
serial back-link channel or by resetting CARLOS (beside closing the JTAG connection
a reset action also resets all the internal register, so it is neither a good practice nor
useful to close a JTAG connection in this way).

CARLOS v5 can work in two distinct and non-overlapping in time working modes,
JTAG mode and RUN mode. After a reset action CARLOS is put in JTAG mode, then
it can be put in RUN mode by sending the command "Enter RUN mode" on the serial
back-link: in the same way when in RUN mode, CARLOS is put in JTAG mode when
receiving the command "Enter JTAG mode".

e When in JTAG mode, CARLOS can not process neither any input data from
AMBRA (data_stopl and data_stop0 outputs are kept high) nor any trigger
input command (when CARLOS is in JTAG mode, CARLOSrx itself has to
provide a busy = 1 towards the CTP system): only reset and JTAG commands
are processed. After CARLOSrx opens a JTAG connection towards one of the
hybrids or the GOL, the selected device begins sending the JTAG answer on
their output pins tdo (from CARLOS point of view: tdo from LH,
tdo _from RH, tdo from GOL). CARLOS samples the tdo values coming from
the selected device when they are valid and sends them towards CARLOSrx
using the 16-bit output data bus, the same used for sending data and error flags
words when in RUN mode.

After CARLOSrx opens a JTAG connection towards CARLOS itself, CARLOS
internal JTAG answer tdo is sampled and put in output over the 16-bit output
bus. In each case the tdo value (either coming from outside or computed
internally on CARLOS) is sampled only in the JTAG standard states Shift-IR

Department of Physics and INFN Bologna 9

CARLOS v5 reference manual

and Shift-DR. In the former case the #do output is 1000...0 serially shifted out
(the code length is the same as the number of bits of the JTAG Instruction
Register). In the latter case the fdo output contains the value of the selected
internal register serially shifted out (so far the old register content before being
written again).
When a broadcast JTAG operation is performed (more than one chip JTAG-
addressed at the same time), no tdo value is sampled by CARLOS (CARLOS
does not receive any information on whether the operation has been successful
or not), in fact in this case more than one chip would be driving CARLOS tdo
input signal, resulting in a bus contention.
In case CARLOSTrx tries to open a JTAG connection towards a device without
success, it will not receive the expected answer on the JTAG word, so that it
will try to open the JTAG connection again, after a time-out period. No error
code concerning the impossibility of opening a JTAG connection has been
foreseen.
e When in RUN mode, CARLOS processes data coming from AMBRA and
trigger commands coming from CARLOSrx over the serial back-link channel.
Data words sent towards the GOL chip contain both processed data and error
flag words encapsulated in a protocol compliant both with G-Link and Ethernet
standard modes.
CARLOS v5 also hosts a BIST (Built In Self Test) facility in order to ease the chip test
and selection: after running the JTAG RUNBIST command, 400 test vectors are fed
into the 2 processing channels. Data coming out from the multiplexer block Outmux
are then analyzed by a Signature Maker block performing a deterministic function of
its inputs and producing a 16-bit code strictly dependent on its input data. This code
can then be read using the standard JTAG port in order to check whether the chip has
passed the test or not. It is a pass / no pass test: it gives no indication of where the
failure happens, if any.
An other test facility hosted on CARLOS is a multiplexer bringing in output the values
of key internal nets, such as the output of the compressor block or the barrel shifter, in
order to ease the chip debugging phase. The multiplexer selection lines are directly
driven by the 3-bit input bus set_test.

Department of Physics and INFN Bologna 10

CARLOS v5 reference manual

RH

T S e e e s A T T ck_out | ..%&H |
reset m —f—w ag 26:30 m LVDS g ok out LH
| RH data inl _| a b : rIIEMml'-nWIDGﬁIW.E :
st vorst Lo compr. | | barrel |B)| fifo data [| data stopl| RH
data_endl —}— at L !
; g Hee —data stopl | LH |
data_inl —fp b :
__anwua-{» [2D compr. | mEp | barrel |m5)| fifo data =) | tocked
| 1H data_end0—f—® — -t gol_ready
Lvpa : - reset OUT, prapulse W mwm [1
serial back-tink | » mﬂ.._m_ L frigger, tesipulse . i Boundnry — GOL |
CARLOSIx receiver [wl generate [4 Jswitch JTAG sean ¥ output_data
L | ; #
ftag
4
Al our outmux
tdo_from RH tdo_from_imtermal boundary scan—— g 13521
tdn from LH | tdo M,M_u »| tdo to [™ fifo MW 4, W JTAG to LH
e B Bk o mux |tk [4, JTAG_to_RH
; : \ 10 B it
trigger interface event_couriter mv 4. ITAG to_GOL
_aftl »
i Esmmﬂ; HTL L6 preset LH
s_irigger » error code maker mw e fese R
i = —wreset GOL

¥ ¥

diz trigger0 afi0 trigger(
Ir 1

2 e s
catlos id

H prepulse

2 g
set_test test output

Fig. 3: CARLOS v5 schematic blocks

11

Department of Physics and INFN Bologna

CARLOS v5 reference manual

Main processing unit

The main processing unit of CARLOS v5 is composed by 3 main logic blocks (see
Fig. 3):

e 2D compressor

® barrel shifter

e fifo data

The 2D compressor implements a bi-dimensional double threshold compression
algorithm applied to the incoming data stream. Its purpose is to find and save data
clusters, while rejecting all noise and not interesting information. It can be disabled by
programming the internal register enable 2D with the value 0. In this case a simple
encoding is performed on input data.

The barrel shifter block has the purpose of packing the valid bits of the compressor
output bus into a 30-bit register containing only valid data. The barrel block hosts an
internal 60-bit long register: as soon as the 30 LSBs are ready to be put in output, the
30 MSBs are ready to accept data coming as a new input. As the last output data of an
event coming from the compressor arrives, the valid bits contained in the 60-bit
register are put in output padding the remaining bits with 0 when necessary.

The fifo data block is a flip-flop based FIFO used to buffer compressed and packed
data before they are multiplexed into the 16-bit output. The FIFO contains 24 30-bit
words. The FIFO is asymmetric for what concerns the 1/0O buses: in fact the input bus
is 30-bit long and the output bus is 15-bit long. This leads to the fact that one push
action is balanced by two pop actions. The FIFO contains several output flags showing
the FIFO status: empty, almost_empty, half full, almost full and full.

The almost_full flag is asserted when 20 out of 24 memory locations have been
written, while the half full signal is asserted when 12 out 24 locations of the FIFO are
in use. Starting from these two signals, an hysteresis flag has been created: it is
asserted when the FIFO gets almost full and is put back to 0 when at least half of the
FIFO locations have been freed. The hysteresis flag is one of the signals that have been
put in OR with each others in order to create the data stop output. Having a FIFO with
hysteresis is very important since it allows to have a smaller number of transitions on
the data_stop signal with respect, for example, to the use of the almost_full signal for
creating data_stop. This results in a higher reliability of the complete system. Thanks
to the mechanism of the hysteresis flag the FIFO should never get completely full and
then overflow. The hysteresis flag is also sent in input to the compressor block in order
to deal with this particular situation: at the end of an event fetch, the 2D compressor
sends data contained in the RAM one after the other without any back-pressure taking
place. In case the data are numerous, they can be put the FIFO in overflow. In order to
avoid this situation the hysteresis flag is used as a back-pressure on the 2D compressor
as well.

Department of Physics and INFN Bologna 12

CARLOS v5 reference manual

2D compressor block

The 2D-compressor algorithm is essentially based on a double-threshold cluster-
finding technique. Compression performances are completely tunable using a set of
registers that can be programmed using a standard JTAG port. Using this port, the 2D
compression itself can be switched on or off and the threshold levels can be modified
by writing and reading the JTAG port.

A cluster is defined by a five cross-like 8-bit pixels structure: the five pixels, each
composed of five 8-bit data, are named respectively EAST, CENTER, WEST,
NORTH and SOUTH. At every clock cycle the CENTER pixel is analyzed: its value is
saved if:

e at least it is higher than a low threshold;
e at least one of the five pixels of the cross is higher than the high-threshold (or
higher than the low threshold if CENTER > Ty).
In case both conditions are met, the central point of the cross is saved and encoded by
means of a variable length encoder. In this way the chosen 8-bit pixels are converted
into 5 to 10-bit encoded data depending on their data values. Thus, going back to the
cluster finding technique, three main cases can be described:

1.if the cluster is detected alone, separated from others, not only the encoded data
value is transferred but also its position within the matrix. This condition applies
always at the beginning of a multiple cluster.

2.if the cluster follows a previously detected adjacent cluster, its position is
already known since it is “the previous one + 1” and its position information is not
transferred. This is a case of a multiple cluster where only the encoded data are
transferred, apart from the first data that satisfies the threshold conditions.

3.if the cluster is not detected, no information is put to output.

The electronics of the 2D-compressor itself masks one or two of these five bytes to
zero in case the CENTER is located onto the border of the matrix. For example in case
the CENTER is located in the higher right corner the compressor sets the NORTH and
EAST bytes to zero. Moreover, during the analysis of the 256-th row the compressor
sets to zero the SOUTH bytes. This is in order to avoid detecting clusters even where
they are not present.

At the end of each stream of data samples (up to 256) that compose each anode, the
compressor sets an End Of Row Summary that summarizes the information of the
anode itself. For example, occasional parity errors that may arise into CARLOS
registers or during the read/write operation on the RAMs. In addition the summary
specifies if the bi-dimensional compressor is active or not. Then other internal counter
overflow flags are packed in the summary to be able off-line to reconstruct easily all
the parameters of the physics of the event.

The CARLOS compression internal unit is mainly composed of two RAM memories
and some logic. The two 256 x 9-bit words memories temporarily store the incoming

Department of Physics and INFN Bologna 13

CARLOS v5 reference manual

data for letting the bi-dimensional compressor analyze the potential clusters. The RAM
of the compressor unit is composed of the following registers:

- an 8-bit input register storing data coming from the front-end electronics at

every clock cycle;

- 2256 x 9-bit dual-port RAM blocks RAMO and RAMI,

- 5 8-bit registers NORTH, SOUTH, EAST, CENTER and WEST.
The data values coming from the input register are sequentially written from address 0
of the first memory RAMO up to the address 255 of the second RAM1 and then again
from the first address of the first memory. In this way the two memories are circularly
written. At the same time both memories are read at the same address. In this way two
rows of the incoming matrix plus one value are stored during each clock cycle, in
order to determine if its center value has to be saved or rejected.

Disabling the 2D compressor

When the 2D compression is disabled (enable 2D = 0), the following encoding on
input data is performed:

Input data range Output code Bits

0-1 1 bit & 000 4 bits

2-3 1 LSB bit & 001 4 bits

4-7 2 LSB bits & 010 5 bits

8-15 3 LSB bits & 011 6 bits

16-31 4 LSB bits & 100 7 bits

31-63 5 LSB bits & 101 8 bits
64-127 6 LSB bits & 110 9 bits
128-255 7 LSB bits & 111 10 bits

After receiving the last data word of an event coming from AMBRA, the compressor
block keeps sending in output 16 dummy words whose value depends on the data
coming from AMBRA. These values have to be rejected while decoding CARLOS
outputs.

End of Row Summary

When the 2D compression is enabled, after processing all the samples belonging to an
anode, an End of Row (EOR) Summary is sent in output. It is 21-bit long with the
following format:

E/O VL VZ VH NCL NCZ NCH | Parity 001
1 bit 1 bit 1 bit 1 bit 3 bits 4 bits 4 bits 3 bits 3 bits
Department of Physics and INFN Bologna 14

CARLOS v5 reference manual

where:

E/O: Even / Odd anode.

VL: Overflow of the counter NCL, it is put to 1 if NCL reaches 7 counts within an
anode;

VZ: Overflow of the counter NCZ, it is put to 1 if NCZ reaches 15 counts within an
anode;

VH: Overflow of the counter NCH, it is put to 1 if NCH reaches 15 counts within an
anode;

NCL: it counts the CENTER pixel values satisfying TL, but not TH.

NCZ: it counts the CENTER pixel values whose value is 0.

NCH: it counts the CENTER pixel values satisfying TH.

Parity: it is a 3-bit code whose meaning is explained in Table 1.

A parity error on CARLOS is detected if one of the following conditions apply:

e a parity error is detected on CARLOS internal RAMs;

e a parity error is detected on CARLOS JTAG programmable registers.

A parity error on AMBRA is detected if the MSB of AMBRA data bus (bit 8) is set to
logic level 1.

Parity meaning
000 no error on A & C (enable 2D = 0)
001 severe error on both A & C
010 sever error on C, no info on A minor error
011 sever error on A, no info on C minor error
100 minor error on both A & C
101 minor error on C, no error on A
110 minor error on A, no error on C
111 no error on A & C (enable 2D = 1)

Table 1: Parity violation information in the EOR Summary.

with the following definitions:

e sever error: >= 7 parity errors on the samples of one anode;

e minor error: < 7 parity errors on the samples of one anode.

A severe error is also reported in bits 3-0 of the error flag words.

The EOR Summary is appended at the end oh each processed anode also when the 2D
compression is disabled. In this case its format is the following one:

14 zeros E/O Parity 001

14 bits 1 bit 3 bits 3 bits

N.B.: Possible parity errors occurring on the first two pixels of an anode and on the
last two pixels of an anode may not be reported in the EOR Summary.

Department of Physics and INFN Bologna 15

CARLOS v5 reference manual

Data transmission protocol

JTAG mode

During the JTAG programming of one of the front-end devices, the JTAG answer tdo
is sent to the GOL chip via the 16-bit bus output data. The tdo signal can be generated
by one of the following devices:

¢ by the internal boundary scan block on CARLOS;

e by the PASCAL chips;

e by the AMBRA chips;

¢ by the GOL chip itself

depending on which is the JTAG-addressed device.

In order to sample the tdo value only when valid (in fact CARLOS does NOT receive

any tdo_en input signal), CARLOS monitors the fms input signal received over the

serial back-link channel, in order to be always aware of the current state of the JTAG
state machine. The tdo value will then be sampled only during the Shift-DR and Shift-

IR states as foreseen by the standard IEEE 1149.1.

Three cases have been foreseen:

e when CARLOS is JTAG-addressed: the fdo coming from the internal boundary
scan unit is sampled;

e when an other device is JTAG-addressed: the tdo coming from outside (either
tdo_from LH or tdo_from RH or tdo _from _GOL) is sampled. In this case the tdi
input sent towards CARLOS internal boundary scan unit is tied to 1: so far
CARLOS internal instruction register finds a BYPASS command and no undesired
change is applied on CARLOS internal registers.

e when in broadcast mode: no tdo value is sampled and put in output at all.

When addressing PASCAL, AMBRA or CARLOS:
After being sampled, the selected #do values are then stored into the fifo jtag
128x1 FIFO. Then if the gol ready signal is 1, the FIFO block is read out and
the JTAG words are put in output. So far in normal conditions the FIFO is
written during one clock cycle and read at the following one, so it never gets
full. If the GOL PLL loses the synchronization with its incoming clock
(gol_ready = 0) while CARLOS is transmitting JTAG words, the tdo values are
stored into the FIFO and remain there until the go/ ready signal is asserted
again. If the gol ready stays inactive for a long time (some ms), then the FIFO
might overflow and JTAG programming should be run again.

When addressing the GOL chip:
A special issue has to be dedicated to the GOL JTAG programming. After
addressing the GOL chip and during its internal registers programming phase,
CARLOS samples its tdo values (tdo_from GOL) and stores these values into
an internal memory (fifo_jtag) consisting of 128 bits. The values stored into this
buffer are then sent in output only after the JTAG connection towards the GOL

Department of Physics and INFN Bologna 16

CARLOS v5 reference manual

chip has been closed by asserting the #rs¢ signal and only if the gol/ ready signal
is active (i.e. the GOL chip is ready to transmit data over the optical fibre). In
fact when running JTAG instructions on the GOL chip, such as the Sample /
Preload or Extest instructions, the chip is no longer able to transmit data. The
same holds when writing GOL internal configuration registers, which may
cause the PLL synchronization loss. So far during each JTAG programming
stage of the GOL chip, no more than 128 bits have to be expected back as a
JTAG answer; otherwise the fifo jtag block overflows and the JTAG answer
gets corrupted. In the 128 bits total budget, 5 bits have to be taken into account
for each instruction sent to the GOL and then n bits for the data register being
accessed. For instance, 55 bits for accessing internal configuration registers and
57 bits for accessing GOL internal boundary scan chain. The CORETEST
JTAG instruction can not be run on GOL, since its output can be understood
only by GOL designers. All the others JTAG instructions can be run on the
GOL chip. If the expected budget exceeds 128 bits, two consecutive JTAG
connections towards the GOL chip can be opened and run one after the other.

The tdo signal is put in output by the Outmux block with the following format (see Fig.
4):

JTAG code: 0110

JTAG address (the 7-bit word received when opening a JTAG connection)
3-bit counter: it is incremented for every tdo sample put in output

tdo value

not(¢do) value (in order to have a better fault tolerance)

When a JTAG word is available on the output bus, the strobe pins tx _en and cav are
asserted. In this way CARLOSrx can easily check JTAG answers and verify the
correctness of the internal registers value.

Consecutive values of tdo in the JTAG answer have the following meaning:

e 100...0 while sending a JTAG instruction, the number of bits depends on
the selected device JTAG IR length. CARLOS and GOL have 5-bit long
instruction registers, while PASCAL and AMBRA have 16-bit long
instruction registers.

¢ n bits with the register value: its length depends of the register actually
being read. For instance, when loading a 9-bit register, the fdo signal carries
out serially the old value of the register.

The JTAG answer related to the BIST output is not put in output after sending the
command RUNBIST since the BIST tests the two macro-channels and the multiplexer
as if it was in RUN mode. The JTAG answer is then activated again after sending the
command READ BIST RESULT.

Department of Physics and INFN Bologna 17

CARLOS v5 reference manual

tx en=1
O[1|1|0|alalalalalalalclec|c|s|s| cav=1
, | dav =0
" JTAG code | ITAG address ;
J—-—r—
tek counter
—
tda f natftda)

Fig. 4: JTAG answer on the data channel
RUN mode

During the JTAG mode only JTAG words are put in output.

During the RUN mode, processed data are sent in output with the protocol, shown in
Fig. 5, that is compliant with both Ethernet and G-Link standard transmission
protocols. The tx_en strobe is used when choosing the Ethernet mode, while cav and
dav signals have to be used when choosing the G-Link mode. The main difference
between the two protocols on the user side is that the G-Link mode allows to
distinguish data and control words with different strobe signals, while Ethernet mode
implies to make this distinction directly on the 16-bit bus. In order to be able to use
both protocols, we decided to identify the output words meaning using the first bits in
the following way:

MSB = 1: data word

MSBs = 00: error flag word

MSBs =010: header

MSBs =0111: footer

MSBs =0110: JTAG word

The strobe signal #x_en is asserted when one of the mentioned words has to be sent to
the GOL chip, otherwise it is tied low.

The strobe signal cav is asserted when either an error flag word or a JTAG word has to
be sent in output (at the same time the dav signal is put to 0, cav and dav are never
asserted at the same time).

The strobe signal dav is asserted when a data word or header or footer has to be sent in
output.

After one of the FIFOs fifo data begins receiving data from the barrel shifter block
and when the gol/ ready signal coming from GOL is 1 (meaning that it is ready to
accept input data), a new output data packet is started with 3 identical header words.
The header contains a 10-bit event ID word that will be used by CARLOSrx in order
to group together data coming from different detectors but belonging to the same
event. The 10-bit counter is put to 0 after a reset action, then it is incremented by 1 for
every data packet sent in output. The header word also contains a 2-bit CARLOS ID
whose value is hardwired externally to CARLOS.

Department of Physics and INFN Bologna 18

CARLOS v5 reference manual

After the header words, data words from the two macro-channels are sent in output in
an alternated way starting from chO and so on. When a channel has no data to put in
output, £x_en and dav are put to 0 and then, at the next clock cycle, the other channel
sends valid output data again, if it has any. So far even in the case one channel only
was used, half of the bandwidth would be allocated to the other channel.

At each rising edge of the clock CARLOS samples the gol ready signal value: when
1, CARLOS sends a valid word in output if it has any, otherwise no valid word in sent
in output. For a correct data reconstruction on the CARLOSrx side, it is necessary for
gol ready to stay active for an even number of clock periods, otherwise the first data
after an interruption can be interpreted as belonging to the wrong channel and then
cause serious misunderstanding on output data. This has been solved by generating an
internal signal on CARLOS that is equal to gol/ ready when it stays active an even
number of clock periods and stays active a period longer when go!/ ready stays active
for an odd number of clock cycles.

Error flag words

The error flag word is sent in output 1 every 64 clock cycles starting from the moment
in which CARLOS enters the RUN mode. After an error flag word, data sent in output
belongs to the opposite channel with respect to the one sending data before the error
word (see Fig. 5). The error word has the following format:

Bit # Description

bit 15-14 00: error flag word identifier

bit 13 L0 acknowledge
Asserted after receiving and decoding the LO command on the serial
back-link.

bit 12 L1reject acknowledge

Asserted after receiving and decoding the Llreject command on the
serial back-link.

bit 11 L2reject acknowledge
Asserted after receiving and decoding the L2reject command on the
serial back-link.

bit 10 prepulse acknowledge
Asserted after receiving and decoding one of the prepulse commands
on the serial back-link.

bit 9 testpulse acknowledge
Asserted after receiving and decoding the testpulse command on the
serial back-link.

bit & a flush action has been taken
Asserted after the flush has been activated
bit 7 busy

It is asserted after CARLOS receives a L0 command and put to 0

Department of Physics and INFN Bologna 19

CARLOS v5 reference manual

when dis triggerl and dis trigger() go to 0

bit 6

flag error 1 (right hybrid)
It is asserted when CARLOS detects a synchronization error with

AMBRA on channel 1.

bit 5

flag error O (left hybrid)
It is asserted when CARLOS detects a synchronization error with

AMBRA on channel 0.

bit 4

dis_trigger mismatch acknowledge
It is asserted when CARLOS finds a mismatch between the signals
dis triggerl and dis_trigger() coming from AMBRA.

bit 3

parity error 1 (right hybrid)
It is asserted when CARLOS detects a severe parity error on data
coming from AMBRA RH.

bit 2

parity error O (left hybrid)
It is asserted when CARLOS detects a severe parity error on data

coming from AMBRA LH.

bit 1

parity error CARLOS 1 (RH)
It is asserted when CARLOS detects a severe parity error on internal
RAMs or on internal JTAG programmable registers on channel 1.

bit 0

parity error CARLOS 0 (LH)
It is asserted when CARLOS detects a severe parity error on internal
RAMs or on internal JTAG programmable registers on channel 0.

Table 2: Format of the error flag word

bits 13-9:

When a command (LO, Llreject, L2reject, one of the prepulse commands,
testpulse) is received on the serial back-link and decoded, an internal signal is
asserted until an error flag word is sent in output with the corresponding bit set.
Then the internal signal is put back to 0 until a new acknowledgment has to be
notified to CARLOSrx.

After a synchronization error between AMBRA and CARLOS requiring the use
of the flush mechanism, an internal signal is asserted until an error flag word is
sent in output with the corresponding bit set. Then the internal signal is put back
to 0 until a new notification has to be sent.

The time from the moment when CARLOS receives the trigger command and
when the busy signal is asserted is not fixed. In fact it depends on the relative
timing from the moment in which the trigger command is received and decoded
and when the next error flag word is issued. It is a variable length period from 1
to 64 clock cycles. Then busy signal stays active for the time PASCAL needs to
transfer the content of the analog memory to AMBRA or, when all AMBRA
buffers are full, the time needed to empty one of the 4 buffers.

Department of Physics and INFN Bologna 20

CARLOS v5 reference manual

bits 6-5:
Once asserted, the flag error remains to logic level 1 until a reset action or until
CARLOS in put in JTAG mode, when Stop If Error is 1 (with the exception of
the case in which the flush mechanism is activated). When Stop If Error is 0,
the flag error is asserted only for one error flag word, then it is reset.

If there are no connection problems, the 2 dis_trigger signals coming from the
left and right hybrid may differ only when the following situation occurs: when
all AMBRA buffers are full, supposing that channel 1 transfers to CARLOS an
event in a shorter time than channel 0, there will be a time in which one
dis_trigger signal is already 0 and the other one still fixed to 1. For this reason
CARLOS internally performs the OR of the incoming dis_trigger signal for the
generation of the busy signal.
bits 3-0:

Bits 3-0 of the error flag words are asserted only when a severe parity error
occurs either on AMBRA or on CARLOS or on both devices. In fact when
finding out 7 parity errors or more while processing data samples belonging to
an anode, the related bit is asserted for the upcoming one or two error flag
words. The parity error is notified in one or two error flag words depending on
the timing the error is found with respect to the timing in which internal flags
are sampled before being sent in output. Let's say, for example, that when
processing anode number 41 and after processing 201 samples a severe error is
detected; let's also suppose that an error flag word is sent in output while
processing sample number 221. Since the internal flag reporting a severe parity
error will be asserted until the end of the row, its value will also be sent in the
forth-coming error flag word.

%)

]

E
5| 5| & = & ElE|E
ol sl o|lmjlo|l=1=2|—1=2|+|m|=|— olol| T
slEIEl [zl slzlz]lelalzlElz]|2]lE|8
mmmﬁﬁ*‘ﬁﬁﬁﬁgﬁﬁﬁ }lﬁbits

IR E B AR E
= g

0]ojo [" 10 S| il
(ST 0 1{1]1
0 AR EE EE T BN E T B 0

tX _en | | L
dav | L] L

cav

1

15 12 2110 15 12]

Header [O10| EventID | Footer O1T|1T11111111111
N

CARLOSID 0
Fig. 5: CARLOS v5 output transmission protocol

Department of Physics and INFN Bologna 21

CARLOS v5 reference manual

CARLOS v5 pin position and function

Terminal name | no | Type Description
data_inl(8-0) 35- I |Input data bus coming from the right hybrid. The MSB is the
26 parity bit from AMBRA: when 1, a parity error has been

detected on AMBRA .

data_in0(8-0) 12- I |Input data bus coming from the left hybrid. The MSB is the

3 parity bit from AMBRA: when 1, a parity error on AMBRA

has been detected.

data writel 25 I |Input signal coming from RH: when 1 data inl is valid and has
to be accepted

data_write(2 I |Input signal coming from LH: when 1 data in0 is valid and has
to be accepted

data_endl 23 I |Input signal coming from RH: it is asserted in coincidence with
the last valid data of each event.

data_end(100 | I |Input signal coming from LH: it is asserted in coincidence with
the last valid data of each event.

data_stopl 24 O | Output signal sent to RH: when 1 it means that CARLOS can
no longer accept input data.

data_stop(1 O | Output signal sent to LH: when 1 it means that CARLOS can
no longer accept input data.

triggerl 41 O |After receiving the LO command on the serial back-link,
triggerl is asserted for one clock period.

trigger(14 O |After receiving the LO command on the serial back-link,
trigger() is asserted for one clock period.

aftl 36 O | Abort / flush / testpulse signal sent to RH

aftl 13 O | Abort / flush / testpulse signal sent to LH

dis_triggerl 22 I |Input from RH: when asserted no trigger signals have to be sent
towards AMBRA

dis_trigger(99 I |Input from LH: when asserted no trigger signals have to be sent
towards AMBRA

gol ready 71 I |Input from GOL: when asserted the GOL chip is ready to
receive data, otherwise data transmission has to be stopped.

locked 50 I |Input from QPLL: when asserted the QPLL is in locked state,
otherwise data transmission has to be stopped.

Ix _en 47 O |Output strobe to GOL: when asserted the output data bus
contains a valid data value to be transmitted.

cav 73 O |Output strobe to GOL: when asserted the output data bus
contains a control word to be transmitted, either a JTAG word
or an error flag word, depending on CARLOS working mode.

dav 72 O |Output strobe to GOL: when asserted the output data bus

contains a data word to be transmitted (header or footer or data
word)

Department of Physics and INFN Bologna

22

CARLOS v5 reference manual

output data(15-0) |70- | O |Output bus towards GOL.
51
ck 38- | I |LVDS input clock signal.
39
reset 44 I |Active low reset. When active all internal registers are
initialized.
reset LH 16 O |Active high signal towards LH. It can be asserted
asynchronously by the reset input or synchronously when
receiving the "Reset LH" command: in this case it stays active
for 8 clock periods.
reset RH 42 O |Active high signal towards RH. It can be asserted
asynchronously by the reset input or synchronously when
receiving the "Reset RH" command: in this case it stays active
for 8 clock periods.
reset GOL 48 O |Active low signal towards GOL. It can be asserted
asynchronously by the reset input or synchronously when
receiving the "Reset GOL" command: in this case it stays
active for 8 clock periods.
ck out 88 O | The input ck is directly propagated in the output signal ck out.
ck out LH 86- | O |The input ck is directly propagated in the output LVDS
87 ck out LH
ck out RH 89- | O |The input ck is directly propagated in the output LVDS
90 ck out RH
serial_backlink 74- | 1 |LVDS input serial signal sending CARLOS reset, JTAG
75 commands and trigger information using 8-bit DC-balanced
codes.
tdi to LH 95 O |Test Data Input to LH propagated to LH when a JTAG
connection towards LH (or a broadcast connection) has been
opened.
tms_to LH 96 O |Test Mode Select to LH propagated to LH when a JTAG
connection towards LH (or a broadcast connection) has been
opened.
trst to LH 98 O |Test Reset to LH propagated to LH when a JTAG connection
towards LH (or a broadcast connection) has been opened.
tck to LH 97 O |Test Clock to LH propagated to LH when a JTAG connection
towards LH (or a broadcast connection) has been opened.
tdi to RH 18 O |Test Data Input to RH propagated to RH when a JTAG
connection towards RH (or a broadcast connection) has been
opened.
tms_to RH 19 O |Test Mode Select to RH propagated to RH when a JTAG
connection towards RH (or a broadcast connection) has been
opened.
trst to RH 21 O |Test Reset to RH propagated to RH when a JTAG connection

Department of Physics and INFN Bologna 23

CARLOS v5 reference manual

towards RH (or a broadcast connection) has been opened.

tck to RH 20 O |Test Clock to RH propagated to RH when a JTAG connection
towards RH (or a broadcast connection) has been opened.
tdi_ to GOL 79 O |Test Data Input to GOL propagated to GOL when a JTAG
connection towards GOL has been opened.
tms_to_GOL 76 O |Test Mode Select to GOL propagated to GOL when a JTAG
connection towards GOL has been opened.
trst to GOL 77 O |Test Reset to GOL propagated to GOL when a JTAG
connection towards GOL has been opened.
tck to GOL 78 O |Test Clock to GOL propagated to GOL when a JTAG
connection towards GOL has been opened.
tdo from RH 17 I |JTAG answer coming from RH.
tdo from LH 94 I |JTAG answer coming from LH.
tdo from GOL 49 I |JTAG answer coming from GOL.
prepulse 93 O | Output signal asserted from 1 to 8 clock cycles after receiving
the prepulse commands on the serial back-link.
carlos_id(1-0) 80- I |Hardwired inputs containing an information that will be put in
81 output in the header word at the beginning of each data packet.
set_test(1-0) 82, I |Test pins driving a multiplexer selection lines used to bring in
84 output internal signals coming from RAMs, compressor and
FIFO.
test output(1-0) 46- | O |Internal signals put in output.
45

Department of Physics and INFN Bologna 24

CARLOS v5 reference manual

Programming CARLOS v§

Controlling CARLOS via the serial back-link

CARLOS v5 is remotely controlled using a serial back-link coming from the
CARLOSrx device. Data transferred on the serial link are synchronous to the incoming
40 MHz master clock. CARLOS has a synchronization state machine which is
responsible for handling link initialization and synchronization (see Fig. 6). Upon
power up or external reset via the serial back-link, the state machine enters the
acquisition state (ACQ) and searches for the IDLE pattern. Upon receiving three
consecutive IDLE patterns after the first one, the state machine enters the
synchronization state (SYNC). If an invalid code is received, the state machine
transitions to the CHECK state. If, in the CHECK state, CARLOS sees 4 consecutive
valid codes, the state machine acknowledges that the link is good and transitions back
to the SYNC state for normal operation. If, in the CHECK state, CARLOS sees 3
invalid codes (not required to be consecutive), the state machine determines a loss of
the link has occurred and transitions the synchronization state machine back to the
ACQ mode. Table 3 shows the list of commands that CARLOS can receive through
the serial back-link from CARLOSrx: they are all DC-balanced (same number of 1s
and 0s).

invalid code received

power-up/reset

3 consecutive valid IDLE codes

3 invalid codes + the first one

received

1 invalid code received
CHECK)< valid code

instruction received

decoding

4 consecutive valid codes received

Fig. 6: Synchronous serial back-link state machine decoding

Department of Physics and INFN Bologna 25

CARLOS v5 reference manual

Command Code Consequence
reset carlos 1100|1100 a reset is distributed to all CARLOS
internal blocks, except for the serial
receiver state machine (8 clock cycles
long, active low)
reset left hybrid 1100/0011 a reset is sent to the left hybrid (8 clock
cycles long, active high)
reset right 1100[1010 a reset is sent to the right hybrid (8
hybrid clock cycles long, active high)
reset GOL 1100/0101 a reset is sent to the GOL chip (8 clock
cycles long, active low)
LO 1010|1100 triggerl and trigger(signals are
activated
Llreject 1010/0011 aftl and aft0 are asserted for 1 clock
cycle
L2reject 1010|1010 aftl and aft0 are asserted for 1 clock
cycle
test pulse 1010[1001 aftl and aft0 are asserted for 3 clock
cycles
prepulse25 1001]0011 prepulse output is asserted for 1 clock
cycle towards the charge injectors
prepulse50 10010101 prepulse output is asserted for 2 clock
cycles towards the charge injectors
prepulse75 1001|0110 prepulse output is asserted for 3 clock
cycles towards the charge injectors
prepulse100 1001|1001 prepulse output is asserted for 4 clock
cycles towards the charge injectors
prepulsel25 1001|1010 prepulse output is asserted for 5 clock
cycles towards the charge injectors
prepulse150 1001|1100 prepulse output is asserted for 6 clock
cycles towards the charge injectors
prepulsel75 1110/0001 prepulse output is asserted for 7 clock
cycles towards the charge injectors
prepulse200 1110/1000 prepulse output is asserted for 8 clock
cycles towards the charge injectors
idle 0011|1001 used for link synchronization only and
when there is no command to send
enter JTAG 1101|0010 CARLOS enters JTAG mode
mode
enter RUN 1101|1000 CARLOS enters RUN mode
mode
Stop 1000]0111 CARLOS stops data transmission by

Department of Physics and INFN Bologna 26

CARLOS v5 reference manual

acquisition asserting data stop(and data stopl
Restart 1000|1110 CARLOS restarts data transmission by
acquisition putting data stop0 and data stopl to 0
JTAG 01|¢rstinot(trst)|tmsnot(tms) JTAG values for one tck period
|tdinot(tdi)

Table 3: List of serial back-link commands

Opening a JTAG connection

CARLOSrx may open a JTAG connection towards CARLOS, PASCAL, AMBRA or

GOL by using the serial back-link and sending JTAG commands. Every JTAG

command sent to CARLOS over the serial back-link is interpreted by CARLOS as the

values of a JTAG port during a JTAG clock period. In fact an internal CARLOS block,

named "generate JTAG", reconstructs ¢di, tms and trst data decoded from the serial

back-link and builds a JTAG tck clock. For each 8-bit input JTAG command, the tck

signal stays 0 for 4 clock periods and 1 for the following 4 clock periods, resulting in a

total JTAG frequency of 5 MHz. So far the "generate JTAG" block provides a

standard JTAG port that will be used in the internal JTAG control unit and, when

requested, sent to PASCAL, AMBRA and GOL chips.

While keeping #rst = 0 and tms = 1, CARLOSrx sends a JTAG address to CARLOS on

the #di input pin, synchronously with 7ck, with the following format:

e 2 IDLE bits: 1-1

e 2 SELECT bits: 0-0

e 14 ADDRESS bits: 7 bits with the swallow protocol (01 stands for 1, 10 stands for
0)

e 2 PARITY bits: 1 bit with the swallow protocol (odd parity, even parity for
Synopsys DesignWare manual)

e 2 SELECT bits: 0-0

e 2 IDLE bits: 1-1

If this 24-bit sequence is not exactly recognized by CARLOS or the parity bit received

is different from the calculated parity, the JTAG connection is not opened and a new

input frame is analyzed searching for a correct address. CARLOSrx realizes that no

JTAG connection has been opened since it does not receive any answer from the

selected device; after a time-out period it tries to open a new connection again.

The 24-bit sequence is also sent as it is by CARLOS to both hybrids in order to allow

them to identify the chip chosen for the connection. After sending the frame,

CARLOSTrx begins then sending JTAG information that is sent to the selected device

only.

A broadcast operation allows to address more than one chip at the same time in order

to save time during reprogramming internal registers. This is the only case in which no

tdo answer is sent back to CARLOSrx on the output_data bus.

The address is decoded with the scheme reported in Table 4.

Department of Physics and INFN Bologna 27

CARLOS v5 reference manual

address device addressed
bgbsbs= 000 left hybrid
bebsbs = 001 right hybrid
bebsbs= 010 both hybrids
b6b5b4 =011 GOL
bebsbs = 1xx CARLOS
b;=1 broadcast address
b;=0 individual address
b,, by one among 4 pairs
by=10 PASCAL
by=1 AMBRA

Table 4: JTAG address decoding scheme

So far it is possible, for instance, to program at the same time all the AMBRA chips of
both hybrids or only one hybrid or to program at the same time 2 AMBRA chips on
two different hybrids with the same values. This features may be useful in order to
have a fast JTAG programming phase, but they do not allow to read back the ITAG

registers.

Department of Physics and INFN Bologna

28

CARLOS v5 reference manual

CARLOS internal registers

CARLOS vS5 contains nine user-accessible JTAG registers, which are listed in Table 5.
The MSB is the parity bit in registers from 1 to 6, calculated with even parity.

Register | Bits Perms Register name Default content (after reset)
number
1 9 R/W TIL left 000000000 (0h000)
2 9 R/W T1H left 000000000 (0h000)
3 9 R/W Anode length left 011111111 (OhOFF)
4 9 R/W T1L right 000000000 (0h000)
5 9 R/W T1H right 000000000 (0h000)
6 9 R/W Anode length right 011111111 (OhOFF)
7 1 R/W Enable 2D 1
8 1 R/W Stop If Error 1
9 16 R BIST register INRRRRRRRRRRRNNE!
(OhFFFF)

Table 5: List of CARLOS JTAG internal registers

After CARLOS has been reset, all the registers are initialized to a default content, then
registers 1-8 can both be written or read using the standard JTAG port. On the contrary
register 9, the 16-bit long BIST register, can only be read using the JTAG port: its
value is written by the Signature Maker block after the running the JTAG command
RUNBIST.

TI1L left:
e low threshold value for the macro-channel receiving data from the left
hybrid
T1H left:
¢ high threshold value for the macro-channel receiving data from the left
hybrid
Anode length left:
® number of samples decremented by 1 belonging to a SDD anode being read
from the AMBRA chips belonging to the left hybrid
T1L right:
e low threshold value for the macro-channel receiving data from the right
hybrid
T1H right:
¢ high threshold value for the macro-channel receiving data from the right
hybrid
Anode length right:

Department of Physics and INFN Bologna 29

CARLOS v5 reference manual

e number of samples decremented by 1 belonging to a SDD anode being read
from the AMBRA chips belonging to the right hybrid
Enable 2D:
e when asserted compression 2D is enabled, otherwise a lossless encoding of
data is performed
Stop If Error:
¢ when asserted it causes the data transmission to stop after a synchronization
error between AMBRA and CARLOS, by putting the data_stop signals to a
high level until a reset is received (except for the case when the flush
mechanism is activated). When 0, an occurring synchronization error would
be detected without affecting the data transmission process.
BIST register:

® BIST signature final value. The expected signature value obtained using the
default values for the internal registers depends on the carlos_id input value:

® carlos_id =00 =>» BIST result = 0xC3DC
® carlos_id =01 =» BIST result = 0x8A18
® carlos id =10 =» BIST result = 0x5054
® carlos_id =11 =» BIST result = 0x1990

Register access via the JTAG bus

The JTAG standard defines a serial communication protocol for testing and
programming purposes. In CARLOS v5 the JTAG interface supports 4 tasks:

¢ boundary scan;

e access (R/W) to internal registers;

e test of the PCB (Using the Sample/Preload instruction the chip input values
can be sampled and stored into the boundary scan register, until they are
shifted out and compared to the expected values. In the same way after
running the Sample/Preload and Extest instructions, one after the other, the
chip outputs can be set to a given value. In this way, for instance, it is
possible to transmit data words to the GOL chip and check if the connection
CARLOS-GOL on the PCB is correct or not).

e BIST

The different functions are reflected in a number of scan registers. A specific scan path
can be selected by writing its 5-bit code into the instruction register (IR) inside the on-
chip JTAG controller. CARLOS v5 contains scan paths from tdi to tdo of different
lengths, from 1 to 76 bits. Table 6 shows the JTAG instruction set implemented on
CARLOS v5.

JTAG instruction JTAG IR value Length of scan register
involved

Department of Physics and INFN Bologna 30

CARLOS v5 reference manual

Extest 00000 76
Sample / preload 00010 76
Bypass 11111 1
Intest 00011 76
Runbist 00100 16
Load T1L left 00101 9
Load T1H left 00110 9
Load Al left 00111 9
Load enable 2D 01001 1
Read T1L left 01010 9
Read T1H left 01011 9
Read enable 2D 01110 1
Read BIST result 01111 16
Load TIL right 10101 9
Load T1H right 10110 9
Load Al right 10111 9
Read T1L right 11010 9
Read T1H right 11011 9
Read Al right 11100 9
Load Stop If Error 01000 1
Read Stop If Error 01101 1

Table 6: List of CARLOS JTAG instructions

After reset, all internal registers are given an initial value. After opening a JTAG
connection towards CARLOS, they can be easily programmed by serially providing a
JTAG instruction followed by the register value on the serial back-link channel,
following the standard JTAG state machine. While writing a register new value, the
old one is put in output, so to allow a quick check of the register values being written.
On the other side while reading a register, the tdi input value is ignored and the
register is shifted on itself in a circular way, so that after n shift operations the register
holds the right value again (for a » bit register). This allows to avoid to use a double
register instead of one.

When a JTAG connection is opened towards other devices, CARLOS internal
boundary unit continues monitoring the #ms and fck values in order to be aware of the
current JTAG state (so to sample the incoming tdo value at the correct clock periods),
while its internal JTAG control unit receives a masked ¢di input (¢di = 1 fixed). In this
way each incoming JTAG instruction is interpreted as the BYPASS command and the
internal bypass register is addressed, so far avoiding to modify the other JTAG
registers. The mechanism so far shown is correct since the number of bits used to code
the JTAG instruction register value on CARLOS is less or equal than for the IR on
AMBRA and the GOL chips: in fact GOL's IR is 5-bit long, while AMBRA's IR is 16-
bit long. Should a device receiving the JTAG signals from CARLOS have a 3-bit IR,

Department of Physics and INFN Bologna 31

CARLOS v5 reference manual

the internal boundary unit on CARLOS would not always decoded the IR value as
BYPASS and CARLOS internal register corruption would be unavoidable.

The boundary scan register (BSR) includes all the I/O signals with the exception of
clocks, the reset signal and the serial back-link signal. Table 7 shows the list of
CARLOS 1/Os included in the Boundary Scan register together with the read-out
order.

Order for shift out Pin # Name Type
1 98 trst to LH out
2 97 tck to LH out
3 96 tms to LH out
4 95 tdi to LH out
5 93 prepulse out
6 79 tdi to GOL out
7 78 tck to GOL out
8 77 trst to GOL out
9 76 tms to GOL out
10 73 cav out
11 72 dav out
12 70 output data(l5) out
13 69 output data(14) out
14 68 output data(l3) out
15 66 output data(l2) out
16 64 output data(l1) out
17 63 output data(10) out
18 62 output data(9) out
19 61 output data(8) out

20 59 output data(7) out
21 57 output data(6) out
22 56 output data(5) out
23 55 output data(4) out
24 54 output data(3) out
25 53 output data(2) out
26 52 output data(l) out
27 51 output data(0) out
28 48 reset GOL out
29 47 Ix en out
30 46 test output(1) out
31 45 test_output(0) out
32 42 reset RH out
33 41 triggerl out
34 36 aftl out

Department of Physics and INFN Bologna 32

CARLOS v5 reference manual

35 24 data stopl out
36 21 trst to RH out
37 20 tck to RH out
38 19 tms to RH out
39 18 tdi to RH out
40 16 reset LH out
41 14 trigger(out
42 13 aft0 out
43 1 data stop() out
44 100 data_end() out
45 99 dis_trigger() out
46 94 tdo from LH out
47 81 carlos _id(0) out
48 80 carlos id(1) out
49 84 set test(0) out
50 82 set test(1) in
51 71 gol ready in
52 50 locked in
53 49 tdo from GOL in
54 35 data_inl(8) in
55 33 data inl(7) in
56 32 data_inl(6) in
57 31 data inl(5) in
58 30 data inl(4) n
59 29 data inl(3) in
60 28 data_inl(2) in
61 27 data inl(1) in
62 26 data inl(0) n
63 25 data writel in
64 23 data_endl in
65 22 dis triggerl n
66 17 tdo from RH in
67 12 data in0(8) in
68 11 data_in0(7) in
69 10 data_in0(6) in
70 8 data in0(5) in
71 7 data in0(4) in
72 6 data_in0(3) in
73 5 data _in0(2) in
74 4 data in0(1) n
75 3 data in0(0) in
76 2 data write() in

Department of Physics and INFN Bologna

33

CARLOS v5 reference manual

Table 7: Boundary scan register list

Board level testing via JTAG

The JTAG standard also allows to perform board level testing by using the boundary

scan chain properties. The following procedure is usually performed:

e the Sample / Preload instruction is run on chip A, loading a predefined pattern on
chip A boundary scan chain;

e the Extest instruction is run on chip A in order to load the predefined pattern on the
chip A outputs;

e the Sample / Preload instruction is run on chip B, that samples chip A outputs,
stores these values in the boundary scan register and then shifts this information
serially out on the tdo pin.

In this way it is possible to check the electrical connection between two chips.

It is not possible to apply this procedure to AMBRA, CARLOS and GOL chips. In fact

a JTAG connection can be addressed to one device at a time or to several devices of

the same kind. Just as an example let's try to repeat the test procedure for the AMBRA

— CARLOS system:

1. the Sample / Preload instruction is run on AMBRA, loading a predefined pattern on
AMBRA outputs;

2. the Extest instruction is run on AMBRA in order to load the predefined pattern on
AMBRA outputs;

3. atrst =1 signal is sent to AMBRA in order to close the JTAG connection;

4. CARLOS is JTAG-addressed;

5. the Sample / Preload instruction is run on CARLOS, that samples AMBRA
outputs, stores these values in the boundary scan register and then shifts this
information out using the 16-bit JTAG words.

Unfortunately point 3 puts all AMBRA outputs to their default value, overriding the

predefined pattern (the same holds also for CARLOS and GOL).

An alternative procedure is proposed for the AMBRA and CARLOS chips:

e the Sample / Preload instruction is run on AMBRA, loading a predefined pattern on
AMBRA outputs (with data_write = 1);

e the Extest instruction is run on AMBRA in order to load the predefined pattern on
AMBRA outputs;

e CARLOSrx sends to CARLOS the command "Enter RUN mode" on the serial
back-link;

e CARLOS outputs are decoded in order to understand which are the values of the
input bus received from AMBRA and compared with the expected pattern.

An alternative procedure is proposed for the CARLOS and GOL chips:

e the Sample / Preload instruction is run on CARLOS, loading a predefined pattern
on CARLOS outputs (with #x_en and dav = 1);

Department of Physics and INFN Bologna 34

CARLOS v5 reference manual

e the Extest instruction is run on CARLOS in order to load the predefined pattern on
CARLOS outputs;

e the data transmitted through GOL over the optical fibre is de-serialized and
compared with the expected pattern.

Alternative proposals are welcome.

Chip level testing via JTAG

The quickest way to run an internal chip test via JTAG is to use the BIST utility.

On the contrary the Intest instruction does not work as expected from the standard at

least for what concerns the output data bus. Let's suppose to run the following

procedure:

1. the Sample / Preload instruction is run on CARLOS, loading a predefined pattern
on its boundary scan chain;

2. the Intest instruction is run in order to send the predefined pattern as input to
CARLOS core;

3. the Sample / Preload instruction is run on CARLOS, for sampling the test outputs
and sending them in output.

The problem is that, when running point 3, the output data bus is used for sending in

output the acknowledgment of the received instruction (1 followed by n zeros) and, in

this way, the value of the test output is over-ridden and lost.

So far the Intest instruction can be used for testing all CARLOS core outputs but the

output_data bus, tx_en, cav and dav.

Department of Physics and INFN Bologna 35

CARLOS v5 reference manual

Running CARLOS v5

This section contains an explanation of the sequence of actions needed to program and
run CARLOS operationally.

How to run CARLOS v5

CARLOS v5 utilization should include the following sequence of actions:

1))

2)

3)

4)

S)

power supply to the chip is turned on and CARLOS receives a signal reset
(active low and at least one clock cycle long) from an external RC network.
This reset signal is propagated from CARLOS to the right hybrid (active
high), left hybrid (active high) and GOL (active low). See Timing 1.

after asserting the reset signal CARLOS is put by default in JTAG mode,
during which data_stopl and data_stop(0 outputs are kept high. During this
working mode the busy signal towards the CTP is kept high by CARLOSrx
(CARLOS does not send any busy information in output). See Timing 2.

an IDLE command sequence is sent on the serial back-link channel from
CARLOSrx towards CARLOS, so to allow to get the synchronization with
the input pattern. After synchronization has been reached, selective reset
commands can be sent to CARLOS if desired. See Timing 3a and 3b.

a JTAG pattern consisting in a redundant 7-bit address on the serial back-
link input pin is sent in order to select which JTAG connection to open. If
the address is correctly recognized with the right format and the parity is
OK, the JTAG connection is opened: from this time on the input JTAG
information are sent in input to the selected device only. Otherwise
CARLOS begins waiting for a new and correct JTAG address. Since JTAG
commands are encapsulated on the serial back-link using 8-bit commands, it
results in a total JTAG frequency of 5 MHz (40 MHZz/8). See Timing 4, in
which a JTAG connection is opened towards CARLOS itself.

The selected device (CARLOS or left hybrid or right hybrid or GOL) is
programmed using the standard JTAG IEEE 1149.1 protocol that allows
both internal and external chip test and writing and reading internal
registers. The JTAG answer fdo is put in output on the 16-bit data bus. See
Timing 5.

Also in case CARLOS has not been selected for the JTAG connection, its
boundary scan unit monitors the zck and tms input signals in order to be able
to sample the tdo signal coming from the selected device only when valid (it
has not to be sampled, for instance, when in high impedance). In this case
CARLOS internal boundary unit receives a masked tdi (¢di = 1), so that each
instruction is interpreted as a BYPASS command. In this way no CARLOS
internal register is modified, when other devices are being JTAG-addressed.

The JTAG connection can be closed in either of two ways: either when the
input frst signal is asserted or when CARLOS receives the reset signal.

Department of Physics and INFN Bologna 36

CARLOS v5 reference manual

6)

7)

8)

9)

Nevertheless it is recommended to close the connection with #rst instead of
resetting CARLOS.

By opening JTAG connections, testing and programming and then closing
the connections, all PASCAL, AMBRA, CARLOS and GOL chips can be
programmed with the desired values before entering the RUN phase. Using
the Sample / Preload and Extest JTAG instruction, it is possible to set all
CARLOS outputs with a predefined pattern. In Timing 6 all CARLOS
outputs have been put to logic state 1.

After completing the JTAG programming task, the command "Enter RUN
mode" can be sent to CARLOS on the serial back-link. After this happens,
CARLOS puts data_stopl and data_stop0 low and begins waiting for input
trigger commands from the serial back-link and then for data on the two
input channels. From this time on an error flag word is transmitted in output
every 64 clock cycles (1 every 1.6 us). Among the other information the
error flag word also contains the busy signal used to stop incoming trigger
signals when PASCAL is transferring data to AMBRA or when all the 4
AMBRA buffers are full (dis_trigger signals high). See Timing 7.

After receiving a trigger command, the frigger! and trigger() signals are
asserted for one clock period. AMBRA replies by setting the dis_trigger
signals to 1 until it is ready to accept a new trigger signal. See Timing 8.
AMBRA begins sending data to CARLOS and then data compression
process begins on the incoming samples. Compressed data are then sent in
output towards the GOL chip using either Ethernet or G-Link modes. See
Timing 9.

10)If AMBRA sends to CARLOS less data words than expected or if AMBRA

sends to CARLOS from 1 to 4 more words than expected, a synchronization
error occurs in the communication AMBRA — CARLOS. If Stop If Error is
1, the error is highlighted in the next error flag word and the data
transmission process is stopped by setting the data stopl and data_stop(0

signals. If Stop If Error is 1 the transmission process goes on. See Timing
10a and 10b.

11)When the flush mechanism is activated: CARLOS asserts the data stop

signal after receiving the last expected data word and then, if it does not
receive the data_end signal within 4 clock periods, it asserts the aft signal
for 2 clock periods flushing AMBRA and highlights this situation in the next
error flag word. After being flushed, AMBRA asserts the data_end signal
for one clock cycle. After this happens, CARLOS internal error flag signal is
reset, the data stop signals turn to O after the internal FIFOs have been
emptied and a new event can be fetched and processed. In this case if
Stopiferror is 1, the transmission should be stopped by asserting the
data_stop signals. Actually CARLOS behavior in this situation depends on
the current value of an internal signal (fifo_stop), so the transmission could

Department of Physics and INFN Bologna 37

CARLOS v5 reference manual

be stopped or not. Nevertheless CARLOSrx is made aware of the faulty
situation by sending the information in the error flag words. See Timing 11.

12)When either the gol ready signal or the locked signal or both go to O,
CARLOS stops sending data towards GOL until the go! ready or locked (or
both) signal are asserted again. When CARLOS internal FIFO gets almost
full, the data stop signals are asserted, thus stopping backward the data
transmission. See Timing 12a and 12b.

13)When CARLOSrx applies the back-pressure towards CARLOS, the
data_stop signals are asserted and the data transmission is frozen until the
"Restart Acq" command is received over the serial back-link. During the
pause time, it is possible to access CARLOS and the other front-end chips
via JTAG. See Timing 13.

Department of Physics and INFN Bologna 38

CARLOS v5 reference manual

CK 0 _ | | 1 |
RESET i |H -
RESET LH 0 |U

RESET RH 0 |U

RESET_GOL 1 |H

Timing 1: Power-on reset sequence

DATA_STOPT 1
DATA_STOPO 1

Ck 1
FESET 1

Timing 2: Entering JTAG mode after reset

K o

SRR TR
SERIAL BACKLINK |0 l L

Timing 3a: IDLE sequence for link synchronization

K SO R O e
SERIAL BACKLINK |0 —|_|_|_|_|_|_|_|_|_|_L

RESET i
RESET _LH 0
RESET_RH 0
RESET_GOL 1 e

Timing 3b: Selective reset commands

Department of Physics and INFN Bologna

CARLOS v5 reference manual

SERIAL_BACKLINK
TOI_TO_LH
TMS TO_LH
TRST_TO_LH
TCK_TG_LH
TDI_TQ_RH
TMS TO_RH
TRST_TO_RH
TCK_TG_RH
TOI_TO_GOL
TMS TO_GOL
TRST_TO_GOL
TCK_TO_GOL

Timing

GOL_READY
TX_EN
CAV
DAY

» OUTPUT_DATA(15:0)
K
RESET

o
0
o
o
o
0
o
o
o
1
1
o
1

=

B23E
0

1

=
i

N 1 1
I

Ry

=
i

N 1 1
I

LU T U Ui e

4: Opening a JTAG connection (towards CARLOS, in this case)

[1

[

1 [1

1 1
[1 1

1 1 1
1 [1 [1

B

Ba69 |

BeEE | eepz | e8os

| eaoa [esme

| esaz | eass [essn |

A A MAT

T AR ET N

Timing 5: JTAG answer over the 16-bit data bus

DATA_STOP1
DATA_STOPD
TRIGGERT
TRIGGERD
AFTY
AFTO
GOL_READY
TH_EN
CAY
DAY
OUTPUT_DATA(15:0)
K
RESET
RESET_LH
RESET_RH
RESET_GOL
PREPUILSE

- TEST_OUTPUT(7:)

6382

FFFF

e o e [s e [e e [

6345

0o \

Timing 6: After running the Sample / Preload and Extest JTAG instructions, it is
possible to set CARLOS outputs with a predefined value. In the figure all CARLOS
outputs are asserted.

Department of Physics and INFN Bologna

40

CARLOS v5 reference manual

DATA_STOP1
DATA_STOPO
GOL_READY
TH_EN

cAY

o o o - o o

Dav

T

QUTPUT_DATA(150)
K

4008

RESET 1

BB95

4005 |

4008

Timing 7: From JTAG mode to RUN mode

SERIAL_BACKLINK
TRIGGER1
TRIGGERD

AFTH

AFTO
DIs_TRIGGER1
DIs_TRIGGERD
DATA_STOP1
DATA_STOPO

T

Timing 8: Receiving LO command on the serial back-link and sending it back to AMBRA

DATA_IN1(8:0) 01E

DATA_IND(8:0) 184
DATA_WRITET
DATA_WRITED
DATA_ENDT
DATA_ENDD
DATA_STOPT
DATA_STOPO
GOL_READY
TR_EN

CAY

-~ O - - O O O O @ — @ —

DAY
OUTPUT_DATA{15:0) | DCa?

CK. 1

RESET 1

I o e e e B S O O
O e e e e O e e e T e e
E—
B

[

N
[o FFERPFEE T [EPPEERTFE WFEEF o T FT B

Timing 9: Event processing and transmission to the GOL chip

Department of Physics and INFN Bologna

41

CARLOS v5 reference manual

DATA_IN1{80) 000
DATA_IND80) 000
DATA_ WRITE!
DATA_WRITEQ
DATA_END1
DATA_ENDD
DATA_STCPT
DATA_STOPD
GOL_READY
TH_EN

CAY

DAY

[S Y

OUTPUT DATA(150) | 0oED
K 0

RESET 1

0ooo

]

o T
E—

—

[

|
|
|
|
|
|

.

|

L o

|

T

|

=ili]

F*

[T cee 711

Timing 10a: End of a data packet transmission with a synchronization error
(CARLOS receives less data than expected) and Stop If Error = 0.

» DATA_INT(BD) 0o
» DATA_IND(3D) oo
DATA_WRITE! 0
DATA_WRITED 0
DATA_END1 0
DATA_ENDO 0
DATA_STOPT 1
DATA_STOPD 1
GOL_READY 1
TX_EN 0
Ay 0
DAY 0
» QUTRUT_DATA(15:) | 4008
cK 0
RESET 1

ooo

0oo

|
|
[
|
|
|

[

|

AL A

H

*

400E

8000

P

Timing 10b: End of a data packet transmission with a synchronization error
(CARLOS receives less data than expected) and Stop If Error = 1.

Department of Physics and INFN Bologna 42

CARLOS v5 reference manual

DATA_INI(0)
DATA_IND(0)
DATA_WRITET
DATA_WRITED
DATA_END1
DATA_ENDD
DATA_STOP1
DATA_STOPD

AFTH

AFTD

GOL_READY

TX_EN

Ay

DAY
OUTPUT_DATA(150)
cK

RESET

000
000

[e = T

MED

noo

TR TR
EE—

|

ol A

H

400E | |4*

e e

Timing 11: End of a data packet transmission with a synchronization error
(CARLOS receives more data than expected).

DATA_IN1(80)
DATA_IND(80)
DATA_WRITE!
DATA_WRITEC
DATA_END1
DATA_ENDD
DATA_STOP!
DATA_STOPD
GOL_READY

K

TX_EN

CAY

DAY
OUTPUT_DATA(150)
RESET

0% 0% | 0% | 0* [o* o o | o |o* |o* |o*

0|7 P 0% 0% % % % % (0% 0% 0% % 0% 0% 0% 0% 0™ 0 0| 0 0% 0* i

00 |0 0 o o o+ o o

0*|o*

p*
I+

a1 i o i o o 1 1

ona

I

I

UL

u

FD* |0

BaED|FD7F|A7EA\FD1F\aa

7|FCEF‘ 0000

Timing 12a: When the gol ready signal is put to 0, CARLOS stops transmitting data
towards the GOL chip.

Department of Physics and INFN Bologna

43

CARLOS v5 reference manual

DaTa e, fuo | a0 i
DATA_INO{B0) m | 000 P

DATAWRITET o
DATAWRITED |0
DATA_ENDT 0
DATA_ENDD 0
DATA_STOPY 1
DATA STOPD ! \
1
1
0
0
0

GOL_READY
K

TH_EN
CAV
DAV

|
‘]

o parapsn|uon | o | pFEPFPFEFEFEPEEEFREFRFEFFEFITFEFEFEFEFE
RESET 1

Timing 12b: When the go/ ready signal is put back to 1, CARLOS restarts
transmitting data towards the GOL chip and, after half of its internal FIFO locations
get empty, AMBRA begins sending data again.

DATA_IN1(5D) 000
DATA_IND[BD) 000
DATA_WRITE1

0oo

oo

DATA_WRITED

DATA_ENDA
DATA_ENDO

DATA_STOPD
GOL_READY
TX_EN

CAY

DAY

QUTRUT DATA(50) | 680s _ 695 |3
|

RESET 1 |

e

0
0
0
0
DATA_STOP1 1
1
1
0
0
0

| ==
=
2
2
-

Timing 13: When CARLOSTrx applies a back-pressure towards CARLOS, the
data_stop signals are asserted. Then, if desired, CARLOS can be put in JTAG mode
and some JTAG operations can be performed (the reading of an internal register in
figure). Then CARLOS can be put in RUN mode again and data acquisition process
restarted.

Department of Physics and INFN Bologna 44

CARLOS v5 reference manual

Managing synchronization errors

An event flush mechanism has been introduced in CARLOS v5 in order to manage
error situations that may occur in the handshake between AMBRA and CARLOS. A
flush signal from CARLOS to AMBRA has been foreseen with the purpose of deleting
the current event on AMBRA and passing to the next one. This may be the case, for
instance, of a SEU (Single Event Upset) over the Anode Length register on AMBRA
or on CARLOS which may cause communication errors. Error situations like these are
notified to CARLOSrx through the error flag word, so to stop data acquisition and
check the values of the internal registers.

The flush signal is encapsulated in CARLOS output pins aft/ and aft0 that contain the

following information:

1) abort (aft/ and aft0 stay active for 1 clock period): the abort signal is activated
when Llreject or L2reject commands are received from CARLOSrx on the serial
back-link;

2) flush (aftl or aft0 stay active for 2 clock periods): the flush signal is activated when
one CARLOS channel does not receive data_end = 1 within 4 clock periods after
the expected time slot;

3) test pulse (aft/ and aft0 stay active for 3 clock periods): the testpulse signal is
activated after receiving the related command on the serial back-link.

The highest priority is assigned to the abort signal, while the lowest priority is

assigned to the testpulse: this means that if the 3 signals should occur at the same time,

the first signal transmitted on aft/ and aft0 would be abort, followed by flush and then
by test pulse.

The flush signal is activated just in one case: CARLOS expects the input data_end to

be asserted for 1 clock cycle in coincidence with the last data coming from AMBRA,

that is data number 256*(Anode Length+1); if CARLOS does not receive data_end =

1 within 4 clock cycles after the expected period the flush signal is activated. As

AMBRA receives the flush signal, it asserts the data end signal for one clock period

regardless of the data stop value; this is just to inform CARLOS that AMBRA has

received the flush signal, flushed the internal buffer and it is ready to send a new
event.

8 different cases have been evaluated in the AMBRA — CARLOS communication,

depending on the Stop If Error value:

Stop If Error =1

1) data_end =1 in the expected period
e CARLOS asserts the data stop signal towards the hybrid that sent the
data_end,
¢ the compressor goes on until it empties the RAM;

Department of Physics and INFN Bologna 45

CARLOS v5 reference manual

after the last data coming from both hybrids have been received and both
CARLOS FIFOs have been emptied, data stop is put to 0 so to begin
processing a new event.

the flush signal is not activated.

2) data_end = 1 before the expected period

CARLOS asserts the data stop signal towards the hybrid that sent the
data_end,

CARLOS asserts the related error flag in the error flag word;

the compressor goes on until it empties the RAM;

after the faulty macro-channel has stopped generating data, CARLOS waits for
the other macro-channel to receive the last data;

when both channels have sent all data, CARLOS leaves both data stopl and
data stop0 high until either CARLOS 1is reset or until CARLOSrx puts
CARLOS in JTAG mode and reprogram the faulty registers.

the flush signal is not activated

3) data_end =1 from 1 to 4 clock cycles after the expected period

CARLOS asserts the data_stop signal in the clock cycle it expects to receive
the data_end signal (exceeding words coming from AMBRA are discarded);
CARLOS asserts the related error flag word and waits for AMBRA to put
data_write low;

after receiving the data_end signal, the internal error flag signal stays high;

the compressor goes on until it empties the RAM;

after the faulty macro-channel has stopped generating data, CARLOS waits for
the other macro-channel to receive the last data;

when both channels have sent all data, CARLOS leaves both data stopl and
data_stop0 high until either CARLOS 1is reset or until CARLOSrx puts
CARLOS in JTAG mode and reprogram the faulty registers.

the flush signal is not activated

4) data_end = 0 for > 4 clock cycles after the expected period

CARLOS asserts the data_stop signal in the clock cycle it expects to receive
the data_end signal (exceeding words coming from AMBRA are discarded);
CARLOS asserts the related error flag and waits for AMBRA to put data_write
low;

Since CARLOS does not receive the data_end signal for 4 more clock cycles, it
asserts the internal signal flush, that will be sent to the hybrid through the aft/
or aft0 output pin;

As AMBRA receives the flush signal, it asserts the data end signal for one
clock period regardless of the data_stop value;

Department of Physics and INFN Bologna 46

CARLOS v5 reference manual

when CARLOS receives the data_end signal, the internal error flag signal is
reset;

the compressor goes on until it empties the RAM;

after the faulty macro-channel has stopped generating data, CARLOS waits for
the other macro-channel to receive the last input data;

when both events have been completely received, CARLOS resets the
data_stop signals informing AMBRA to be ready to accept new events.

N.B. If AMBRA does not send the data_end signal after a flush action, CARLOS
internal error flag signal stays high and the data stop signals are kept high after
closing the data packet, until a reset is received or until CARLOSrx puts CARLOS
in JTAG mode.

Stop If Error =0

5) data_end =1 in the expected period

CARLOS asserts the data stop signal towards the hybrid that sent the
data_end,

the compressor goes on until it empties the RAM;

after the last data coming from both hybrids have been received and both
CARLOS FIFOs have been emptied, data stop is put to 0 so to begin
processing a new event.

the flush signal is not activated.

6) data_end = 1 before the expected period

CARLOS asserts the data stop signal towards the hybrid that sent the
data_end,

CARLOS asserts the related error flag in the error flag word (in_1 error flag
only);

the compressor goes on until it empties the RAM;

after the faulty macro-channel has stopped generating data, CARLOS waits for
the other macro-channel to receive the last data;

when both channels have sent all data, CARLOS put both data stopl and
data_stop0 to 0 again, so that data transmission can continue.

the flush signal is not activated.

7) data_end =1 from 1 to 4 clock cycles after the expected period

CARLOS asserts the data_stop signal in the clock cycle it expects to receive
the data_end signal (exceeding words coming from AMBRA are discarded);
CARLOS asserts the related error flag word and waits for AMBRA to put
data_write low;

after receiving the data_end signal, the internal error flag signal is reset;

the compressor goes on until it empties the RAM;

Department of Physics and INFN Bologna 47

CARLOS v5 reference manual

after the faulty macro-channel has stopped generating data, CARLOS waits for
the other macro-channel to receive the last data;

when both channels have sent all data, CARLOS resets data stopl and
data_stop0, so that a new event can be fetched and processed.

the flush signal is not activated

8) data_end = 0 for > 4 clock cycles after the expected period

Notes

CARLOS asserts the data_stop signal in the clock cycle it expects to receive
the data end signal (exceeding words coming from AMBRA are discarded);
CARLOS asserts the error flag in the forthcoming error flag word (only one!)
and waits for AMBRA to put data_write low;

Since CARLOS does not receive the data_end signal for 4 more clock cycles, it
asserts the internal signal flush, that will be sent to the hybrid through the aft/
or aft(output pin;

As AMBRA receives the flush signal, it asserts the data end signal for one
clock period regardless of the data_stop value;

the compressor goes on until it empties the RAM;

after the faulty macro-channel has stopped generating data, CARLOS waits for
the other macro-channel to receive the last input data;

when both events have been completely received, CARLOS resets the
data_stop signals informing AMBRA to be ready to accept new events.

In this paragraph AL stands for Anode Length + 1.

1. AL all AMBRAs <AL CARLOS

The total number of EOR Summaries that CARLOS puts into an event is smaller
than the expected number of 256. If, for example, anode length on AMBRA is 49
and its value on CARLOS is 50, the total number of CARLOS EOR Summaries is
250. In fact CARLOS receives 49*256 data words and frames them 50 at a time
((49*256)/50 = 250.88). So far finding a small number of EOR Summaries can
give an indication of some problems to be solved.

2. AL all AMBRAs > AL CARLOS

This is a situation in which the flush mechanism is activated. In this case when
enable 2D = 1, the compressor block on CARLOS discards nearly every data of the
last anode and the total number of counted EOR Summaries is 255. Otherwise, if
enable 2D = 0, no data is lost and the number of EOR Summaries is 256.

3. AMBRADO: AL =n-1
AMBRAI: AL =n-1
AMBRA2: AL =n-1

AMBRA3 (master): AL=n

Department of Physics and INFN Bologna 48

CARLOS v5 reference manual

CARLOS:

AL=n

No synchronization error is found, but, for some time, CARLOS input data bus is
not driven (high impedance).

. AMBRAQO: AL =n
AMBRAIL: AL =n
AMBRA2: AL =n
AMBRA3 (master): AL =n-1
CARLOS: AL =n

A synchronization error is found and, for some time, CARLOS input data bus is
not driven (high impedance).

. AMBRAQO: AL =n
AMBRAIL: AL =n-1
AMBRA2: AL =n-1
AMBRA3 (master): AL =n-1
CARLOS: AL =n

A synchronization error is found, a bus contention is found in the transition from
AMBRAO to AMBRAI1 and a period in which CARLOS input bus is in high
impedance during the transition from AMBRA3 to AMBRADO.

. AMBRADO: AL =nt+2
AMBRA1: AL =n+l
AMBRA2: AL =n+l
AMBRA3 (master): AL =n+l
CARLOS: AL=n

The flush mechanism is activated, a bus contention is found in the transition from
AMBRAO to AMBRAI1 and a period in which CARLOS input bus is in high
impedance during the transition from AMBRA3 to AMBRADO.

Department of Physics and INFN Bologna 49

CARLOS v5 reference manual

Backpressure from CARLOSrx to CARLOS

Since CARLOSrx has to concentrate different data streams coming from several
detectors onto one DDL, it may need to stop the data flow from CARLOS for a while,
until its internal FIFOs are empty and ready to accept data again. For this reason
CARLOSTrx can send to CARLOS two commands for stopping and restarting the data
acquisition:

e Stop Acquisition;

® Restart Acquisition.
The Stop Acquisition command can be sent to CARLOS at every time and its effect is
to assert the data stopl and data stop0 signals towards AMBRA, so far stopping all
the data transmission until a Restart Acquisition command is received.
If desired, after sending the Stop Acquisition command, CARLOSrx can also put
CARLOS back in JTAG mode by sending the Enter JTAG mode command and
perform some JTAG operations, such as write or read internal registers. In case only a
JTAG read operation is performed, when restarting the acquisition, the event that was
stopped before will be completely transmitted without any error. Obviously if some
JTAG operation modifies CARLOS internal registers, such as thresholds, anode length
or working mode, the event data transmission will result corrupted for what concerns
the current event, while all the next coming events will be processed and transmitted
correctly. An other JTAG operation to be avoided in the meantime after stopping the
acquisition and restarting it is the BIST, since it would overwrite all the internal
registers and FIFOs with new values and the current event would be corrupted.

Department of Physics and INFN Bologna 50

CARLOS v5 reference manual

Debugging CARLOS v5

Debugging facility

In order to ease the debugging of CARLOS, a multiplexer has been added with the aim
of bringing in output (test output) the value of interesting internal nets. The selection
lines of the multiplexer can be driven using the set_test input bus.

The following table shows the multiplexer truth table:

set test channel test output
00 1 RAM a output (0) &
RAM b output (0)
01 0 RAM a output (0) &
RAM b output (0)
10 1 compressor output (1:0)
11 0 FIFO output (1:0)

Table 8: multiplexer truth table for debugging purposes.
BIST

The BIST facility can be run via the serial back-link sending the JTAG instruction
RUNBIST. It consists in feeding the 2 CARLOS macro-channels with 400 pseudo-
random test-vectors and a 16-bit signature is produced as the test result. When run
with the default values for the JTAG programmable values, the expected signature is
0x1990, otherwise its value changes. The signature value can be read out by running
the JTAG instruction READ BIST.

If the chip passes the BIST test, it is highly probable that the chip works correctly.

Department of Physics and INFN Bologna 51

CARLOS v5 reference manual

Analyzing CARLOS v5

A C++ software tool has been designed with the aim of decoding CARLOS v5 outputs
and helping test people to analyze data flowing out from the chip.

Why parsepack ?
A software tool is very useful in order to analyze in a very quick way very huge
amounts of data. Parsepack main job consists in reconstructing CARLOS inputs from
its actual outputs and comparing them to the data actually sent as inputs to the chip.
Then parsepack has to compare the original data with the reconstructed ones and
decide if there is some significant mismatch or not. This is not a trivial job since
CARLOS 2D compression algorithm introduces a distortion on data, so a 1 to 1
comparison between original and reconstructed data can only be performed when the
2D compression is disabled. The two following criteria have been implemented in
parsepack:
e cvery pixel in the reconstructed data is also present in the original one;
e every significant cluster is the original data is also present, with the same size
and position, in the reconstructed data.
In this way it is possible to check very quickly if there are mismatches between the
two data sets.
Parsepack also performs other useful tasks:
e performs the calculation of the compression coefficient for each channel.
Its value is calculated in the following way:
o the number of CARLOS output words with dav = 1 is computed per each
event and per each channel,
o the resulting number is incremented by 48 bits (taking into account for 3
header or footer words);
o the resulting number is divided by the number of incoming bits (anode
length * 256 * 8) in order to get the compression coefficient value.
e produces files with the original and reconstructed values;
e compares CARLOS actual output data with VHDL simulation data;
e decodes CARLOS JTAG words and creates a file jtag.dat containing the list of
JTAG instruction followed by the related result;
e checks the 3 bits tck_counter in the JTAG words in order to verify that this value is
incremented without any gap (errors are reported in jtag.dat),
e checks the 7 bits jtag_address in the JTAG words in order to verify that the correct
device is sending the JTAG answer (errors are reported in jtag.dat);
e produces a file with the EOR Summaries for both channels and compares their
values with the expected ones;
e produces a file with the list of error flag words.

Department of Physics and INFN Bologna 52

CARLOS v5 reference manual

How to get parsepack
The software tool parsepack2d.cpp source is available at the following Web site:
http://www.bo.infn.it/~falchier/carlos4.html

The following files have to be downloaded:
e parsepack2d.cpp;
e comp2d.cpp;

e gopt.cpp.
It can be compiled and run on different operating systems.

How to compile parsepack
Under the UNIX environment it can be compiled in the following way:
> gcc —g parsepacklZd.cpp gopt.cpp -0 parsepack

How to use parsepack

The SW tool parsepack can be run in the following way in order to get some
information on how to use it:

> parsepack —-h

—-f [name] : CARLOS output data

-c [name] : VHDL output data

-j [name] : JTAG commands

-d [name] : input data

-al [num] : anode length

-tlh [ch] [num] : high threshold

-tll [ch] [num] : low threshold

-s [num] : skip num lines
—enable2d [mode] :enable 2d compression

with the following meaning:
1) -f [name] : CARLOS output data
Output data is a file containing the following CARLOS outputs in binary format:

data_stopl, data stopO, triggerl, trigger0, aftl, aft0, tx_en, cav, dav, output_data. An
output data file sample is given below.

O 00O0O0OO1O011100000101000010
O 00O0O0O0OT1T1O0 0000000010000000
O 00OO0OO0OOO0OO OO0 I1101000000010000
O 00OO0O0OOT1O01 1000001101000010
O 00O0OO0OO0OOO0I1101000000010000
2) —c [name] : VHDL output data

Department of Physics and INFN Bologna 53

CARLOS v5 reference manual

VHDL output data contains the same data as CARLOS output data as they come from
the VHDL simulation. This feature can be useful in order to compare actual chip
outputs with the expected simulation values.

3) -3 [name] : JTAG commands

A file containing the JTAG instructions run on the CARLOS chip can be used in order
to ease the decoding of CARLOS JTAG output words. A sample of this file is shown
below:

AMBRA

:WRITE_BASELINE 16

:READ_BASELINE 16

CARLOS
:RUNBIST 5

:READ_BIST 5
6
:LOAD_TI1L_LEFT 5

:READ_TI1L_LEFT 5

OO wWAORrRrRQOO*xH VWP o

=
=
(¢]
=
[¢]

e #1is the first character of a comment line,

e P, A, C or G as the first character defines the chip who receives the related
JTAG instruction (PASCAL, AMBRA, CARLOS or GOL),

¢ the number on the right of a JTAG instruction defines the length of the related
JTAG instruction (16 bits on PASCAL and AMBRA, 5 bits on CARLOS and
GOL),

¢ the number on the line following a JTAG instruction denies the number of bits
to be read during the Shift-DR state (0 means that the Shift-DR state is not
entered after decoding the JTAG instruction).

4) -d [name] : input data

Input data file contains the data words sent as inputs to CARLOS in binary format in
the following order:

¢ an incremental number (it is incremented by 1 after each line);

e data_inl (9 bits);

e data in0 (9 bits);

e data writel;

Department of Physics and INFN Bologna 54

CARLOS v5 reference manual

e data_write0;
e data _endl;
e data end0.

An output data file sample is given below:

75433 000000000 011001000 1 1 0O O
75434 000000000 011010000 1 1 0O O
75435 000000000 011011000 1 1 0O O
75436 000000000 000000000 1 1 O O
75437 000000000 001000000 1 1 O O
5) —all[num] : anode length

Anode length defines the number of samples to be taken for each input anode. Its value
is the same as the one JTAG programmed on the corresponding internal register of
CARLOS incremented by 1. So far if CARLOS has been programmed with an anode
length value of 199, when using parsepack an anode length value of 200 has to be
used.

6) -tlh [ch] [num] : high threshold

This parameter defines the high threshold for the two CARLOS processing channels.
Its value is the same as the one JTAG programmed on the chip internal registers.

6) -t1ll [ch] [num] : low threshold

This parameter defines the low threshold for the two CARLOS processing channels.
Its value is the same as the one JTAG programmed on the chip internal registers.

7)—-s [num] : skip num lines

This parameter allows to skip 1 output data file line out of 2, when num is put to 1.
Otherwise all the lines are processed. This feature may be useful when oversampling
CARLOS output data, for instance when using the logic Analyzer internal clock.

8) —enable2d [mode] : enable 2d compression

This parameter has the same value of the CARLOS internal register enable 2D.

Just as an example the parsepack tool could be run with the following command:

> parsepack —-f ../testbench/bench_out.tv

Department of Physics and INFN Bologna 55

CARLOS v5 reference manual

-3 ./jtag_list.tv.carlos -d ../testbench/bench_in.tv -al
50 -t1h 1 31 -tl1h 0 O —-t11 1 15 -t11 0 O -enable2d 1 >
log.txt

What are parsepack outputs?

This is a list of the files produced as outputs:

* Jog.txt:
it contains the result of the comparison of the original matrix with the reconstructed

one for each event and, when they are present, a list of the mismatches. It also
gives the compression coefficient and the number of EOR Summaries found for
each event. Follow a brief sample with errors:

Event: 1

Event ID: O

Carlos ID: 3

Ch. 0 Ratio 0.803919 Words 7958
Low threshold 0 High threshold 0 Anode length 50
End of row summaries: 255

Ch. 1 Ratio 17.728532 Words 358
Low threshold 15 High threshold 31 Anode length 50
End of row summaries: 255

The cluster coordinates in original not found in reconstructed event on

channel 0 are:

Anode: 255 Sample: 11 Value: 160

Anode: 255 Sample: 12 Value: 192

Anode: 255 Sample: 13 Value: 200

and an other one without errors:

Event: 1
Event ID: O
Carlos ID: 3
Ch. 0 Ratio 0.830198 Words 7706

Low threshold 0 High threshold 0 Anode length 50

End of row summaries: 256
Ch. 1 Ratio 17.630854 Words 360

Low threshold 15 High threshold 31 Anode length 50

End of row summaries: 256
Every cluster in original is found in reconstructed event on channel
Every cluster in original is found in reconstructed event on channel
Every cluster in reconstructed event is found in original on channel
Every cluster in reconstructed event is found in original on channel

= O O

e jtag.dat:
This file contains the JTAG instructions sent to CARLOS and the related answers,

both in hexadecimal and binary format.
Follows a brief sketch:

AMBRA

Department of Physics and INFN Bologna 56

CARLOS v5 reference manual

A:WRITE_BASELINE 1
A:READ_BASELINE 1
000000000 hOOOO

CARLOS

C:RUNBIST 1
C:READ_BIST 1
0001100110010000 h1990
C:LOAD_TI1L_LEFT 1
000000000 hOOOO
C:READ_TI1L_LEFT 1
000000000 hOOOO

So far the baseline value read from the AMBRA chip is 0 and the BIST result read
from CARLOS is 0x1990.

event# ch0.dat, decoded# ch0.dat, event# chl.dat, decoded# chl.dat

The files event*.dat contain the original events, while the files decoded*.dat
contain the reconstructed events for each channel (# is the ordinal number of the
event being considered). The files contain one value for each line, starting from
anode 0 — sample 0 to anode 0 — sample 255 and then anode 1 —sample 0 and so on.

packetdiff.dat
This file contains the list of the lines with some difference between the CARLOS

actual outputs and VHDL simulation outputs.

headfoot.dat

This file contains a list of the headers (all 3 words) and footers (only one is
reported in the file per event) of all the events contained in the output data file,
without the 3 MSBs. Follows a brief sample:

Event: 4
001E
001E
001E
1FFF

Event: 5
0026
0026
0026
1FFF

errflag.dat
The file contains a list of all the error flag words present in the output data file in

hexadecimal format.

errsummary(.dat. errsummary1.dat

Department of Physics and INFN Bologna 57

CARLOS v5 reference manual

The files contain the list of the EOR Summaries detected in every event contained
in the output data file in a binary format. The summaries, reported one per line,
have the following format when enable 2D = 1:

000

E/O

VL

VZ

VH

NCL

NCZ

NCH

Parity

3 bits

1 bit

1 bit

1 bit

1 bit

3 bits

4 bits

4 bits

3 bits

When enable 2D = 0, the summaries have the following format:

17 zeros

E/O

Parity

14 bits

1 bit

3 bits

Parsepack checks the value of each of the fields contained in the EOR

compr(.dat. comprl.dat

Summaries with the exception of the Parity bits. If some mismatch is found, a
list of errors is appended to the file after the EOR Summaries.

These files contain the values of the valid outputs of the compressor block hosted
in channel 0 and channel 1 during the transmission of an event. Their values can be
useful for debugging purposes only.

barrel(.dat, barrell.dat

These files contain the values of the valid outputs of the barrel shifter hosted in
channel 0 and channel 1 during the transmission of an event. Their values can be
useful for debugging purposes only.

fifo(.dat, fifol.dat

These files contain the values of the valid outputs of the fifo data block hosted in
channel 0 and channel 1 during the transmission of an event. Their values can be
useful for debugging purposes only.

Department of Physics and INFN Bologna

58

