

LabVIEW is a graphical programming language that uses icons

instead of lines of text to create applications. In contrast to text-

based programming languages, where instructions determine

program execution, LabVIEW uses dataflow programming, where

the flow of data determines execution order.

You can purchase several add-on software toolkits for developing

specialized applications. All the toolkits integrate seamlessly in

LabVIEW.

http://www.ni.com

National Instruments: LabVIEW

Front Panel
• Controls = Inputs
• Indicators = Outputs

Block Diagram
• Accompanying “program”

for front panel
• Components “wired”

together

LabVIEW Programs: Virtual Instruments (VIs)

Users interact with the Front Panel when the program is running. Users

can control the program, change inputs, and see data updated in real

time. Controls are used for inputs such as, adjusting a slide control to

set an alarm value, turning a switch on or off, or to stop a program.

Indicators are used as outputs. Thermometers, lights, and other

indicators display output values from the program. These may include

data, program states, and other information.

Every front panel control or indicator has a corresponding terminal on

the block diagram. When a VI is run, values from controls flow

through the block diagram, where they are used in the functions on the

diagram, and the results are passed into other functions or indicators

through wires.

LabVIEW programming style

VI Front Panel

Front Panel
Toolbar

Graph

Legend

Boolean
Control

Waveform
Graph

Icon

Plot

Legend

Scale

Legend

VI Block Diagram

Wire
Data

Graph
Terminal

SubVI

While Loop
Structure

Block
Diagram
Toolbar Divide

Function

Numeric
Constant

Timing
Function

Boolean Control
Terminal

Express VIs, VIs and Functions

• Express VIs: interactive VIs with configurable dialog page

• Standard VIs: modularized VIs customized by wiring

• Functions: fundamental operating elements of

LabVIEW; no front panel or block diagram

Express VIExpress VI Standard VIStandard VI

FunctionFunction

Labview Functions

Controls and Functions Palettes

Controls Palette
(Front Panel Window)

Functions Palette
(Block Diagram Window)

Run Button

Continuous Run Button

Abort Execution

Pause/Continue Button

Text Settings

Align Objects

Distribute Objects

Reorder

Resize front panel
objects

Execution Highlighting
Button

Step Into Button

Step Over Button

Step Out Button

Additional Buttons on
the Diagram Toolbar

Status Toolbar

Help Options

Context Help
• Online help

• Lock help

• Simple/Complex Diagram help

• Ctrl + H

Online reference
• All menus online

• Pop up on functions in diagram to access online info directly

Tips for Working in LabVIEW

• Keystroke Shortcuts

– <Ctrl-H> – Activate/Deactivate Context Help Window

– <Ctrl-B> – Remove Broken Wires From Block Diagram

– <Ctrl-E> – Toggle Between Front Panel and Block

Diagram

– <Ctrl-Z> – Undo (Also in Edit Menu)

• Tools » Options… – Set Preferences in LabVIEW

• VI Properties – Configure VI Appearance,

Documentation, etc.

Control
Terminals

Block Diagram Window

Front Panel Window

Indicator
Terminals

Creating a VI

Creating a VI – Block Diagram

• Block diagram executes

dependent on the flow of data;

block diagram does NOT

execute left to right

• Node executes when data is

available to ALL input terminals

• Nodes supply data to all output

terminals when done

Dataflow Programming

Debugging Techniques

• Finding Errors

• Execution Highlighting

• Probe

Click on broken Run button

Window showing error appears

Click on Execution Highlighting button; data
flow is animated using bubbles. Values are
displayed on wires.

Right-click on wire to display probe and it
shows data as it flows through wire segment

You can also select Probe tool from Tools
palette and click on wire

SubVIs

• What is a subVI?

• Making an icon and

connector for a subVI

• Using a VI as a subVI

SubVIs

• A SubVI is a VI that can be used within another VI

• Similar to a subroutine

• Advantages

– Modular

– Easier to debug

– Don’t have to recreate code

– Require less memory

Icon and Connector

• An icon represents a VI in other block

diagrams

• A connector shows available

terminals for data transfer

Icon

Connector

Terminals

Steps to Create a SubVI

• Create the Icon

• Create the Connector

• Assign Terminals

• Save the VI

• Insert the VI into a Top Level VI

Create the Icon

• Right-click on the icon in the

block diagram or front panel

Create the Connector

Right click on the icon pane (front panel only)

Assign Terminals

Save The VI

• Choose an Easy to Remember Location

• Organize by Functionality

– Save Similar VIs into one directory (e.g. Math Utilities)

• Organize by Application

– Save all VIs Used for a Specific Application into one

directory or library file (e.g. Lab 1 – Frequency

Response)

• Library Files (.llbs) combine many VI’s into a single file, ideal for
transferring entire applications across computers

Insert the SubVI into a Top Level VI

Accessing user-made subVIs
Functions >>All Functions >> Select a VI

Or
Drag icon onto target diagram

Loops and Charts

• For Loop

• While Loop

• Charts

• Multiplots

Loops

• While Loops
– Have Iteration Terminal

– Always Run at least Once

– Run According to Conditional
Terminal

• For Loops
– Have Iteration Terminal

– Run According to input N of
Count Terminal

Loops

1. Select the loop 2. Enclose code to be repeated

3. Drop or drag additional nodes and then wire

An input of 0 would result in an output of 5 the first iteration, 10 the

second iteration and 15 the third iteration. Said another way, shift

registers are used to retain values from one iteration to the next.

They are valuable for many applications that have memory or

feedback between states.

Shift register

Case Structures

• In the Structures subpalette of Functions palette

• Enclose nodes or drag them inside the structure

• Stacked like a deck of cards, only one case visible

Functions >> Execution control

Case Structures

State machine with Labview

State machine with Labview

Sequence Structures

• In the Execution Control subpalette of Functions palette
• Executes diagrams sequentially
• Right-click to add new frame

Charts

Waveform chart – special
numeric indicator that can

display a history of values

Controls >> Graph Indicators
>> Waveform Chart

Wiring Data into Charts

Single Plot Charts Multiplot Charts

Graphs

• Selected from the Graph palette of Controls menu
Controls>>All Controls>>Graphs

Waveform GraphWaveform Graph –– Plot an array of Plot an array of

numbers against their indicesnumbers against their indices

Express XY GraphExpress XY Graph –– Plot one array Plot one array

against anotheragainst another

Digital Waveform GraphDigital Waveform Graph –– Plot bits Plot bits

from binary datafrom binary data

Graphs

Right-Click on the Graph and choose Properties

to Interactively Customize

Arrays & File I/O

• Build arrays manually

• Have LabVIEW build arrays automatically

• Write to a spreadsheet file

• Read from a spreadsheet file

Adding an Array to the Front Panel

From the Controls >> All Controls >> Array and

Cluster subpalette, select the Array

Drop it on the screen.

Adding an Array

Place data object into shell (i.e. Numeric Control)

Building an Array

Creating an Array with a Loop

• Loops accumulate arrays at their boundaries

Array Functions – Basics

Functions >> All functions>> ArrayFunctions >> All functions>> Array

Array Functions – Build Array

File I/O

File I/O – passing data to and from files

- Files can be binary, text, or spreadsheet

- Write/Read LabVIEW Measurements file (*.lvm)

Writing to LVM fileWriting to LVM file Reading from LVM fileReading from LVM file

Write LabVIEW Measurement File

• Includes the open, write, close and error handling functions

• Handles formatting the string with either a tab or comma

delimiter

• Merge Signals function is used to combine data into the

dynamic data type

Strings

• A string is a sequence of displayable or nondisplayable

characters (ASCII)

• Many uses – displaying messages, instrument control, file

I/O

• String control/indicator is in the Controls »Text Control or

Text Indicator

Clusters

• Data structure that groups data together

• Data may be of different types

• Analogous to struct in C

• Elements must be either all controls or all indicators

• Thought of as wires bundled into a cable

Creating a Cluster

1. Select a Cluster shell

Controls >> All Controls >> Array & Cluster

2. Place objects inside the shell

Cluster Functions
• In the Cluster subpalette of the Functions>>All

functions palette

• Can also be accessed by right-clicking on the cluster
terminal

Bundle

(Terminal labels
reflect data type)

Bundle By Name

Cluster Functions

Unbundle

Unbundle By Name

Unbundled cluster
in the diagram

Error Clusters

• Error cluster contains the following information:

–Boolean to report whether error occurred

–Integer to report a specific error code

–String to give information about the error

Error Handling Techniques

• Error information is passed from one subVI to the next
• If an error occurs in one subVI, all subsequent subVIs are

not executed in the usual manner

• Error Clusters contain all error conditions
• Automatic Error Handling

error clusters

Formula Nodes

• In the Structures subpalette

• Implement complicated equations

• Variables created at border

• Variable names are case sensitive

• Each statement must terminate with a semicolon (;)

• Context Help Window shows available functions

Note semicolon

Printing & Documentation

• Print From File Menu to Printer, HTML, Rich Text File

• Programmatically Print Graphs or Front Panel Images

•Document VIs in VI Properties » Documentation Dialog

• Add Comments Using Free Labels on Front Panel &

Block Diagram

Printing

• File » Print… Gives Many Printing Options

– Choose to Print Icon, Front Panel, Block Diagram, VI Hierarchy,

Included SubVIs, VI History

• Print Panel.vi (Programmatically Prints a Front Panel)

– Functions » All Functions » Application Control

• Generate & Print Reports (Functions » Output » Report)

Documenting VIs

• VI Properties » Documentation

– Provide a Description and Help Information for a VI

• VI Properties » Revision History

– Track Changes Between Versions of a VI

• Individual Controls » Description and Tip…

–Right Click to Provide Description and Tip Strip

• Use Labeling Tool to Document Front Panels & Block

Diagrams

Data Acquisition

• Data acquisition (DAQ) basics

• Connecting Signals

• Simple DAQ application

Computer

DAQ Device

Terminal Block

Cable

Sensors

Traditional NI-DAQ

Specific VIs for

performing:

• Analog Input

• Analog Output

• Digital I/O

• Counter operations

NI-DAQmx

Next generation driver:

• VIs for performing a

task

• One set of VIs for all

measurement types

Data Acquisition in Labview

Temperature Acquisition using the DAQ Assistant

Data Acquisition

Hardware Connections

BNC-2120

SCB-68

NI-ELVIS

SC-2075

Next step:Next step:

LABVIEW FPGALABVIEW FPGA

